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Abstract 

Background: Phlebotomus pedifer is the vector for Leishmania aethiopica causing cutaneous leishmaniasis (CL) in 
southwestern Ethiopia. Previous research on the transmission dynamics of CL resulted in recommendations for vector 
control. In order to target these interventions towards affected areas, a comprehensive understanding of the spatial 
distribution of P. pedifer at high spatial resolution is required. Therefore, this study determined the environmental pre-
dictors that facilitate the distribution of P. pedifer and created a map indicating the areas where conditions are suitable 
for survival of the vector in southwestern Ethiopia with high spatial resolution.

Methods: Phlebotomus pedifer presence points were collected during two entomological surveys. Climate, vegeta-
tion and topographic variables were assembled. Climate variables were interpolated with variables derived from 
high-resolution digital elevation models to generate topoclimatic layers representing the climate conditions in the 
highlands. A Maximum Entropy model was run with the presence points, predicting variables and background points, 
which were selected based on a bias file.

Results: Phlebotomus pedifer was the only captured Phlebotomus species in the study area and was collected at 
altitudes ranging between 1685 and 2892 m. Model projections indicated areas with suitable conditions in a ‘belt’ 
surrounding the high mountain peaks. Model performance was high, with train and test AUC values being 0.93 and 
0.90, respectively. A multivariate environmental similarity surface (MESS) analysis showed that the model projection 
was only slightly extrapolated for some of the variables. The mean annual temperature was the environmental vari-
able, which contributed most to the model predictions (60.0%) followed by the seasonality in rainfall (13.2%). Variables 
representing steep slopes showed very low importance to model predictions.

Conclusions: Our findings indicate that the suitable habitats for P. pedifer correspond well with the altitudes at which 
CL was reported previously, but the predictions are more widely distributed, in contrast with the description of CL to 
occur in particular foci. Moreover, we confirm that vector distribution is driven by climate factors, suggesting inclusion 
of topoclimate in sand fly distribution models. Overall, our model provides a map with a high spatial resolution that 
can be used to target sand fly control measures in southwestern Ethiopia.
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Background
Phlebotomine sand flies (Diptera: Phlebotominae) are 
tiny, hematophagous insects that occur in tropical and 
subtropical regions. In Africa, the genera Phlebotomus 
and Sergentomyia occur and some species of the former 
genus are the vector of Leishmania spp., causing leish-
maniasis in humans [1]. The infection can manifest in 
three major clinical forms: cutaneous (CL), mucocuta-
neous (MCL) and visceral (VL) leishmaniasis, which are 
all three occurring in Ethiopia [2–4]. The most common 
form is CL, which is caused by Leishmania aethiopica. 
This parasite species is transmitted by Phlebotomus pedi-
fer Lewis, Mutinga & Ashford, 1972 in southwestern and 
P. longipes Parrot & Martin, 1939 in central and northern 
Ethiopia [5–7].

In great contrast to the 878 CL cases that were reported 
to the WHO in 2018, it is estimated that the incidence 
of the infection lies between 20,000–50,000 cases yearly, 
reflecting the severe underreporting of the infection 
in Ethiopia [4, 8]. CL particularly occurs in foci on the 
mountain slopes of the Ethiopian Rift Valley, ranging 
from North to Southwest and South to Northeast in the 
country. The described foci are all situated at altitudes 
ranging between 1700–2700 m and are located in four 
regional states: Southern Nations, Nationalities and Peo-
ples’ Region (SNNPR), Amhara, Tigray and Oromia, and 
Addis Ababa city administration [5, 6, 9–13].

Ochollo is a well-known CL focus at about 2100 m in 
southwestern Ethiopia and is considered a model vil-
lage for research investigating the transmission dynam-
ics of CL [6, 9, 14]. The area has a rough topography 
and is characterized by steep slopes, many rocks and 
basalt cliffs with caves, providing the ideal habitat for P. 
pedifer and the animal reservoir of the infection, hyraxes 
[15]. According to findings on the transmission cycle in 
Ochollo, suggestions have been made for vector control 
and disease prevention in the area [6, 9, 14].

Effective and efficient implementation of integrated 
vector control programmes and resource allocation 
requires a comprehensive understanding of the spatial 
distribution of P. pedifer. Besides from Ochollo and an 
outbreak in Silte woreda, neither P. pedifer nor CL has 
been reported in the surrounding areas, even though the 
topography and ecology appear similar in some areas [6, 
9, 11, 14, 15]. However, a recent study indicated many of 
these areas to be at high-risk for CL based on environ-
mental parameters (rainfall, altitude and slope), yet no 
(entomological) surveys have been conducted here [16].

It is quite novel that species distribution models 
(SDMs) are being implemented to predict the distribu-
tion of a vector to optimize control measures [17]. SDMs 
are sophisticated, dynamic tools that can identify areas 
that are suitable for the survival of a particular species. It 

integrates species occurrence data and information about 
environmental conditions at these locations to char-
acterize the niche of the species and project it into the 
geographical space, resulting in a map that predicts the 
species’ potential distribution [18, 19].

Commonly, bioclimatic variables are applied in SDMs 
at 30 arc-second resolution (1  km2) or coarser, which 
represent free-air conditions that were averaged over the 
past 30 years [20–22]. Although these layers are prob-
ably adequate for flat terrains, they may not be sufficient 
for representation in mountainous areas with a vari-
able topography [23–26]. Due to this vertical dimension, 
organisms experience microclimatic conditions, which 
can vary noticeably over a short distance. This is attrib-
uted to several topographic factors, such as slope angle, 
aspect, solar radiation, distance to the ocean, etc. [27]. 
An additional issue of these macroclimatic data is that 
other layers with a higher spatial resolution need to be 
resampled, which can lead to loss of important details.

However, macroclimatic data can be downscaled with 
variables derived from high-resolution digital elevation 
models (DEMs) to generate a statistical relationship that 
results in higher resolution climatic data [23, 24]. Integra-
tion of these high-resolution climatic variables was dem-
onstrated to significantly improve the predictive power of 
SDMs [28, 29].

In this study, we used topoclimatic variables in an 
SDM to determine the environmental predictors that 
facilitate the presence of P. pedifer and assessed areas 
that are suitable for the survival of the vector with high 
spatial resolution in five zones of the SNNPR. The gen-
erated maps can be implemented by policymakers for 
guidance of targeted vector control programs to reduce 
the burden of CL in this area in southwestern Ethiopia.

Methods
Site description
The study was conducted in the SNNPR, in southwest-
ern Ethiopia (Fig.  1a). The area has a variable topog-
raphy with an altitude ranging from 340 to 3433  m 
(Fig. 1b). The south and west of the area comprise flat 
lowlands, whereas the north and east are mountainous. 
P. pedifer occurs in mountainous areas and the model 
village for research on CL transmission, Ochollo, is 
situated near Arba Minch, in Gamo zone. Therefore, 
we selected Gamo zone, three additional surround-
ing administrative zones, including Gofa, Wolaita 
and Dawuro and Dherashe area for sample collec-
tion (Fig.  1c). Together, the area covers approximately 
22,000 km2 and is inhabited by 4.7 million people.

The study area consists of mountains and valleys with 
an altitude ranging between 550 and 3390 m. Due to its 
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topography, it has a temperate climate, with an aver-
age yearly temperature ranging from 9.3  °C to 25.5  °C 
and rainfall varying between 630 mm and 2280 mm, in 
the lowlands and highlands [30]. Because the study area 
covers a wide topographical range, the seasons vary 
from place to place, but generally the dry season lasts 
from October to April and the wet season from May to 
September. In recent years, the area has been subjected 
to ecological modifications related to human activities, 
like urbanization, agriculture and deforestation.

Occurrence data
Occurrence points of P. pedifer were collected during two 
consecutive entomological surveys (Fig.  2, black frame, 
Fig. 3).

First, 76 presence points were assembled during an 
active case finding survey carried out from May to July 
2018. The survey was performed under guidance of a 
neglected tropical diseases (NTD) focal person and 
health extension workers and by questioning community 
members about the presence of CL patients supported 
by pictures of lesions and hyraxes. When a suspected 
CL case was found, a CDC miniature light trap (John W. 
Hock Company, Gainesville, Florida, USA) was set in the 
late afternoon inside the patient’s dwelling or in a nearby 
cave or rocky area where hyraxes were present. Sand flies 
were collected the next morning, mounted in CMCP-10 
high viscosity mounting medium (Polysciences Europe, 
Herschberg, Germany) and the species was determined 
according to relevant morphological keys [31–33].

Secondly, an elementary Maximum Entropy (MaxEnt) 
model was developed using the P. pedifer presence points 
collected during the active case finding survey in 2018 
and environmental layers that were found to predict the 
presence of CL in Ethiopia in a study of Seid et al. [16]: 
altitude, slope and rainfall. A multivariate environmental 

similarity surface (MESS) analysis was integrated, meas-
uring the extent of the projected data, which was not 
within the range with the training variables (thus causing 
model extrapolation). We intended to keep the extent of 
extrapolation low as it informs on the credibility of the 
model output. Therefore, a new sampling approach was 
designed based a weighted overlay of the MESS analy-
sis (70%) and the distance to the road (30%), in order to 
reduce the degree of extrapolation by additional sampling 
in accessible places. This entomological survey was car-
ried out in the dry season (January and February 2020), 
when sampling sites were better accessible and a higher 
sand fly abundance was expected [15]. During this sur-
vey, we searched for suspected CL cases for nearby sand 
fly trapping. If CL cases were absent, traps were placed in 
other potential sand fly breeding or resting sites, because 
the area could still be at risk for an outbreak if the vector 
would be present. Collected specimens were processed as 
described above, leading to 23 additional P. pedifer pres-
ence points.

Sampling bias file
Most of the sampling effort was performed within a 
certain distance to the roads and towns (approximately 
10 km), which was necessary to ensure access to the sam-
pling areas, particularly at rainy days. Moreover, case 
finding and sand fly trapping were never attempted at 
altitudes under 1400  m. This is because neither P. pedi-
fer nor CL have been observed at altitudes under 1700 m. 
Additionally, we applied a buffer of 300 m in altitude to 
avoid missing sites where P. pedifer could be present on 
the one hand and prevent putting too much effort in sites 
where the vector cannot be found on the other hand.

In order to diminish spatial autocorrelation of the sam-
pled presence points without reducing the predictive 
power of the model, a sampling bias file was designed 

Fig. 1 Location of the study area [78, 79]. a The SNNPR in southwestern Ethiopia, with the capital city Arba Minch situated in the east. b 
Magnification of the topography (elevation, metres) of the SNNPR and the study area indicated in green. c Magnification of the study area: four 
zones (Dawuro, Wolaita, Gofa and Gamo) and Dherashe area. Abbreviation: SNNPR, Southern Nations, Nationalities and Peoples’ Region
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to match the sampling effort and avoid overfitting of 
the model (Fig.  2, dark grey frame, Fig.  3) [34]. There-
fore, a weighted overlay was performed with increasing 
weights for proximity (< 2.5 km, 2.5–5 km, 5 km–10 km, 
> 10  km) to a town and road (50/50%). All areas under 
1400 m were given the lowest weight and the final raster 
file was used for selection of background points with an 
increased probability in areas with a high sampling effort 
(explained below).

Environmental data
Collection of environmental data
A wide range of environmental layers was acquired as 
candidate explanatory variables for the model (Fig.  2, 
light grey frame). Specifics and sources of the variables 
and the range in our study site are demonstrated in 
Table 1. All manipulations of the variable layers were car-
ried out in ArcGIS version 10.4.1.

Because temperature and precipitation are relevant 
drivers for the distribution of P. pedifer, bioclimatic vari-
ables were derived from ‘Climatologies at high resolution 
for the earth’s land surface areas’ (CHELSA, https ://chels 
a-clima te.org/biocl im/) with a spatial resolution of 30 

Fig. 2 Overview of the research data and methods. See Methods section for details. Abbreviations: MaxEnt, maximum entropy; MESS: multivariate 
environmental similarity surface; CHELSA, climatologies at high resolution for the earth’s land surface areas; ASTER, advanced spaceborne thermal 
emission and reflection radiometer; GDEM, global digital elevation model; MOD13Q1, terra moderate resolution imaging spectroradiometer 
vegetation indices; EVI, enhanced vegetation index; Tmean, mean temperature; Pseas, precipitation seasonality; EVIdry, enhanced vegetation index 
in the dry season; Pdry, precipitation in the driest months; Pmean, mean precipitation; Cliffs, ordinal categorical values indicating cliffs between 
20–40% and above 40%; EVIwet, enhanced vegetation index in the wet season; AUC, area under the curve

Fig. 3 Phlebotomus pedifer occurrence points collected during the 
two surveys and the sample bias file [78, 79]. The design of the bias 
file is based on a higher weight for areas nearby the roads and towns 
to match with the sampling effort of the study

https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
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arcsec (~ 1 km) [15, 30]. A subset of seven out of 19 avail-
able bioclimatic variables were considered ecologically 
relevant to the species and selected, in particular annual 
averages and extrema (minimum and maximum) for both 
temperature and precipitation and a variable describing 
the annual rainfall variation as a measure for seasonality 
[35].

The vector is breeding in caves on cliff walls, where 
hyraxes are living. Therefore, an ASTER digital elevation 
model (DEM) with 30 m spatial resolution was acquired 
from U.S. Geological Survey (USGS, earth explorer, https 
://earth explo rer.usgs.gov/), of which the slope (percent-
age) was computed. To avoid losing the information 
about cliffs while resampling to a resolution of 250  m, 
an additional ordinal categorical layer was created using 
a weighted overlay analysis, indicating number of slopes 
between 20–40% (25% weight) and > 40% (75% weight) 
per 250 m pixel.

Sand flies require vegetation through which they can 
move, forage and reproduce [36]. Hence, vegetation lay-
ers were included as potential predictors from USGS. 
The Moderate Resolution Imaging Spectroradiometer 
(MODIS) enhanced vegetation index (EVI) quantifies 
the vegetation density. The MOD13Q1 product (https ://
earth explo rer.usgs.gov/) is produced on a 16 days inter-
val base and corrects for particular atmospheric condi-
tions and canopy background noise. Indices were derived 
for the annual and seasonal averages over the past three 
years (2017–2019) with 250 m spatial resolution.

All environmental layers, the occurrence points and 
bias file were projected in the same spatial reference sys-
tem, World Geodetic System 84 (WGS84 EPSG:4326)

Topographic downscaling of climate layers
The bioclimatic layers were downscaled on the basis of 
topographic variables to produce topoclimate (local cli-
mate at a particular topography) at high resolution as 
functionally relevant predictor variables [37]. We opted 
for a resolution of 250 m because it formed an appropri-
ate balance between a feasible spatial resolution to guide 
implementation of vector control measures and the com-
putational capacity required for the downscaling pro-
cess. Downscaling followed a Geographically Weighted 
Regression (GWR) approach [38] outlined by Lenoir 
et al. [39] and was based on elevation, slope, northness, 
eastness, distance from the ocean and potential solar 
radiation. These predictor variables have shown good 
results for predicting temperature and precipitation data 
in previous studies [39–45].

Data were prepared for downscaling in R version 3.5.2 
[46] using the raster package [47]. The area was subdi-
vided into 16 sections to make the computation time for 
downscaling feasible for the size of our study site. Topo-
graphic variables were derived from the ASTER DEM at 
250  m resolution. Distance from the ocean was down-
loaded from http://www.soest .hawai i.edu/pwess el/gshhg 
/ at 1 arc-minute resolution [48]. The potential incom-
ing solar radiation was calculated for each grid cell of the 
DEM for the spring equinox (March 21st) with a 6-hour 
resolution using the SAGA GIS 6.3.0 tool Potential 
Incoming Solar Radiation [49]. The downscaling was per-
formed on resources provided by the NTNU IDUN/EPIC 
computing cluster using R version 3.6.0 and the spgwr 
package [50]. The 16 sections were mosaicked together 
and checked for correspondence to CHELSA values. 

Table 1 Environmental layers acquired as candidate explanatory variables to predict the habitat suitability of Phlebotomus pedifer. 
CHELSA layers at 30 arc-seconds were downscaled and USGS slope and cliffs layers were resampled, all to a 250 m spatial resolution

Abbreviations: CHELSA, Climatologies at High-Resolution for the Earth’s Land Surface Areas; USGS: U.S. Geological Survey

Name Explanation Source Original spatial 
resolution

Data range study area

Tmean Annual mean temperature (Bio1) CHELSA 30 arcsec 8–34 °C

Tmax Maximum temperature of the warmest month (Bio5) CHELSA 30 arcsec 14–45 °C

Tmin Minimum temperature of the coldest month (Bio6) CHELSA 30 arcsec 2–31 °C

PrecMean Annual precipitation (Bio12) CHELSA 30 arcsec 526–3216 mm

PrecWet Precipitation of the wettest month (Bio13) CHELSA 30 arcsec 90–369 mm

PrecDry Precipitation of the driest month (Bio14) CHELSA 30 arcsec 5–68 mm

PrecSeas Precipitation seasonality (Bio15) CHELSA 30 arcsec 21–94%

Slope Hill slope calculated from elevation DEM USGS 30 m 0–77%

Cliffs Ordinal categorical value for number of slopes exceeding 20% and 40% 
per pixel

USGS 30 m 1–9

EVImean Average EVI from January 2017 until December 2019 (MOD13Q1) USGS 250 m − 0.13–0.59

EVIdry Average EVI for the dry season (January to March), MOD13Q1 USGS 250 m − 0.99–0.60

EVIwet Average EVI for the wet season (July to September) (MOD13Q1) USGS 250 m − 0.16–0.70

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://www.soest.hawaii.edu/pwessel/gshhg/
http://www.soest.hawaii.edu/pwessel/gshhg/
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Single outliers due to small bandwidth of the GWR were 
removed and missing data were interpolated using the 
Close Gaps tool of SAGA.

Variable preparation
Overall, 12 environmental layers were considered to 
potentially predict the habitat suitability of P. pedifer 
(Table  1). All layers were resampled to match a 250 m 
spatial resolution. For aggregation of the slope variable, 
the maximum values were retained to prevent the loss of 
information on slope steepness, while for all other layers, 
average values were calculated.

Apart from ecological relevance, multi-collinearity 
among candidate predictor variables was assessed with a 
Pearson’s correlation (Fig. 2, light grey frame, Additional 
file 1: Figure S1). If the absolute coefficient exceeded 0.7, 
one of the pair variables was omitted for inclusion in the 
model. This resulted in eight remaining candidate predic-
tor variables: Tmean, Pmean, Pdry, Pseas, Slope, Cliffs, 
EVIdry and EVIwet.

MaxEnt model implementation
A model predicting the habitat suitability of P. pedifer 
was developed by a MaxEnt model using the dismo pack-
age in R version 3.3.1 [51].

The optimal settings for the MaxEnt model were deter-
mined using the ENMeval R package, in which the ran-
dom 10-fold cross-validation data partitioning method 
was used (Fig. 2, green frame) [52, 53]. The function com-
pares all possible model setting combinations and cal-
culates the Akaike information criterion (AIC) value for 
each combination. The lowest AIC value was found for a 
model with a regularization multiplier of 0.5, including 
linear and quadratic features and a combination of these 
classes. Hence, these settings were used to fit the model, 
which was run using a 10-fold cross-validation method, 
with 75% of the presences used for training and 25% 
for testing. Additionally, 5000 background points were 
assigned based on the bias file (Fig. 3).

A second round of variable selection was carried out 
by an iterative removal of the least predictive variables 
by the area under the curve (AUC) values of the receiver 
operator characteristic (ROC) of the MaxEnt model to 
maximize the model performance and minimize overfit-
ting. Yet, all variables contributed considerably to a better 
model AUC, so the final model consisted of the following 
eight variables: Tmean, Pmean, Pdry, Pseas, Slope, Cliffs, 
EVIdry and EVIwet.

In order to assess the robustness of the final model, it 
was run 200 times, including new random background 
points in each run. Model accuracy was evaluated by cal-
culating the average training and testing AUC values over 
200 runs.

A MESS analysis was performed to indicate areas 
where model projections were extrapolated (Fig. 2, green 
frame). The relative importance of the variables to pre-
dict the habitat suitability of P. pedifer was assessed using 
the jackknife estimates and percent contributions.

Results
Entomological survey
The only Phlebotomus species that was captured during 
both entomological surveys was P. pedifer. The species 
was collected at altitudes ranging between 1685–2892 m 
and most were captured inside human dwellings, which 
was in most cases due to excessive rainfall impeding out-
door trapping.

Prediction of suitable habitats for P. pedifer
The predicted habitat suitability for P. pedifer based on 
the MaxEnt model is shown in Fig.  4a. The predictive 
performance of the model was high, with average (± SD) 
training and testing AUC values being 0.93 ± 0.01 and 
0.90 ± 0.02, respectively.

Generally, the conditions are predicted highly suitable 
for the vector in a ‘belt’ surrounding the main mountain 
ranges (Figs. 1b, 4a). This is most pronounced in Gamo 
zone and the eastern part of Gofa zone, where the high-
est mountain peaks are situated (Figs.  1b, c, 4a). In the 
central and western part of Gofa, Wolaita and Dawuro 
zones and Dherashe area, where mountains are gener-
ally lower, the predicted suitable habitats are more evenly 
distributed. In our study site, an area of 720 km2 (3.6%) 
was indicated with very suitable conditions for the pres-
ence of P. pedifer (> 0.6), 674 km2 (3.4%) showed a habi-
tat suitability value between 0.4–0.6 and 1174 km2 (5.2%) 
between 0.2–0.4.

The MESS analysis (Fig. 4b) demonstrates that almost 
none of the predicted suitable areas were projections out 
of the range of the training variables (no extrapolation), 
supporting the credibility of the model. Negative values 
were observed particularly in the lowlands, where P. pedi-
fer was not found during the entomological surveys.

Environmental variables associated with vector presence
The percent contributions (Fig.  5a, Additional file  2: 
Table  S1) and jackknife test estimates (Fig.  5b) indi-
cated that the most important variable to predict the 
habitat suitability of P. pedifer was the mean annual 
temperature variable, which had an average relative 
contribution (± SD) of 60.0 ± 3.0% to the model. The 
regularized training gain of the model with only and 
without the mean annual temperature were 0.83 ± 0.06 
and 0.80 ± 0.05), respectively, of the total model training 
gain of 1.47 ± 0.07. The second most important variable 
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was precipitation seasonality (13.2 ± 2.1), followed by 
the Enhanced Vegetation Index in the dry season, mean 
annual precipitation and precipitation in the dry season. 
The mean annual precipitation was slightly correlated 
with the precipitation seasonality (Additional file 1: Fig-
ure S1), causing the jackknife estimate for this variable 
only to be low. Cliffs and Slope variables had very low 
importance in the model.

The way the prediction depends on the two most 
important variables (mean annual temperature and 
precipitation seasonality) and their correlation with the 
other variables is presented in Fig.  6 (other variables 
in Additional file 3: Figure S2). The mean annual tem-
perature variable indicated suitable habitats for yearly 
average temperatures ranging approximately between 
12–20 °C, reaching an optimum at about 16 °C. A simi-
lar pattern was observed for the precipitation season-
ality variable with an optimum at 50% precipitation 
variability.

Discussion
Identifying the vector distribution is pivotal for guid-
ance of targeted integrated vector control, because places 
where P. pedifer occurs are either burdened by CL or 
vulnerable for a disease outbreak [54]. In this study, we 
designed a MaxEnt model resulting in a practical, high-
resolution map indicating areas suitable for the presence 
of P. pedifer in five zones in southwestern Ethiopia.

Previous studies pointed out that P. pedifer is the only 
vector for transmission of L. aethiopica in Ochollo vil-
lage [6, 15, 55]. Our entomological surveys confirm this 

finding in a much larger area, as this was the only species 
of Phlebotomus captured in the five zones.

Our model predicts that suitable habitats for P. pedifer 
are situated in a ‘belt’ surrounding the slopes of the high 
mountain peaks, whereas it is more evenly distributed in 
lower mountainous areas. This is in contrast with previ-
ous studies which describe the distribution of CL in Ethi-
opia to occur in foci [7].

Although the variables selected for our model were 
thoughtfully selected, there could potentially be an addi-
tional microecological variable that was not included but 
could predict this focal distribution. Another likely expla-
nation could be that our model predictions are accu-
rate and the considered patchy distribution is a result of 
underreporting of CL because of various reasons, like 
misdiagnosis, lack of diagnostics and understanding of 
the importance of reporting cases etc. [7, 56].

Therefore, it is sometimes suggested to perform a field 
validation study to evaluate the accuracy of the model 
[54, 57–60]. However, it should be taken into account 
that not all individuals of a species live in optimal con-
ditions, so it is possible to find the species outside the 
predicted suitable habitat [61]. Moreover, a species dis-
tribution can be constrained by dispersal limitations 
[62]. Also, even though generally the environmental 
conditions are permissive for the vector, it could be that 
there are no available blood or sugar sources or there are 
no niches for resting, breeding and survival of the vec-
tor within its flight range [63]. Therefore, neither finding 
some sand flies in areas that are not suitable for a species 

Fig. 4 Predicted suitable habitats for Phlebotomus pedifer using a MaxEnt model (a) and MESS analysis outcome (b). In the MESS map, values below 
zero are predictions slightly out of the range of the training variables. Areas indicated in red are the Abaya and Chamo lakes surrounding Arba 
Minch. Abbreviations: MaxEnt, maximum entropy; MESS, multivariate environmental surface similarity
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nor not being able to capture sand flies in certain suitable 
habitats means the prediction is unreliable.

The obvious ‘belt’ around the higher mountains indi-
cates that the environment is unsuitable for the presence 
of the vector up to and as of a certain height. In many 
studies, elevation is included as a response variable in the 
model [16, 19, 64–66]. However, this variable can have 
different environmental characteristics in different areas 
(depending on the slope, aspect, wind, etc.) and may thus 

result in overfitting of the model. Therefore, we used 
elevation, slope, aspect and distance to ocean as indirect 
measures of topoclimate.

We demonstrate that the mean annual temperature is 
by far the most important predictor for the presence of P. 
pedifer. The seasonality in precipitation also contributed 
considerably to the predictions. This means that lowland 
areas have too high temperatures and little variation in 
precipitation, while at high altitudes it is too cold and 
excessively raining in the wet season compared to the dry 
season for the vector to survive (Fig. 6). The importance 

Fig. 5 Percent variable contribution (a) and jackknife estimates (b) of the MaxEnt habitat suitability of P. pedifer. The green bar is the total regulized 
training gain, grey bars are the model training gain without the variable and black bars with only the indicated variable. Abbreviations: Tmean, mean 
temperature; Pseas, precipitation seasonality; EVIdry, enhanced vegetation index in the dry season; Pdry, precipitation in the driest months; Pmean, 
mean precipitation; Cliffs, ordinal categorical values indicating cliffs between 20–40% and above 40%; EVIwet, enhanced vegetation index in the 
wet season

Fig. 6 Dependence of the predicted suitability on two most contributing variables. The curves show how the prediction changes as each 
environmental variable is varied, keeping all other environmental variables at their average sample value. The cloglog value provides an estimate 
between 0–1 of probability of presence. Abbreviations: Tmean, mean temperature; Pseas, precipitation seasonality
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of the climate variables is consistent with other studies 
mapping the distribution of leishmaniasis and its vectors 
[16, 63, 65–67].

Our previous findings in Ochollo village show that 
the abundance of the vector population is similarly cor-
related with temperature and humidity (as a proxy for 
rainfall) [15]. Ochollo lies at an altitude of 2100  metres 
with annual temperatures ranging between 17.0–22.6 °C. 
Phlebotomus pedifer is present in the village during the 
whole year, but less abundant in the wet season and 
infected sand flies were continuously present inside 
caves [15]. In villages at lower or higher altitudes, how-
ever, there is a distinct climate, thus the seasonality of 
the (infected) sand fly population probably differs from 
what is observed in Ochollo. Periods without infections 
in sand flies can occur because Leishmania requires par-
ticular temperatures for development in the vector [68]. 
Furthermore, sand fly larvae can diapause, waiting for 
several months for favorable environmental conditions 
to develop to an adult stage, resulting in months with-
out any sand flies [69, 70]. This phenomenon has been 
observed for P. orientalis, the main VL vector in Ethiopia, 
in the wet season [71]. Hence, we expect that the season-
ality found in our previous paper would lead to periods 
without sand flies in the wet season in highland areas 
while sand flies can possibly only survive in the wet sea-
son in the lower highlands.

The importance of these climate variables could also 
indicate that the distribution of the vector could alter 
when the climate changes [35, 54, 72]. For Ethiopia, it is 
predicted that the temperature will rise, and rainfall will 
become erratic with flood and drought events likely to 
increase [73]. We hypothesize that therefore there could 
be a shift of P. pedifer presence towards the highlands. If 
these are places where people have no immunity due to 
parasite exposure yet and hyraxes are present to serve as 
reservoirs, this could lead to new outbreaks. It would be 
interesting for future studies to make a model with only 
microclimate variables and project the vector’s potential 
niche to the future to assess what would happen to the 
distribution of the vector.

The variables Slope and Cliffs showed a low relative 
importance for the model. This was unexpected, as 
rock crevices in cliffs are the main breeding sites of P. 
pedifer and CL is positively correlated with proximity 
to caves and hyrax habitats [7, 13, 15, 74]. This could 
potentially be a result of sampling that was mainly per-
formed inside human dwellings instead of in outdoor 
sand fly breeding sites to avoid decreased trapping effi-
ciency due to excessive rainfall. However, the selected 
houses for sand fly collection were often nearby poten-
tial sand fly and hyrax habitats. The study of Seid et al. 
[16] that predicted the area at risk for CL in Ethiopia, 

found slopes > 7.45 degrees to be highly associated with 
CL presence, which corresponds with a slope > 13%. 
Our model focused on steep slopes (20–40% and > 40%) 
to represent cliffs as hyrax and sand fly habitats, which 
presumably explains why it was not important in our 
model.

In our previous study in Ochollo, we demonstrated that 
sand flies are mainly present inside caves, but consider-
able numbers and infected sand flies can also be found 
in stone fences around houses or in cracks of large boul-
ders [15]. During the present entomological surveys, P. 
pedifer was trapped in some sites where no typical basalt 
cliffs with caves were observed. This suggests that caves 
may not be a crucial environment for sand fly presence 
as the model suggests, but rather enhance the abundance 
of the vector population. Knowledge on the distribution 
of basalt cliffs and caves at high resolution could perhaps 
provide a better insight into the importance of the cliffs 
for the presence of P. pedifer.

Previous distribution maps were already made for the 
distribution of CL cases and VL vectors (P. orientalis and 
P. martini) in Ethiopia [16, 63]. The former was designed 
by Seid et al. [16] using a multivariate logistic regression 
analysis to assess the most important predictor variables 
and a probabilistic and weighted overlay analysis to gen-
erate a risk map for CL. They found elevation, rainfall and 
slope as the most important predictors of CL distribution 
and the map indicates more than one fifth of the coun-
try at high or highest risk for CL. Even peak highlands 
(> 2650  m) were indicated at highest risk and lowland 
areas were still medium to low risk areas. This deviates 
from our results, where only about 7% of the mountain-
ous study area had favorable conditions (suitability > 0.4) 
for survival of P. pedifer.

Although other methods were applied in that study, 
logically their map should overlap with ours of the dis-
tribution of the vector. We have visited the lowland 
and peak highland areas, but P. pedifer was only found 
between 1685–2892 m. Our results correspond with the 
reported CL endemic sites which were never situated at 
such high or low altitudes [5, 6, 9–13]. The authors indi-
cate in their paper that the predictions at these altitudes 
are indeed odd but might be due to a recent change in 
vector behavior [16]. However, our study demonstrates 
that the vector does also not occur there and therefore 
suggests that their map overestimates the distribution of 
CL drastically.

Other studies modeling the distribution of vectors 
commonly use a 1 km spatial resolution because climate 
layers are only available at this coarse resolution [65, 66, 
75–77]. Because climate variables are often the most 
important predictors for SDMs of disease vectors, these 
data should be very detailed [35, 65, 66, 75]. Moreover, 
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recently SDMs are being used for optimization of vec-
tor control, so it is beneficial for coordination of resource 
allocation for targeted control measures to have smaller 
grids indicating the suitable habitats of the vector [17]. 
To our knowledge, our study is the first to implement 
downscaled climate variables (topoclimate) to model the 
distribution of sand flies in a mountainous area at fine 
resolution.

Conclusions
Overall, this study indicates that the mean annual tem-
perature is the most important predictor for the spatial 
distribution of P. pedifer. We demonstrate that about 7% 
of the study area is suitable for the presence of the vector 
and show with a high-resolution map, the localities that 
should be focused on for implementation of integrated 
vector control measures, which are mainly located at 
mid-highland altitudes.
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