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Abstract 

Background:  Mosquito surveys that collect local data on mosquito species’ abundances provide baseline data to 
help understand potential host-pathogen-mosquito relationships, predict disease transmission, and target mosquito 
control efforts.

Methods:  We conducted an adult mosquito survey from November 2017 to March 2019 on St. Kitts, using Biogents 
Sentinel 2 traps, set monthly and run for 48-h intervals. We collected mosquitoes from a total of 30 sites distributed 
across agricultural, mangrove, rainforest, scrub and urban land covers. We investigated spatial variation in mosquito 
species richness across the island using a hierarchical Bayesian multi-species occupancy model. We developed a 
mixed effects negative binomial regression model to predict the effects of spatial variation in land cover, and seasonal 
variation in precipitation on observed counts of the most abundant mosquito species observed.

Results:  There was high variation among sites in mosquito community structure, and variation in site level richness 
that correlated with scrub forest, agricultural, and urban land covers. The four most abundant species were Aedes 
taeniorhynchus, Culex quinquefasciatus, Aedes aegpyti and Deinocerites magnus, and their relative abundance varied 
with season and land cover. Aedes aegypti was the most commonly occurring mosquito on the island, with a 90% 
probability of occurring at between 24 and 30 (median = 26) sites. Mangroves yielded the most mosquitoes, with Ae. 
taeniorhynchus, Cx. quinquefasciatus and De. magnus predominating. Psorophora pygmaea and Toxorhynchites guade-
loupensis were only captured in scrub habitat. Capture rates in rainforests were low. Our count models also suggested 
the extent to which monthly average precipitation influenced counts varied according to species.

Conclusions:  There is high seasonality in mosquito abundances, and land cover influences the diversity, distribu-
tion, and relative abundance of species on St. Kitts. Further, human-adapted mosquito species (e.g. Ae. aegypti and Cx. 
quinquefasciatus) that are known vectors for many human relevant pathogens (e.g. chikungunya, dengue and Zika 
viruses in the case of Ae. aegypti; West Nile, Spondweni, Oropouche virus, and equine encephalitic viruses in the case 
of Cx. quinqefasciatus) are the most wide-spread (across land covers) and the least responsive to seasonal variation in 
precipitation.

Keywords:  Caribbean, Land cover, Model, Mosquito, Precipitation, Season, Surveillance

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Parasites & Vectors

*Correspondence:  ccm256@cornell.edu
10 Department of Entomology, College of Agriculture and Life Sciences, 
Cornell University, Ithaca, NY 14853, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5584-7813
https://orcid.org/0000-0002-3659-1581
http://orcid.org/0000-0001-5966-1514
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-020-04421-7&domain=pdf


Page 2 of 14Valentine et al. Parasites Vectors          (2020) 13:543 

Background
Mosquitoes are responsible for considerable human and 
animal suffering and economic losses because of their 
nuisance value and the diseases of high morbidity and 
mortality they can transmit [1, 2]. Recent mosquito-
borne arboviral pandemics have been able to emerge 
and spread through human populations in previously 
unaffected regions, like the Americas [3, 4], due to the 
widespread presence and abundance of human-adapted 
mosquito species. Furthermore, mosquito-borne patho-
gens can become established in new areas if there are 
suitable animal reservoir populations and mosquito spe-
cies that can transmit the organisms between these ani-
mals (and potentially to humans), as has occurred with 
yellow fever virus in South America [5, 6].

High quality mosquito surveys are an essential tool for 
predicting mosquito-borne disease transmission and for 
mosquito control [7, 8]. Surveys that collect fine resolu-
tion local data on mosquito species abundances provide 
fundamental baseline data on the composition of mos-
quito communities in a given area, the relative abun-
dances of mosquito species within the community, and 
how the abundance of species and the composition of 
mosquito communities change across space and time. 
The development of population abundance models that 
leverage count data generated from these surveys, in 
turn, can be used to predict how mosquito abundances 
change seasonally and across different land covers. Infor-
mation of this nature is crucial for describing potential 
host-pathogen-mosquito relationships in novel transmis-
sion foci, accurately predicting disease transmission, and 
for targeting and assessing the efficacy of mosquito con-
trol efforts [8, 9].

St. Kitts is a small tropical island in the Caribbean 
where local experience shows mosquitoes are very com-
mon and their nuisance value high. Outbreaks of chikun-
gunya, dengue, and Zika viruses have recently occurred 
on the island, which also has a large population of Afri-
can green monkeys (Chlorocebus aethiops sabaeus) that 
may be involved in arbovirus sylvatic cycles as is the case 
in Africa [6]. Due to the large numbers of tourists visit-
ing the region each year, islands in the Caribbean like St. 
Kitts could be a source of mosquitoes, and the pathogens 
they carry, for transfer into currently naïve areas of the 
world like the USA [10].

Historically, there has been long standing interest in 
the mosquito species inhabiting the Caribbean particu-
larly since it was discovered that malarial parasites (Plas-
modium spp.) and yellow fever virus are transmitted by 
mosquitoes. Detailed mosquito surveys from the 1970s 
included several Caribbean islands including St. Kitts 
and Nevis [11]. The most recent survey on St. Kitts was 
conducted in 2010 [12] and although this was the most 

comprehensive survey performed on the island to date, it 
did not provide data on the how the distribution and rel-
ative abundances of mosquito species changes seasonally 
and with land cover. Mosquitoes were only collected dur-
ing a single week of the dry and wet seasons and sampling 
did not include all land covers. As part of an investiga-
tion into arboviral sylvatic cycles on St. Kitts, we carried 
out a comprehensive survey of the mosquito populations 
across the various land covers on the island on a monthly 
basis from September 2017 to March 2019. We related 
mosquito survey data to relevant biological and environ-
mental covariates to assess the influence of land use and 
seasonal climate variation (e.g. precipitation) on the spa-
tial and temporal biodiversity and relative abundance of 
mosquitoes on St. Kitts. Below are a description of our 
methods and our findings.

Methods
Study area
St. Kitts (Fig.  1) is a 168 km2, geographically isolated, 
volcanic, Caribbean island located in the Lesser Antil-
les (17.33°N, 62.75°W). It has a population of approxi-
mately 40,000 people mostly inhabiting Basseterre, the 
capital, and a string of small village communities dis-
tributed along the main coastal road which circles the 
island. The climate in St. Kitts is tropical, driven by 
constant sea breezes with little seasonal temperature 
variation (27–30 °C). The wet season runs from May to 
November with risk of hurricanes from June to Novem-
ber. Rainforest covers the uninhabited, steep volcanic 
slopes in the center of the island, surrounded by lower 
gentler slopes consisting mostly of abandoned sugar 
cane fields or arable farmlands. The south east of the 
island is primarily an arid peninsula covered mainly in 
scrub with beaches, mangroves, and salt-ponds.

Mosquito sampling
To estimate the diversity and relative abundance of 
mosquito species across different land covers and 
seasons, we evaluated counts and species identity of 
adult mosquitoes captured in trap arrays set across the 
island. Trapping was carried out monthly from Novem-
ber 2017 to March 2019 in each of five representative 
land covers unless there was inclement weather. Due to 
high spatial heterogeneity in potential habitat, we used 
a randomized simplified stratified sampling design [13, 
14] to increase the precision of generating a representa-
tive sample of the mosquito community on St. Kitts. 
To do this, we stratified St. Kitts by the five common 
land uses on the island (agricultural, mangrove, rainfor-
est and urban). We then created a grid of St. Kitts and 
randomly, when possible, selected six replicate sites at 
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least 1 km apart in each of these five distinct land cover 
categories producing 30 sites in total (Fig. 1). Final site 
selection was ultimately dependent on accessibility and 
landowner consent.

We used Biogents Sentinel 2 traps (BGS) (Biogents AG, 
Regensburg, Germany) baited with the BG-sentinel lure 
(Biogents AG, Germany) and carbon dioxide CO2. Car-
bon dioxide was generated by mixing 35 g of dried bread 
making yeast (Fleischmannʼs Active Dry Yeast, USA), 
0.7 kg of unbranded white sugar, and approximately 2.5 l 
water in a 5 l water bottle. Carbon dioxide was delivered 
to each trap via a 5 m length of 5 mm (internal diame-
ter) PVC tubing [15–17]. Although yeast generated CO2 
will collect significantly fewer mosquitoes than dry ice 
or compressed CO2 from cylinders, it provides a use-
ful alternative that is cheaper and more easily obtained 
than dry ice in tropical areas [15, 17, 18]. Traps were 
run monthly during the study period when possible for 
48 h, with yeast-sugar solution, batteries, and catch bags 
replaced every 24 h. Trapped mosquitoes were trans-
ported to the research laboratory of Ross University 
School of Veterinary Medicine (RUSVM) and stored at 
-80 °C for later identification. After being rehydrated on 
chilled damp tissue paper, mosquitoes were identified on 
a chill table using morphological keys under a stereomi-
croscope (Cole Palmer, USA) at 10–40× magnification 
[19–21]. Counts of each mosquito species were recorded 
for each sampling date, land use, and location.

Estimating mosquito diversity
We used a hierarchical Bayesian parameterization of 
the multi-species occupancy model (MSOM) of Royle 
& Dorazio [22] and Dorazio et  al. [23] with data aug-
mentation [24] to estimate true species diversity and its 
variation among our surveyed sites, while accounting for 
inter-species heterogeneity in detection:

where R is the posterior distribution of simulated spe-
cies richness, n is the number of of observed species, naug 
is the number of augmented (all-zero capture history) 
species added to the dataset, Z is the latent occupancy 
variable, and X is the data. Species occurrence ( ψj,i ) and 
detection ( pj,k ,i ) were modeled as hierarchical random 
effects,

R = n+

∑naug

i=1
wn+i

wi ∼ Bernoulli(�)

Zj,i ∼ Bernoulli(ψj,i × wi)

Xj,k ,i ∼ Bernoulli(pj,k,i × Zj,i),

We used weakly informative Gaussian priors for µu and 
µv with a mean of 0 and a standard deviation of 2.25 [25, 
26] and vague gamma ( r = 0.1, � = 0.1) priors for their 
precision, τu and τv . Omega was given a flat uniform (0, 1) 
prior. We also monitored derived measures of diversity: 
alpha-diversity (α, mean site-level species richness) and 
beta-diversity (β, ratio between regional and site-level 
species richness) [27], zeta-diversity (ζ, number of spe-
cies present at all sites) [28], and the number of sites each 
species occupied. We fit our model in JAGS 4.3.0 [29] 
implemented in the program R [30] using the R package 
runJAGS [31]. Posterior parameter estimates were drawn 
from three 20,000-iteration MCMC chains following a 
1000-iteration adaptation period, and 10,000 iterations 
of burn-in. Convergence was assessed using the R̂ statis-
tic [32] and by visually inspecting and comparing each 
MCMC chain’s sample traces and posterior sampling 
distributions. We illustrated our overall diversity results 
by plotting the posterior median and 90% credible inter-
val of our diversity metrics of interest (R, α, β, and ζ). We 
then illustrated among-site variation in species diversity 
with respect to percent local land cover by plotting the 
posterior median and 90% credible intervals of site-level 
richness estimates against site-level proportion of local 
land covers: scrub, agriculture, mangrove, rainforest and 
urban.

Estimating relative mosquito abundance
We evaluated influences of different land covers (agricul-
tural, mangrove, rainforest, scrub, urban) on the relative 
abundance of the four most common mosquito species 
found in our survey. The land covers in a 1 km2 area (565 
m radius) around each sampling site were determined 
from local observation, a remote sensing vegetation clas-
sification [33], the St. Christopher (St. Kitts) and Nevis 
Biodiversity Strategy and Action Plan [34], and the most 
recent Google Imagery (2019). When discordance in 
ascribing land covers was found between the different 
methods, the Google images were used preferentially. 
The percentages of each land cover at each site (Addi-
tional file 1: Figure S1) were calculated and used as a con-
tinuous covariate in establishing the models.

We assessed the effects of land cover at each trap loca-
tion and monthly precipitation on the numbers of the 

logit
(
pj,k,i

)
= vi

vi ∼ Normal(µv, τv)

logit(ψj,i) = ui

ui ∼ Normal(µu, τu)
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four most common mosquito species trapped using 
mixed effects generalized linear regression models [30]. 
Our response variable for this analysis was the number of 
mosquitoes of each species captured by BGS traps during 
each 48-h trapping interval. A list of variables and gen-
eral expectations of their effects on the counts of mosqui-
toes of each species captured can be found in Table 1. We 
also included two categorical variables reflecting the high 
affinity of some mosquito species (e.g. Ae. taeniorhyn-
chus and De. magnus) for mangrove habitat and crabhole 
habitat located in the vicinity of mangroves [11, 35–37]. 
These variables included “mangrove”, which described 
the land cover of sites that fell within mangrove habi-
tats regardless of surrounding land covers, and “m_trait”, 
which described a mosquito species preference for man-
grove habitat. Monthly precipitation measurements 
were obtained at the Robert L. Bradshaw International 
Airport and accessed as archived data downloaded from 

the Weather Underground website (www.wunde​rgrou​
nd.com: accessed August 2019).

We fitted models to predict observed counts of the four 
most abundant mosquitoes in our dataset using spatial 
variation in landscape variables and seasonal variation 
in precipitation using the R package glmmTMB, which 
allows the specification of generalized linear mixed-
effects models for a variety of error distributions, includ-
ing Poisson and negative binomial distributions [38]. 
Preliminary analyses revealed that a negative binomial 
distribution with a quadratic variance-to-mean rela-
tionship best explained our data [39] (Additional file  2: 
Table  S1), and we used this error distribution for all 
subsequent analyses. We assumed a linear relationship 
between overall mosquito counts (on the log-link scale) 
and monthly average precipitation at the island scale to 
account for intra-annual seasonality (e.g. wet vs dry sea-
sons). Species-specific random slope and intercept terms 
for precipitation allow its effect to vary by species, and 

Fig. 1  Numbers and species of mosquitoes trapped on St. Kitts at 30 sites comprising six replicates in each of five land covers

http://www.wunderground.com
http://www.wunderground.com
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random site intercepts account for repeat observations 
at each site. The effects of land cover were allowed to 
vary independently by species. We evaluated 12 model 
hypotheses of species-specific variation in relative abun-
dance with land cover. Land cover variables incorporated 
in our 12 models generally include the percentage of 
local land cover. We excluded any hypotheses for which 
variance inflation factors were greater than five prior to 
model evaluation and used AIC to select our best model 
from the candidate set [40]. To assess model fit, we evalu-
ated the distribution of re-scaled model residuals from 
the R package DHARMa [41] and calculated conditional 
and marginal R2 values following Nakagawa et  al. [42]. 
We used site-level predictions from our best model to 
show model-estimated trends in mosquito abundance 
across land use and season for the duration of our study.

Results
From November 2017 to March 2019 we captured 10 
of the 14 species previously recorded on St. Kitts [11, 
12, 19] (Fig.  1, Additional file  3: Table  S2 and Addi-
tional file  4: Table S3). We were unable to trap during 
the months of April and December 2018 due to inclem-
ent weather events. Voucher specimens were deposited 
in the United States National Museum (USNM) under 
the following catalog numbers USNMENT01239050-74 
and USNMENT01239079. The most abundant spe-
cies of mosquito was Aedes taeniorhynchus (n = 3861, 
mean = 276, SD = 643), which was primarily found in 

mangroves (88.4%). Culex quinquefasciatus (n = 1663, 
mean=119, SD = 121) was the second most abundant 
species primarily captured in urban areas (48.8%). 
Deinocerites magnus (n = 1577, mean = 113, SD = 150) 
and Aedes aegypti (n = 443, mean = 32, SD = 40) were 
the third and fourth most abundant mosquito species 
captured, respectively. Aedes aegypti (n = 443, mean = 
89, SD = 161), Ae. taeniorhynchus (n = 3861, mean = 
772, SD = 1830), Cx. quinquefasciatus (n = 1663, mean 
= 333, SD = 628), and Deinocerites magnus (n = 1577, 
mean = 315, SD = 797) were species captured in all 
five land covers. All other species were much less abun-
dant. Psorophora pygmaea and Toxorhynchites guade-
loupensis were only captured in scrub habitat, with the 
remaining species being distributed across more than 
one land cover. The highest overall number of mosqui-
toes captured, mostly Ae. taeniorhynchus, were caught 
in November 2018 (n = 3786), and monthly mean aver-
age catches were higher in general during the wet sea-
son (n = 1080) than the dry season (n = 177). Aedes 
aegypti was the only species to be captured during 
every trapping month. Only four Anopheles albimanus, 
the main vector of malaria in the Caribbean [43], were 
caught across the entire survey period. Finally, due to 
specimen damage during capture and transport to the 
laboratory, a small proportion of Aedes spp. (n = 305) 
and a larger portion of Culex spp. (n = 1687) were only 
reported to the genus level (Additional file 3: Table S2 
and Additional file 4: Table S3).

Table 1  Variables and associated hypotheses evaluated in statistical models

Variable Explanation Hypothesis

Precip The sum of rainfall for the month measured at the Bradshaw 
International Airport

Increased rainfall is associated with higher mosquito abundance 
as desiccation risk of adults is reduced and viable oviposition 
and larval rearing sites are more abundant during periods of 
higher rainfall

m_trait Species-specific breeding specialization in mangrove If a species has a mangrove breeding specialization, it is associ-
ated with higher abundances within that land cover

LocalAgricultural Percentage agricultural land cover in the 1 km area surround-
ing sampling sites

Nearby agricultural land cover is associated with lower abun-
dance of non-anthrophilic mosquito species

LocalMangrove Percentage mangrove land cover in 1 km area surrounding 
sampling sites

Nearby mangrove land cover is associated with higher abun-
dances of mangrove mosquitoes

LocalRainforest Percentage of rainforest land cover in 1 km area surrounding 
sampling sites

Nearby rainforest land cover is associated with lower abundance 
of mosquitoes that are associated with mangrove or anthro-
pogenic habitats

LocalUrban Percentage of urban land cover in 1 km area surrounding 
sampling sites

Nearby urban land cover is associated with higher abundances 
of anthrophilic mosquitoes and lower abundances of others

LocalScrub Percentage of scrub land cover in 1 km area surrounding 
sampling sites

Nearby scrub land cover is associated with lower mosquito 
abundance

LocalAnthropogenic The sum of urban and agricultural land cover Local anthrophogenic land cover is associated with higher 
abundances of anthrophilic mosquitoes and lower abun-
dances of others

Mangrove A categorical variable indicating that the sampling site is 
located within the mangrove land cover

Mangrove land cover is associated with higher mangrove mos-
quito abundance within mangrove habitat
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Mosquito community diversity
Our diversity analysis predicted that there are more 
mosquito species on St. Kitts than we directly observed, 
but by a reasonably low margin. We observed 10 spe-
cies in our survey, while our model indicates that true 
species richness (R) on St. Kitts falls within 10–18 spe-
cies (90% Bayesian credible interval), with a median of 
13 species (Table  2). The logit-mean occupancy (µu) 
and detectability (µv) parameters indicated a mean 
occupancy probability of 31% and a mean detection 
probability of 9% for species present on the island 
(Table 2). We also predicted the number of species per 
site (alpha-diversity, α) to be 3–7 species (median: 4 
species), the change in diversity of species among sites 

(beta-diversity, β) to be 1–5 species (median: 3 species), 
and the number of species present at all sites (zeta-
diversity, ζ) to range from 0–1 species (median: 0 spe-
cies) (Table 2, Fig. 2). Two highly abundant species (Ae. 
aegypti and Cx. quinquefasciatus), that are also impor-
tant disease vectors, had relatively high predicted occu-
pancy across our 30 study sites (Ae. aegypti: 26 sites; 
Cx. quinquefasciatus: 22 sites; Table  2). Finally, we 

Table 2  Median values and 90% credible interval for parameter 
estimates, mosquito community diversity metrics, and the 
number of sites predicted to have Aedes aegypti and Culex 
quinquefasciatus from our multiple species occupancy model

Parameter Median 5% CI 95% CI

Ω 0.64 0.37 0.94

µu − 0.73 − 2.48 0.88

σu 2.03 0.52 4.29

µv − 2.30 − 3.77 − 1.12

σv 1.68 0.40 3.58

R 13.00 10.00 18.00

α 4.50 2.97 7.23

β 2.80 1.49 4.60

ζ 0.00 0.00 1.00

No. of sites Ae. aegypti 26.00 24.00 30.00

No. of sites Cx. quinquefasciatus 22.00 21.00 24.00

observed potential effects of local land cover on overall 
species richness, with the overall richness increasing in 
response to the percentage of scrub and mangrove land 
cover and decreasing with the percentage of agricul-
tural and urban land cover (Fig. 2).

Mosquito abundance is affected by land cover 
and seasonal precipitation
The best model of temporal variation in the relative abun-
dance of the four most common mosquito species on 
the Island of St. Kitts was the model H12 from Table 3. 
This model included the effects of monthly precipitation, 
a mangrove breeding trait interaction with mangrove 
sites, and species-specific effects driven by agriculture, 
urban, and rainforest land covers. Our best model can be 
expressed in pseudo-code as 

(1)

y(i,j,s) ∼ NegBin(µ(i,j,s), θ)

log(µ(i,j,s)) = β0 + α0(s) + (β1 + α1(s))Precip(j) + β2mtrait(s) + β3Mangrove(i)+

β4(s)LocalAgriculture(i) + β5(s)LocalUrban(i) + β6(s)LocalRainforest(i)+

β7mtrait(s)Mangrove(i) + α2(i)

 where i , j , and s denote indices for site, month, and 
species, respectively. NegBin reflects the negative bino-
mial distribution, and the final model includes the fol-
lowing: random intercepts for each species ( β0 + α0(s) ), 
a main effect of precipitation with species-specific 
random slopes ( (β1 + α1(s))Precip(j) ), an interaction 
between mangrove and the mangrove breeding trait 
( β2m_trait(s) + β3Mangrove(i) + β

7
m_trait(s)Mangrove(i) ), 

species-specific main effects on proportional local 
land cover variables ( β4(s)LocalAgriculture(i) + β

5(s)
LocalUrban(i) + β6(s)LocalRainforest(i) ), and a site-level 
random intercept term ( α2(i) ). The variance for our best 
negative binomial model scales quadratically with the 
mean ( µ ): Var(y(i,j,s)) = µ(i,j,s)(1+

µ(i,j,s)

φ
) [39]. Our best 

model’s predicted relative abundance for each mosquito 
species, averaged across each site’s land cover, illus-
trated species-specific responses to surrounding land 
cover and seasonal precipitation effects across the island 
(Table 4, Fig. 3, Additional file 5: Figure S2). Overall, we 
observed a positive effect of precipitation on the relative 
abundance of mosquitoes ( β1 ), with significant among-
species variation in this relationship ( α1(s) , Table  4). To 
further explore the effect of precipitation, we derived 
the best linear unbiased predictors (BLUPs) for each 
species’ precipitation effect. The BLUPs suggested that 
the effect of precipitation was strongest for Ae. taenio-
rhynchus and to a lesser extent Ae. aegypti (Fig.  4), and 
was weakest for Cx. quinquefasciatus and De. magnus. 



Page 7 of 14Valentine et al. Parasites Vectors          (2020) 13:543 	

The model also predicted significantly negative relation-
ships between urban land cover and Ae. taeniorhynchus 
and De. magnus, but only slightly positive, non-signif-
icant relationships between urban land cover and the 
urban-associated mosquitoes, Cx. quinquefasciatus and 
Ae. aegypti. Rainforest and agricultural land cover were 
negatively associated with the relative abundance of all 
species we considered except Ae. aegypti, which exhib-
ited no significant covariation with either rainforest or 
agricultural land cover (Table 4). As expected, the model 
predicts the relative abundance of mosquito species with 
a mangrove breeding preference (Ae. taeniorhynchus and 
De. magnus) to be lower than average except when trap-
ping sites occur within mangrove habitat where the man-
grove “trait” had a net positive effect (i.e. (β2 + β7) > 0 , 
Table  4). Inspection of re-scaled residuals generated by 
simulation from the fitted model [41] suggested uniform-
ity in the distribution of residuals (one-sample Kolmog-
orov-Smirnov test: D = 0.018, P = 0.671), indicating 
good concurrence between the data and model predic-
tions. Marginal and conditional R2 (0.601 and 0.696, 
respectively) also indicated a well-fit model (Table 4): the 
marginal R2 of 0.601 suggested that the fixed effects por-
tion of the model explained over 60% of the variation in 
counts, and the conditional R2 of 0.695 revealed the addi-
tional variance explained by accounting for additional 
variation attributable to the random effects [42].  

Discussion
Monthly mosquito surveillance on St. Kitts from Novem-
ber 2017 to March 2019 enabled us to capture a diversity 
of mosquito species that varied in abundance across sea-
sons and land cover types. We captured 10 of the 14 spe-
cies (5 genera) historically recorded on the island [11, 12, 
19]. While our results largely confirm those of the 2010 
survey, they provide higher spatial and temporal resolu-
tion of the mosquito community diversity, as well as the 
relative abundance and distribution of different mosquito 
species on the island.

Our multi-species occupancy model demonstrates 
that we were able to capture most mosquito species on 
St. Kitts during the survey period and that any detec-
tion failures in other mosquito species on the island are 
likely attributed to low rates of occurrence. Thus, the spe-
cies detected in our survey likely are an accurate reflec-
tion of the true mosquito community on St. Kitts. While 
we were able to detect the majority of species predicted 
to be present on St. Kitts, our actual ability to detect a 
given mosquito species was low on average (9% average 
detection rate). That being said, multi-species occupancy 
models are robust to low detection probabilities as long 
as mean site-level occupancy is relatively high, which it 
was in this study (30%) [44]. Using the site-level species 
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richness estimated from our multi-species occupancy 
model, we noted some potential correlation between 
percentage of local land cover and mosquito species 
richness. However, our values for beta- and zeta-diver-
sity indicate species turnover across sites and few to no 
species found everywhere. The effects of land use on 
site-level species richness may be masked by species 
replacement driven by species-specific responses to land-
scape variables, which warrants further investigation into 
species-specific responses to landscape variation.

The four most abundant species captured were Ae. tae-
niorhynchus, Cx. quinquefasciatus, Ae. aegypti and De. 
magnus. These species were detected at least once in all 
land cover types over the study period. The three most 
abundant species captured are competent vectors of 
pathogens recorded on St. Kitts (Cx. quinquefasciatus: 
West Nile virus and Dirofilaria immitis; Ae. taeniorhyn-
chus: D. immitis; and Ae. aegypti: dengue, chikungunya 
and Zika viruses) [45–49] and other pathogens that could 
potentially become established on the island in the future 
due to the abundance of their vectors. For example, Cx. 
quinquefasciatus, the southern house mosquito, is widely 
distributed across the subtropics and can also transmit 
Saint Louis encephalitis virus, Western equine encepha-
litis virus, Rift Valley fever virus, Wuchereria bancrofti 
and avian malaria [21]. Aedes taeniorhynchus, the black 
salt marsh mosquito, is widely distributed in all islands 
of the Caribbean and can transmit Venezuelan, East-
ern and Western equine encephalitis virus [50, 51]. The 
eponymous yellow fever mosquito, Ae. aegypti, can also 
transmit yellow fever virus [21]. While An. albimanus 
is a known malaria vector in Central America, north-
ern South America, and the Caribbean, the overall low 

abundance of this species on St. Kitts (only four individu-
als total were collected in our study and two individuals 
in 2010 [12]), suggests this species is unlikely to support 
malaria transmission on the island.

The presence and absence, as well as overall relative 
abundance, of particular mosquito species captured 
across the different land covers on St. Kitts broadly 
align with what is known for these species in the litera-
ture. The species count model for our four most abun-
dant mosquitoes predicts both Cx. quinquefasciatus 
and Ae. aegypti to have the highest relative abundance 
in an urban habitat. Both species breed most success-
fully in fresh water-filled man-made containers and 
are therefore found primarily around houses in urban 
environments. Further, Ae. aegypti preferentially feeds 
on human hosts, particularly when indoors [21, 52] and 
rests inside domestic dwellings [21]. The fact that we 
observed these species, albeit at lower abundances, in 
other land covers is not entirely surprising. The model 
predicted Ae. aegypti to be similarly abundant across 
the survey period in urban as well as agricultural habi-
tats. From local experience and surveys on other islands 
[53], agricultural land covers provide ample breeding 
habitats for container breeding mosquito species in the 
form of discarded tires, styrofoam containers, plastic 
water bottles and bags, and agricultural equipment in 
which water can collect.

Interestingly, the model also predicted moderate rela-
tive abundance across the survey period for both Cx. 
quinquefasciatus and Ae. aegypti in mangrove and scrub 
habitats, which may be due to the presence of artificial 
containers suitable for breeding or an increased tolerance 
to brackish water in high marsh areas of the mangrove 

Table 3  A list of main effects of all candidate models considered in analyses of land cover effects on mosquito relative abundance

Notes: Models were ranked in terms of the difference between a given AIC score and that with the lowest AIC score (minAIC): ΔAIC=AIC-min(AIC). K represents the 
number of parameters in each model

*Two variables with full factorial interaction comprised of main effects and interaction terms; “:”, cases where only the interaction term is evaluated

Name Main effects ΔAIC K

H1 Precip + LocalAgriculture + LocalUrban + LocalRainforest + LocalMangrove + spp*Mangrove 11.4 26

H2 Precip + LocalAnthropogenic 53.6 11

H3 Precip + LocalAgriculture + LocalUrban 31 15

H4 Precip + LocalAnthropogenic + m_trait:Mangrove 38.6 14

H5 Precip + LocalAgriculture + LocalUrban + m_trait:Mangrove 14.5 18

H6 Precip + LocalScrub+ LocalAnthropogenic + m_trait:Mangrove 37.2 18

H7 Precip + LocalAgriculture + LocalUrban + LocalScrub+ m_trait:Mangrove 15 22

H8 Precip + LocalRainforest + LocalAnthropogenic + m_trait:Mangrove 25.6 18

H9 Precip + LocalAgriculture + LocalUrban + LocalRainforest + m_trait:Mangrove 3.9 20

H10 Precip + LocalRainforest + LocalScrub+ LocalAnthropogenic + m_trait:Mangrove 26.8 22

H11 Precip + LocalAgriculture + LocalUrban + LocalRainforest + LocalScrub+ m_trait:Mangrove 3.9 26

H12 Precip + LocalAgriculture + LocalUrban + LocalRainforest + m_trait*Mangrove 0 22
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[36, 53]. Culex quinquefasciatus has been recorded previ-
ously in brackish water on St. Kitts [11] and Ae. aegypti 
is tolerant of brackish water in other coastal regions 
[54–57]. Additionally, Cx. quinquefasciatus is an oppor-
tunistic forager that has the ability to fly several hun-
dred meters [58]; thus, adults could be found in areas 
far removed from their larval breeding sites. Finally, Ae. 
aegypti was also predicted to be abundant, albeit at lower 
levels, in rainforest habitat across the trapping period. 
Elsewhere in the Caribbean, Ae. aegypti have been found 
breeding in more natural habitats in addition to artificial 
containers [37]. These include rock holes, calabashes, tree 
holes, leaf axils, bamboo joints, papaya stumps, coconut 
shells, bromeliads, ground pools, coral rock holes, crab 
holes, and conch shells which are all also present on St. 
Kitts.

Species with the highest capture rates and predicted 
by our model to have high relative abundance in man-
grove habitats included both Ae. taeniorhynchus and 

De. magnus. These two species were predicted to have 
relatively low abundance in scrub surrounding mangrove 
sites on the island, and were not predicted to be abun-
dant in other land cover types. Aedes taeniorhynchus, 
the black salt marsh mosquito, is widely distributed in 
all islands of the Caribbean where it also favors low lying 
marsh land as is the case on St. Kitts [36, 51]. Similarly, 
De. magnus, the crabhole mosquito, is found primarily 
in crabholes that are abundant in the soft sands in man-
grove habitats around the Caribbean [11, 59]. We also 
captured Culex nigripalpus, An. albimanus, Ps. pygmaea, 
and Aedes tortilis in mangroves or the surrounding scrub 
land cover, likely due to their preference for breeding in 
temporary brackish and/or fresh water sources [11, 19]. 
We did not include these species in our relative abun-
dance model due to low capture rates.

Generally, we had very low capture rates of mosqui-
toes in rainforest land cover which was consistent with 
our model’s predictions of a negative effect of rainforest 

Table 4  Model parameters and diagnostics from our best model of mosquito counts. Means and confidence intervals are given on 
the log-scale, and symbols correspond to parameters in equation 1

Abbreviations: Ae.ae., Ae. aegypti; Ae.ta., Ae. taeniorhynchus; Cx.qu., Cx. quinquefasciatus; De.ma., De. Magnus

Predictors Symbol Mean 95 % CI P

Intercept β0 − 0.75 − 1.33– − 0.18 0.01

Precipitation β1 0.66 0.13–1.19 0.015

Mangrove Breeding Trait β2 − 1.4 − 2.12– − 0.69 < 0.001

Mangrove site category β3 0.01 − 1.29–1.31 0.99

Local Agriculture (Ae.ae.) β4(Ae.ae.) 0.2 − 0.38–0.77 0.503

Local Agriculture (Ae.ta.) β4(Ae.ta.) − 1.35 − 1.98– − 0.71 < 0.001

Local Agriculture (Cx.qu.) β4(Cu.qu.) − 1.07 − 1.65– − 0.49 < 0.001

Local Agriculture (De.ma.) β4(De.ma.) − 1.08 − 1.80– − 0.35 0.003

Local Urban (Ae.ae.) β5(Ae.ae.) 0.13 − 0.42–0.68 0.644

Local Urban (Ae.ta.) β5(Ae.ta.) − 2.11 − 2.91– − 1.30 < 0.001

Local Urban (Cx.qu.) β5(Cu.qu.) 0.32 − 0.22–0.85 0.248

Local Urban (De.ma.) β5(De.ma.) − 0.97 − 1.67– − 0.26 0.007

Local Rainforest (Ae.ae.) β5(Ae.ae.) − 0.43 − 0.99–0.13 0.129

Local Rainforest (Ae.ta.) β5(Ae.ta.) − 1.21 − 1.94– − 0.48 0.001

Local Rainforest (Cx.qu.) β5(Cu.qu.) − 1.39 − 2.03– − 0.76 < 0.001

Local Rainforest (De.ma.) β5(De.ma) − 0.91 − 1.64– − 0.18 0.014

Mangrove Breeding × Mangrove Site β7 2.32 0.83–3.81 0.002

Overdispersion φ 0.0962

Random effects

Site Intercept α2(i) 0.54

Species Intercept α0(s) 0.02

Species × Precipitation Slope α1(s) 0.24

Correlation of Species random effects − 0.69

Number of sites 30

Number of species 4

Observations 1568

Marginal R2 / Conditional R2 0.601/0.695
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cover on the relative abundance of the four most abun-
dant species we trapped. This is not necessarily reflective 
of the results of surveys from other regions of the Car-
ibbean. For example, a study in forested areas of eastern 
Trinidad between July 2007 and March 2009 collected 
185,397 mosquitoes across 46 species [59]. Although this 
study was of a similar duration, our low capture rates in 
rainforest land cover might reflect (i) less breeding habi-
tat or fewer vertebrate hosts present in the rainforest, (ii) 
different sampling methods across the studies (e.g. CDC 
light traps deployed with CO2 lures used vs. BGS traps 
baited with the human lure or CDC light traps baited 
with sugar-yeast CO2 lures [15]), and (iii) frequency of 
trapping effort (weekly vs monthly). It seems unlikely that 
our trapping at ground level may have excluded mosquito 
species that thrive in tree-top habitats because several 
arboviral surveillance studies in forests in Brazil [60], 
New Mexico [61], and other sites across the USA [62] 
demonstrate that various trapping methods (e.g. ento-
mological nets, aspirators, and CDC light traps) set in the 
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canopy did not catch significantly more mosquitoes than 
those on the ground. We did capture one Aedes busckii 
in the rainforest during our survey. A previous survey 
[11] as well as some experience with larval surveys of tree 
holes in rainforest habitats on St. Kitts (data not shown) 
suggest Ae. busckii could be a rain forest habitat special-
ist, but more data are needed. In general, little is known 
about the ecology of this mosquito other than that it is 
confined to the Lesser Antilles (Dominica, Grenada, Gua-
deloupe, Martinique, Montserrat, St. Kitts and Nevis and 
Saint Lucia) [63]. We also captured Cx. quinquefasciatus, 
Ae. taeniorhynchus and De. magnus at very low rates in 
the rainforest (Additional file 3: Table S2). We speculate 
that these captures could be the result of mosquitoes 
either breeding in man-made containers in neighboring 
agricultural habitat (Cx. quinquefasciatus) or mosquitoes 
being blown into novel habitats during tropical storms 
(Ae. taeniorhynchus and De. magnus). In the case of De. 
magnus, land crabs (Gecarcinus ruricola) do inhabit the 
rainforest, which could provide breeding and resting sites 
in their crabhole burrows for this specialist mosquito 
species [59].

Mosquito capture rates were also strongly determined 
by time of season and precipitation throughout the sur-
vey period. In general, our species count model predicted 
a positive effect of precipitation on the relative abundance 
of our four most common mosquito species. The effects 
of precipitation we found could be due to several reasons. 
Although excess rain may flush larvae from their habitats 
and decrease adult mosquito populations [64, 65], a sea-
sonal increase in precipitation increases the abundance 
and persistence of larval habitats resulting in higher 
densities and overall capture rates [65–68]. Additionally, 
increased precipitation is associated with increased rela-
tive humidity, which has been shown to have important 
positive effects on the abundance [68–70], lifespan [70, 
71], and activity and questing behavior [72, 73] of adult 
mosquitoes. Interestingly, the effect of precipitation on 
relative abundance was species-specific among the four 
most common mosquito species we found. Our post-hoc 
assessment of our model suggests the effect of precipi-
tation had a strong effect on the relative abundances of 
Ae. taeniorhynchus, a moderate effect on Ae. aegypti, and 
smaller effects on Cx. quinquefasciatus and De. magnus. 
The strong effect of precipitation on Ae. taeniorhynchus 
might occur because this mosquito species relies largely 
on natural habitats, which are often dependent on local 
rainfall. While Ae. aegypti utilizes artificial, and human 
watered containers heavily for ovipositing, it is also 
known to oviposit in natural habitats on other Caribbean 
islands [37], which could become more abundant with 
increased rainfall. Culex quinquefasciatus might be less 
dependent on rainfall, as most individuals were captured 

in urban habitat and were most likely emerging from 
persistent, human-watered, artificial habitats. Whereas 
increased rainfall above a certain threshold might expand 
water bodies in mangroves, flooding crabholes that in 
turn could locally reduce breeding sites for De. magnus 
[58].

While the overall capture rates of Ae. aegypti were 
significantly lower across non-urban habitats, their 
presence in other land covers on St. Kitts and other Car-
ibbean islands [11, 37] could have several implications for 
our understanding of the general ecology of this species 
and transmission of arboviruses in the Caribbean. Mos-
quitoes living across these land covers likely experience 
variation in local microclimate [69, 74], quality and quan-
tity of oviposition sites [11, 37], and access to vertebrate 
species available for blood-feeding [75]. This variation in 
turn could result in potential disease transmission among 
sylvatic reservoirs (e.g. non-human primates) in some 
habitats and differential exposure of human populations 
to infectious mosquitoes on the island. We are currently 
conducting studies to confirm the presence of reproduc-
ing Ae. aegypti adults across each land cover and using 
blood-meal analysis and bait trapping to identify novel 
mosquito-host associations.

Our study provides a more comprehensive spatial and 
temporal (within-year) picture of the distribution of 
mosquito species on St. Kitts relative to previous sur-
veys [11, 12, 19]. However, it suffers from several minor 
limitations. Due to specimen damage during capture and 
transport to the laboratory, a proportion of Aedes spp. 
(n = 219) and Culex spp. (n = 1694) were reported only 
to genus level. These counts differed substantially from 
those identified to species level, which comprised 4334 
Aedes spp. and 1697 Culex spp. in total. Based on the 
capture location of these specimens, the majority of these 
individuals are likely Ae. taeniorhynchus (mangrove) 
and Cx. quinquefasciatus (urban), respectively. By not 
incorporating the unidentified mosquitoes into our rela-
tive abundance and diversity analyses, we are inherently 
assuming that each mosquito species has an equal chance 
of being unidentified. This assumption could be violated 
if the ability to identify specimens varies by species (e.g. 
species that tend to be captured at higher numbers may 
sustain more damage during trapping and handling), 
which could have implications for both our diversity and 
relative abundance models. For example, capture rates for 
Ae. tortilis and Cx. nigripalpus are likely underestimated. 
However, we believe these effects to be minimal. For the 
relative abundance model, we selected the four most 
abundant species for whom violation of this assumption 
would have a small chance of affecting the relative pro-
portion of captured individuals. In the diversity analysis, 
we used a model that estimates variation in detectability 
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by species, which will help account for violations of this 
assumption because it allows rarer species to be detected 
less often.

Conclusions
Our island-wide mosquito survey has demonstrated that 
the species detected in our survey are a good represen-
tation of the mosquito community on St. Kitts. Further, 
the community of mosquitoes on the island is highly 
structured and likely shaped by local land cover. We also 
found substantial effects of land cover and seasonality 
(likely driven by variation in precipitation) on mosquito 
capture rates. Interesting insights gained from this study 
include the presence of Ae. aegypti in all the land covers 
we studied, which could have important implications for 
mosquito-borne disease transmission on the island. Fur-
ther, human-adapted mosquito species (e.g. Ae. aegypti 
and Cx. quinquefasciatus) that are known vectors for 
many human relevant pathogens (e.g. chikungunya, den-
gue and Zika viruses in the case of Ae. aegypti; West Nile, 
Spondweni, Oropouche virus, and equine encephalitic 
viruses in the case of Cx. quinqefasciatus) are the most 
wide-spread (across land covers) and the least respon-
sive to seasonal variation in precipitation. This somewhat 
counters the current literature suggesting Ae. aegypti is 
primarily found in highly urban habitats and feeds almost 
exclusively on human hosts. Finally, although Aedes 
albopictus occurs on other Caribbean islands [76], we did 
not find this species in our survey. Ongoing surveillance 
will be important to continue, as changes in land use and 
climate could lead to shifts in mosquito community com-
position, host contact rates, and mosquito-borne disease 
transmission in humans and animals.
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