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High concentrations of membrane-fed 
ivermectin are required for substantial lethal 
and sublethal impacts on Aedes aegypti
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Abstract 

Background: With widespread insecticide resistance in mosquito vectors, there is a pressing need to evaluate alter-
natives with different modes of action. Blood containing the antihelminthic drug ivermectin has been shown to have 
lethal and sub-lethal effects on mosquitoes. Almost all work to date has been on Anopheles spp., but impacts on other 
anthropophagic vectors could provide new options for their control, or additional value to anti-malarial ivermectin 
programmes.

Methods: Using dose-response assays, we evaluated the effects of ivermectin delivered by membrane feeding on 
daily mortality (up to 14 days post-blood feed) and fecundity of an Indian strain of Aedes aegypti.

Results: The 7-day lethal concentration of ivermectin required to kill 50% of adult mosquitoes was calculated to 
be 178.6 ng/ml (95% confidence intervals 142.3–218.4) for Ae. aegypti, which is much higher than that recorded 
for Anopheles spp. in any previous study. In addition, significant effects on fecundity and egg hatch rates were only 
recorded at high ivermectin concentrations (≥ 250 ng/ul).

Conclusion: Our results suggest that levels of ivermectin present in human blood at current dosing regimes in 
mass drug administration campaigns, or even those in a recent higher-dose anti-malaria trial, are unlikely to have 
a substantial impact on Ae. aegypti. Moreover, owing to the strong anthropophagy of Ae. aegypti, delivery of higher 
levels of ivermectin in livestock blood is also unlikely to be an effective option for its control. However, other potential 
toxic impacts of ivermectin metabolites, accumulation in tissues, sublethal effects on behaviour, or antiviral action 
might increase the efficacy of ivermectin against Ae. aegypti and the arboviral diseases it transmits, and require further 
investigation.
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Background
Escalating insecticide resistance [1, 2], recent high 
profile arboviral outbreaks [3–6] and the stalling of 
progress towards malaria elimination [7] highlight the 
need for improved tools to control mosquito vectors. 
Compounds with alternative modes of action including 
new and repurposed insecticides for long-lasting insec-
ticidal nets (LLINs) and indoor residual spraying (IRS) 
are required and are becoming available now, but there 
remains an urgent need for tools that can target mos-
quitoes that bite diurnally or bite and rest outdoors [8, 
9].

Ivermectin is a macrocyclic lactone that displays 
broad spectrum anti-parasitic activity against both 
endo- and ecto-parasites, including mosquitoes [10–
12]. Since the 1990s, the drug has been extensively 
used in mass drug administration (MDA) campaigns 
to eliminate lymphatic filariasis and onchocercia-
sis in sub-Saharan Africa [13, 14]. During these pro-
grammes, reductions in entomological indices and the 
proportion of Plasmodium-infective mosquitoes have 
been observed, compatible with mosquitocidal activ-
ity of ivermectin [11, 15, 16]. Consequently, ivermectin 
administration is currently proposed as a novel strategy 
to reduce malaria transmission [17–19].

Ivermectin primarily targets the glutamate-gated 
chloride channel; a different mode of action to insec-
ticides currently available on the public health market 
[20, 21], and therefore may be effective against mosqui-
toes resistant to current insecticides. In addition, a cru-
cial difference from LLINs and IRS is that ivermectin 
has the potential to protect against mosquitoes display-
ing alternative biting and resting behaviours [22].

The majority of entomological studies conducted using 
single ivermectin doses have recorded short-lived mos-
quitocidal effects (< 7 days) [10, 15, 16, 23], but delivery 
methods capable of sustaining higher venous plasma iver-
mectin concentrations are now being investigated [24, 
25]. In a recent randomised controlled trial, prolonged 
mosquitocidal effects (>  28  days) were demonstrated 
when humans were treated with doses of ivermectin over 
3  days; importantly, no significant adverse events were 
reported when the ivermectin was administered alone 
or co-administered with a standard anti-malarial treat-
ment [26]. A modelling study based on these data further 
demonstrated the potential of ivermectin-based MDA 
for malaria control [27]. In addition, uptake of sub-lethal 
concentrations of ivermectin has been shown to affect 
mosquito fecundity, locomotion, ability to re-feed [28–
32], to inhibit Plasmodium sporogony in the vector [33–
35] and to adversely affect liver stages of the parasite [36].

In light of the potential for ivermectin MDA to reduce 
malaria transmission, the majority of research has 

focused on anopheline vectors. However, in many regions 
of the tropics, malaria and Aedes-transmitted arbovi-
ruses are co-endemic [37]. Given the limited resources 
available to control arboviral diseases in countries where 
malaria is a primary target, the effects of systemic iver-
mectin on other vectors should be examined and the 
opportunity for cross-disease control in integrated vector 
management programmes evaluated. Earlier studies have 
suggested that ivermectin displays significantly lower 
toxicity to the culicines tested than to anophelines [38–
41]. However, these studies either did not assess mortal-
ity beyond 24 h after blood-feeding, or did not report at 
which day the lethal dose [e.g. the lethal concentration 
required to kill 50%  (LD50) of adult mosquitoes] was 
calculated. In Anopheles gambiae, ivermectin has been 
shown to affect survival up to 14 days post-blood-feeding 
[26], and so the potential of delayed mortality in other 
mosquito vectors also needs evaluation. Additionally, 
if fecundity is reduced by ivermectin, mosquito popula-
tions may be suppressed even if the short-term killing 
effect is limited. In this study, we conducted laboratory 
experiments to investigate the effect of imbibed ivermec-
tin on the 14-day survivorship, fecundity, and egg hatch 
rate of Aedes aegypti.

Methods
Mosquitoes
A pyrethroid-susceptible Ae. aegypti strain, founded 
from an original collection in Mumbai in 2010, and 
subsequently maintained at the insectaries of Godrej 
Consumer Products Limited, Mumbai, India, was 
used. Adults were maintained on 10% sugar solution at 
27 ±  2  °C and 80 ±  10% relative humidity with a 12-h 
light:12-h dark photoperiod. All mosquitoes were blood-
fed at 5–7 days post-emergence.

Drugs and reagents
A powdered ivermectin formulation, dimethyl sulphox-
ide (DMSO), and phosphate buffered saline (PBS) were 
obtained from Sigma-Aldrich (St. Louis, MO). Ivermec-
tin was dissolved in DMSO to a concentration of 10 mg/
ml and refrigerated overnight at 4 °C. The 10 mg/ml iver-
mectin stock was then serially diluted into PBS to create 
two working stock solutions: 1  mg/ml and 0.1  mg/ml. 
These working stock solutions were diluted further in 
PBS to achieve final concentrations that were ten times 
higher than the concentrations required in blood meals 
(10× stocks). The control stock solution contained PBS 
with DMSO at a concentration equivalent to the high-
est concentration of ivermectin working stock. All stocks 
were stored in sealed conical flasks and refrigerated until 
required at 4  °C. Final stocks were diluted to 1× into 
blood as required.
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Blood‑feeding and ivermectin administration
Defibrinated goat blood sourced from a local abattoir was 
collected fresh every 2 days and used for all blood feeds. 
Prior to blood-feeding, mosquitoes were starved of sugar 
for 6 h. Five- to 7-day-old female mosquitoes were held in 
30-cm × 30-cm cages and offered blood using a Hemotek 
feeder (Discovery Workshops, Accrington, UK) (placed 
on the upper surface) covered with collagen membrane 
and heated to 37  °C. Mosquitoes were given the oppor-
tunity to feed for approximately 30 min. Blood contained 
ivermectin at the following concentrations: 0; 125; 175; 
250; 500; 750; 1000; and 1250 ng/ml, which were chosen 
based on previous studies in culicines.

Mosquito survival
After experimental blood-feeding, fully engorged females 
were removed from each cage using a mouth aspirator 
and placed into empty paper test cups (n = 5 mosquitoes 
in each). Mosquitoes were provided with cotton wool 
soaked in 10% sugar solution. Mortality was recorded 
every 24  h for 14  days post-blood-feeding, with dead 
mosquitoes removed daily. Owing to logistical con-
straints, more experimental replicates were performed 
for the 0, 125, 250, 750 and 1000 ng/ml groups than for 
the 175, 500, and 1250 ng/ml groups, but a minimum of 
60 blood-fed mosquitoes were available per experimental 
concentration (mean ± SD = 97.6 ± 30.0).

Egg production
The impact of blood-fed ivermectin on the number of 
eggs produced from surviving females was assessed using 
the following methodology: 48 h post-blood-feeding, sur-
viving mosquitoes were carefully removed from the hold-
ing cups using a mouth aspirator and placed individually 
into fresh oviposition cups. An upturned plastic bottle 
cap filled with 4 ml of water and a 2-cm × 2-cm square 
of damp Whatman filter paper was provided as an egg-
laying substrate. Mosquitoes were provided with cotton 
wool soaked in 10% sugar solution on top of the mesh 
used to seal the cup. Seventy-two hours later (5  days 
post-blood feed), bottle caps were removed and any eggs 
were counted using a stereoscopic dissection microscope 
at ×2 magnification. After counting, all eggs were left on 
filter paper to dry at ambient room temperature for a fur-
ther 48 h, prior to determination of hatching rates.

Egg hatch rate
To analyse whether a sub-lethal dose of ivermectin 
affected the hatch rate of eggs laid by surviving adults, 
eggs on filter paper were submerged in 200 ml of filtered 
water inside 250-ml plastic pots. A sample of 200 eggs 
randomly selected from the control (0 ng/ml) and four of 
the seven treatment groups (125, 175, 250 and 500 ng/ml) 

were taken for analysis. No eggs were taken from three 
high concentration treatment groups (750, 1000 and 
1250 ng/ml) either because an insufficient number were 
produced, or because mosquitoes died before oviposi-
tion. Ninety-six hours after submersion, larvae from each 
pot were transferred into new water-filled pots using a 
mesh net, and the number emerging from each pot was 
recorded.

Statistical analysis
The  LC50 of adult mosquitoes was calculated using 
log-probit regression analysis in SPSS version 21 (IBM 
SPSS). Kaplan-Meier survival analysis followed by a 
log-rank (Mantel-Cox) test using the survival package 
in R version 3.6.3 was used to assess the effect of iver-
mectin on survival of adult females. Egg production 
data were not normally distributed (Shapiro–Wilk test), 
therefore a Kruskal–Wallis non-parametric ANOVA 
was employed to examine variation among concentra-
tions. To assess whether there was any significant dif-
ference in the number of eggs produced per surviving 
female between ivermectin test groups and the negative 
control group, a post-hoc Dunn’s multiple comparison 
test was used. The effect of ivermectin on egg hatch 
rate was assessed by comparing the hatch rate between 
the negative control group and each individual iver-
mectin group using Fisher’s exact tests. Egg production 
and egg hatch rate data were analysed using GraphPad 
Prism 7.03.

Results
A total of 781 Ae. aegypti took blood meals and were 
used to assess the oral toxicity of blood-fed ivermectin. 
Kaplan-Meier 14-day survival curves were produced for 
the daily survival of mosquitoes following the ingestion of 
ivermectin at concentrations ranging from 0 to 1250 ng/
ml (Fig. 1). Survival was high in the zero-ivermectin con-
trol throughout, but ivermectin ingestion significantly 
reduced the survival of Ae. aegypti mosquitoes (log-rank 
test, df = 7, P < 2e − 16). This was true for all ivermec-
tin concentrations tested, when compared individually 
against the control arm and adjusting p-values with a 
Bonferroni correction for multiple testing (log-rank test, 
df =  1, all P ≤  1e −  09). Survival was quite high at all 
concentrations relative to the control group, until the 
second day after blood-feeding when substantial mortal-
ity occurred in a concentration-dependent manner, and 
by day 4 all females had died at the highest concentration 
(Fig. 1).

Figure  2 shows dose-response curves at days 3, 7 and 
14, and Table  1 shows the resulting estimates for  LC20, 
 LC50 and  LC90. The  LC50 of female Ae. aegypti was 
dependent on the time after ingestion, with a 35% lower 
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 LC50 on day 7 than on day 3, and a 71% lower estimate 
on day 14, demonstrating the delayed mortality effect of 
ivermectin.

Ivermectin-feeding exerted a significant impact on 
the fecundity of surviving female Ae. aegypti (Fig.  3a). 
Whilst fecundity at 125 ng/ml was similar to that of the 
unexposed control group, each higher concentration sig-
nificantly reduced the mean number of eggs produced, 
with fecundity following the highest dose reduced 20 
times compared to the control group (Table 2). In addi-
tion to its effect on fecundity, ivermectin also reduced the 
egg hatch rate of surviving Ae. aegypti females (Fig. 3b). 
Similar to effects on fecundity, exposure to 125 ng/ml 
had little impact on hatch rate, but this was significantly 
reduced at the higher concentrations (for which sufficient 
egg numbers were available), with an approximately four-
fold reduction at 500 ng/ml (Table 2).

Discussion
Ivermectin holds significant promise to expand the 
current vector control toolbox. Alongside its excellent 
human safety profile and lack of impact on non-haema-
tophagous insects, it has the potential to impact disease 
transmission occurring outdoors, and a novel mode of 
action which may circumvent insecticide resistance. 
Though it has proven effective at killing Anopheles mos-
quitoes, little research to date has focused on its effect 
on other disease vectors. In this study we assessed the 
effect of ivermectin on survivorship, fecundity and egg 
hatch rate in Ae. aegypti.

Survival of Ae. aegypti declined significantly when 
it membrane-fed on blood containing ivermectin, at 

all concentrations tested. In concordance with previ-
ous studies, the lethal dose for ivermectin was rela-
tively high, with a 7-day  LC50 of 178.6 ng/ml. This is in 
agreement with a previous study which estimated 7-day 
 LC50s for multiple Ae. aegypti strains ranging from 
187.17 to 576.43  ng/ml [39]. For comparison, recent 
studies have demonstrated 7-day  LC50 doses for Anoph-
eles spp. ranging between 3.35 and 55.6 ng/ml [23, 34, 
42–44].

In MDA campaigns to control filarial disease, iver-
mectin is typically delivered as a single dose at approxi-
mately 150–200  µg/kg [45]. These single doses have 
been shown to cause mosquitocidal effects for only 
short periods of less than 7  days [10, 15, 16, 44]. Iver-
mectin has a half-life of approximately 18  h, and at 
doses of 150–200  µg/kg typical peak venous plasma 
concentrations are in the range of 10–70 ng/ml [46]. 
A recent randomised controlled trial in Kenya demon-
strated prolonged mosquitocidal effects of ivermectin 
for up to 28 days after administration against An. gam-
biae, through 3-day dosing of 300 and 600 µg/kg [26]. 
In pharmacokinetic data from the same trial, a median 
maximum recorded concentration (Cmax) of ivermec-
tin of 105.2 ng/ml was found in venous blood at the 
highest dose, with the time to reach  Cmax of approxi-
mately 4  h [47]. That peak ivermectin concentration 
surpasses the 7-day  LC20 for the Ae. aegypti strain used 
in the present study. However, a potential caveat is that 
there could be an additional impact from metabolites 
of ivermectin, which are present in human blood days 
after administration, and which are toxic to mosqui-
toes. This was suggested by the observation that the 

Fig. 1 Fourteen-day Kaplan-Meier survival curves showing the daily survival of Aedes aegypti following ingestion of ivermectin at varying 
concentrations
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duration of mortality observed in An. gambiae was far 
longer than that projected by pharmacokinetic models 
[26, 45]; however, subsequent analysis showed it was 
not necessary to invoke this mechanism [47]. Whilst it 
seems clear that the duration of efficacy is likely to be 
much shorter in Ae. aegypti relative to Anopheles spp. 
for any given dose, the precise impact of ivermectin in 
human venous blood on Ae. aegypti requires further 
investigation.

Another important factor is the capacity of iver-
mectin to exhibit a range of sub-lethal effects in 
mosquitoes, meaning that it could still impact dis-
ease transmission through reductions in mosquito 

fecundity, egg hatching, or ability to re-feed. We 
found a significant impact of ivermectin in reducing 
fecundity, and also egg hatch rates, at concentrations 
≥ 250 ng/ml (Fig. 3). At the lowest concentration tested 
(125 ng/ml), there was no difference in the mean num-
ber of eggs laid, nor in the egg hatch rate. This concen-
tration is higher than that found in human blood even 
at a high dosing regime [48], and thus it seems unlikely 
that ivermectin would have a measurable impact on Ae. 
aegypti via sub-lethal impacts. However, it is important 
to note both the caveat above (potentially toxic metab-
olites), and also that, in Ae. aegypti, effects on fitness-
related behaviours such as the ability to re-feed have 
yet to be explored.

Ivermectin has also been proposed as a veterinary 
endectocide [31, 49, 50]. Deployed in this manner, much 
higher ivermectin concentrations could potentially be 
reached; however, Ae. aegypti typically displays limited 
zoophagic behaviour and effects are likely to be lim-
ited accordingly. However, an impact remains possible 
for other important arbovirus vectors that display more 
plasticity in feeding behaviour, such as Aedes albopictus 
[51–54].

A limitation of the study was that the membrane 
feeds were conducted solely on a single relatively 
homogeneous laboratory strain of Ae. aegypti, which 
may now differ substantially from the field mosquitoes 

Fig. 2 Dose-response curves of membrane-fed ivermectin against Ae. aegypti at a day 3, b day 7, c day 14

Table 1 Lethal concentrations (LC) of ivermectin for Aedes 
aegypti at days 3, 7 and 14 post-blood-feeding, calculated using 
probit analysis

LC (%) Ivermectin concentration (ng/ml) (95% confidence interval)

Day 3 Day 7 Day 14

20 125.5 (94.1–157.5) 81.6 (58.6–105.6) 36.3 (23.2–51.3)

50 274.7 (225.6–330.1) 178.6 (142.3–218.4) 79.5 (57.1–104.9)

90 905.4 (723.5–1202.3) 588.8 (473.9–765.9) 262.1 (203.2–344.2)



Page 6 of 8Hadlett et al. Parasites Vectors            (2021) 14:9 

from which it was originally established. Addition-
ally, ivermectin is currently proposed as a control tool 
primarily in sub-Saharan Africa; compared to Asian 

populations, African Ae. aegypti are known to differ 
genetically and exhibit phenotypic differences, such as 
in susceptibility to arboviral infections, or mechanisms 
of resistance to insecticides [37, 55, 56]. Another possi-
ble limitation is that ivermectin was delivered systemi-
cally via Hemotek membrane feeding, and this method 
of delivery may inaccurately represent ivermectin 
uptake compared to direct blood-feeding on humans. 
For example, it has been suggested that ivermectin, as 
a lipophilic compound, may accumulate in dermal and 
adipose tissue and therefore reach higher concentra-
tions than that found in venous plasma [57]. As mos-
quitoes imbibe blood from subdermal capillaries, they 
may ingest concentrations of ivermectin higher than 
those found in venous plasma [57]. Despite this con-
cern, a recent study, nested within a randomised con-
trolled trial, found similar mosquitocidal effects of 
ivermectin when comparing membrane feeding to 
direct skin feeding [43].

Finally, it remains possible that arbovirus replica-
tion and transmission could be directly inhibited by 
ivermectin. For example, a recent study demonstrated 
the antiviral activity of ivermectin against dengue sero-
type 2 when blood-fed to Ae. albopictus [58]. Addition-
ally, in vitro enzymatic assays have shown ivermectin 
to inhibit the replication of other flaviviruses, such as 
yellow fever virus [59]. Whether sub-lethal concentra-
tions of ivermectin could affect vector competence for 
arboviruses in the mosquito host should be explored 
further.

In conclusion, we have demonstrated through mem-
brane feeding experiments that high concentrations of 
ivermectin are required to induce mortality and affect 
the fecundity of Ae. aegypti. Therefore, potential control 
strategies employing ivermectin MDA are unlikely to 
have a substantial impact on Aedes-transmitted arboviral 
disease. However, further research is necessary to deter-
mine if ivermectin exhibits additional effects such as sub-
lethality and antiviral activity.

Fig. 3 a, b Reproductive output of Ae. aegypti following ivermectin 
ingestion. a Average number of eggs produced per surviving female 
mosquito. b Hatch rate (%) of eggs produced by surviving females. 
Asterisks represent the level of statistical difference from the control 
group (0 ng/ml); * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001; 
groups that did not differ significantly from each other are grouped 
by a horizontal line above the bars 

Table 2 Fecundity of Ae. aegypti following ingestion of ivermectin at varying concentrations

SEM standard error of the mean
a Hatch rate was not calculated for eggs of mosquitoes exposed to ≥ 750 ng/ml

Ivermectin (ng/ml) No. of mosquitoes fed No. of surviving females on day 3 
(% survival)

Mean no. of eggs laid/surviving 
female ± SEM

% Hatch rate (no. of 
hatched larvae/no. of eggs 
submerged)

0 67 60 (89.6) 28.4 ± 2.9 69 (138/200)

125 54 49 (90.7) 23.5 ± 2.9 66.5 (133/200)

250 69 44 (63.7) 10.8 ± 1.7 29 (58/200)

500 74 26 (35.1) 10.0 ± 2.3 16.7 (25/150)

750 65 18 (27.7) 7.8 ± 3.1 –a

1000 32 3 (9.4) 0 ± 0 –a
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