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Abstract 

Background:  The African leopard Panthera pardus pardus (L.) is currently listed as a vulnerable species on the 
IUCN (International Union for the Conservation of Nature) red list of threatened species due to ongoing population 
declines. This implies that leopard-specific parasites are also vulnerable to extinction. Intracellular apicomplexan hae-
moparasites from the genus Hepatozoon Miller, 1908 have been widely reported from wild carnivores in Africa, includ-
ing non-specific reports from leopards. This paper describes two new haemogregarines in captive and wild leopards 
from South Africa and provides a tabular summary of these species in relation to species of Hepatozoon reported from 
mammalian carnivores.

Methods:  Blood was collected from nine captive and eight wild leopards at various localities throughout South 
Africa. Thin blood smears were Giemsa-stained and screened for intraleukocytic haemoparasites. Gamont stages 
were micrographed and morphometrically compared with existing literature pertaining to infections in felid hosts. 
Haemogregarine specific primer set 4558F and 2733R was used to target the 18S rRNA gene for molecular analysis. 
Resulting sequences were compared to each other and with other available representative mammalian carnivore 
Hepatozoon sequences from GenBank.

Results:  Two species of Hepatozoon were found in captive and wild leopards. Of the 17 leopards screened, eight 
were infected with one or both morphologically and genetically distinct haemogregarines. When compared with 
other species of Hepatozoon reported from felids, the two species from this study were morphometrically and 
molecularly distinct. Species of Hepatozoon from this study were observed to exclusively parasitize a particular type of 
leukocyte, with Hepatozoon luiperdjie n. sp. infecting neutrophils and Hepatozoon ingwe n. sp. infecting lymphocytes. 
Phylogenetic analysis showed that these haemogregarines are genetically distinct, with Hepatozoon luiperdjie n. sp. 
and Hepatozoon ingwe n. sp. falling in well supported separate clades.
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Background
Members of the genus Hepatozoon Miller, 1908 are 
intracellular apicomplexan haemogregarines (Apicom-
plexa Levine, 1970: Adeleorina Léger, 1911: Hepatozoi-
dae Wenyon, 1926) widely reported from amphibians, 
reptiles, birds and mammals, specifically including car-
nivores such as wild felids [1]. Feline hepatozoonosis 
was first reported in the early 1900’s by Patton [2], who 
described an intraleukocytic parasite Leucocytozoon felis 
domestici Patton, 1908 from an domestic cat in India. 
Eighteen years later, Wenyon [3] distinguished a capsule 
encasing this parasite that was overlooked by Patton [2], 
and then reclassified this parasite as a species of Hepato-
zoon, apparently morphologically identical to those found 
in hyenas, dogs and jackals [2, 3]. In the late 1990’s Beau-
fils et al. [4] proposed that canid and felid Hepatozoon are 
separate species, due to their morphological differences. 
The majority of species of Hepatozoon detected in Afri-
can carnivores were previously identified as Hepatozoon 
canis (James, 1905), until Levine [5] suggested that host 
species should be taken into account when determining 
the identity of these parasites. Peirce et al. [6] supported 
this by suggesting that researchers are wrong to assume 
that all species of Hepatozoon from African carnivore are 
synonyms of H. canis.

From a parasitological perspective, the leopard Pan-
thera pardus (L.) is one of the least studied big cats. 
Known protozoan parasites in leopards include species 
of Toxoplasma (Nicolle & Manceaux, 1908), Sarcocys-
tis Lankester, 1882, Hepatozoon, Giardia Künstler, 1882 
and Isospora Schneider, 1881 [7]. Brocklesby & Vidler [8] 
were the first to report Hepatozoon-like organisms from a 
free-ranging African leopard P. pardus pardus (Linnaeus 
1758) in Kenya. In the early 1970’s, Keymer [9] reported 
Hepatozoon canis-like schizonts from the cardiac mus-
cle of a leopard in Central Africa and four years later 
McCully et  al. [10] reported Hepatozoon-like parasites 
from leopards in South Africa’s KwaZulu-Natal Province. 
More recently, Pawar et  al. [11] and Khoshnegah et  al. 
[12] detected what they thought to be Hepatozoon felis 
(Patton, 1908) from two free-ranging Indian leopards 
Panthera pardus fusca (Meyer) as well as an unnamed 
species of Hepatozoon from a single free-ranging Persian 
leopard Panthera pardus ciscausica (Satunin).

Prior to the 21st century, classification of species of 
Hepatozoon was based on their life history, host identity 

and morphological characteristics. However, with recent 
advances in molecular techniques, phylogenetic analyses 
on the relationships between species have become possi-
ble [13–16]. Morphological characteristics used to distin-
guish between species of Hepatozoon include gamont and 
nucleus dimensions; position of the nucleus within the 
gamont; number and arrangement of vacuoles and stain-
ing properties [17, 18], as well as characteristics of other 
developmental stages [19, 20]. In Africa, domestic dogs 
and wild carnivores have been reported to have cases of 
asymptomatic hepatozoonosis, caused mostly by H. canis 
and H. felis [6, 10, 21–25]. Although, H. canis and H. felis 
are not specific to either canids or felids, they have been 
reported infecting both carnivore families [26–28].

Due to constant improvement of molecular techniques, 
the number of studies on haemogregarines has system-
atically increased, with several studies relying solely 
on these methods to detect species of Hepatozoon in 
their hosts [11, 28–32]. Recent research has shown that 
a difference in p-distance of between 1–2% of the 18S 
rRNA gene is sufficient to distinguish between species 
of haemogregarines  if supported by morphological data 
[16, 18, 33, 34]. Other studies, such as Metzger et al. [35], 
incorporate both molecular and some degree of morpho-
logical investigations, showing the importance of utiliz-
ing a more holistic approach when distinguishing among 
species of Hepatozoon.

The objectives of the present study were to (i) investi-
gate whether captive and wild leopards in South Africa 
are infected with species of Hepatozoon; (ii) identify any 
infections found using both molecular analysis of a frag-
ment of the 18S rRNA gene and morphological char-
acteristics of the gamont stage in peripheral blood; (iii) 
determine if any of the Hepatozoon spp. identified can be 
linked to hepatozoonosis based on clinical symptoms of 
the host. This study is the first report on the molecular 
and morphological characteristics of Hepatozoon species 
infecting captive and wild leopards in South Africa.

Methods
Study area, Panthera pardus pardus collection and blood 
preparation
Blood samples were obtained from nine captive and 
eight wild leopards in South Africa (Table 1), represent-
ative of three core wild populations as identified by Daly 
et  al. [36]. All live leopards were sedated and sampled 

Conclusions:  To our knowledge, this is the first morphometric and molecular description of Hepatozoon in captive 
and wild African leopards in South Africa. This study highlights the value of using both morphometric and molecular 
characteristics when describing species of Hepatozoon from felid hosts.

Keywords:  Hepatozoon, African leopard, Feline haemogregarines, Haemoparasites
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by a qualified veterinarian surgeon following standard 
procedures. Blood scabs were collected from the fro-
zen carcass of an erythristic (red) female leopard in the 
Mpumalanga Province (25°9′51.31ʺS, 30°26′55.46ʺE). 
Captive-bred leopards were sampled at two facili-
ties in Bloemfontein, Free State Province (29°4′9.32ʺS, 
26°9′34.40ʺE) (29°6′52.28ʺS, 26°12′15.80ʺE), and at one 
facility in the Mpumalanga Province (24°30′52.44ʺS, 
30°54′8.82ʺE). Wild leopards were sampled in the Mpu-
malanga (25°9′51.31ʺS, 30°26′55.46ʺE) (24°34′43.50ʺS, 
31°25′46.48ʺE) and northern Limpopo provinces 
(23°02′17.1ʺS, 29°26′26.5ʺE). Data collected on leop-
ards included: geographical location, weight, age, 
physical condition, diet, parasite treatment, possible 
injuries, physical measurements, and possible clinical 
symptoms.

For this study, leopards are classified as ‘captive’ if 
they were born or raised in captivity from an early age 
(< 1-month-old). Leopards are classified as ‘wild’ when 
born or caught at an adult stage in the wild or when held 
at rehabilitation centres for less than six months to be 
relocated. Age classes were allocated to all leopards sam-
pled following Fattebert et  al. [37], with cubs (< 1  year), 
subadults (1–3  years) and adults (> 3  years). Wild leop-
ards were aged according to the nature of tooth wear and 
a combination of morphological cues as described by 

Stander [38] and Balme et  al. [39] respectively. Captive 
leopards were aged according to the information pro-
vided by their ex situ managers.

Prior to blood collection, the dense pelt over the iden-
tified area of collection was shaved with a clipper and 
wiped with an alcohol-soaked cotton ball, which helped 
remove external skin contaminants and improved vis-
ualisation of the vein. Peripheral blood was usually 
collected from the jugular or the cephalic vein by veni-
puncture with the use of a sterile Vacutainer system, in 
BD Vacutainer® (Franklin Lakes, USA) CAT (Clot Acti-
vator Tubes) and Vacutainer® EDTA tubes for molecular 
analysis.

Small blood droplets (enough to provide three to four 
duplicate blood smears) were placed onto clean, pre-
labelled microscope slides to make thin blood smears. 
Blood smears were air-dried and subsequently fixed 
with absolute methanol for one minute. Once dry, blood 
smears were stored in slide boxes for further processing 
in the lab. A modified Giemsa (Fluka, Sigma-Aldrich, 
Steinheim, Germany) stain solution was prepared with 
distilled water (ratio of 9:1) in a 50 ml staining container. 
Air-dried blood smears were stained in the Giemsa solu-
tion for 20 min, rinsed with a slow stream of distilled 
water and again left to air dry.

Screening of blood smears
Stained smears were examined under the 100× oil 
immersion objective of a Nikon Eclipse E800 compound 
microscope (Nikon, Amsterdam, The Netherlands) 
and digital images of any infections detected were cap-
tured with an attached Nikon DS-Fi1 digital camera and 
accompanying software. Haemoparasites were identi-
fied through comparison of morphometric data to pre-
vious studies on species of Hepatozoon from carnivores 
[12, 19]. Parasitaemia was calculated per 100 host cells, 
with ~ 500 host cells (ten fields of 50 host cells) exam-
ined per blood smear. Photomicrographs of blood smears 
were calibrated according to the guidelines stipulated 
by the ImageJ Image Processing and Analysis software 
[40]. Measurements of parasites and leopard blood cells 
were taken with the ImageJ version 1.47 software pro-
gram (Wayne Rasband National Industries of Health, 
USA) (http://image​j.nih.gov/ij). All measurements are in 
micrometres and are given as the range followed by the 
mean ± standard deviation (SD) in parentheses.

Molecular analysis
Blood samples collected directly into Vacutainer® EDTA 
tubes were thawed and used for molecular protocols. 
DNA was extracted with the KAPA Blood PCR Kit B 
(Kapa Biosystems, Cape Town, South Africa) according 
to the protocol provided by the manufacturer. DNA for 

Table 1  Leopards sampled during this study from January 2013 
to December 2015

Abbreviations: BFNZoo, Bloemfontein Zoo; CHXP, Cheetah Experience; GKCA, 
Greater Kruger Conservation Area; LA, Lydenburg surrounding area; LRC, Lajuma 
Research Centre; MOH, Moholoholo Wildlife Rehabilitation Centre

Individual code Sex Color variation Age class Location

Captive leopards

 CF1 Female Regular Adult BFNZoo

 CF2 Female Regular Adult CHXP

 CF3 Female Melanistic Subadult CHXP

 CF4 Female Melanistic Adult CHXP

 CF5 Female Regular Adult MOH

 CM1 Male Regular Subadult CHXP

 CM2 Male Melanistic Adult CHXP

 CM3 Male Regular Adult CHXP

 CM4 Male Regular Subadult MOH

Wild leopards

 WF1 Female Regular Adult LA

 WF2 Female Erythristic Adult LA

 WF3 Female Regular Subadult GKCA

 WM1 Male Regular Adult LRC

 WM2 Male Regular Adult LRC

 WM3 Male Regular Adult LRC

 WM4 Male Regular Adult GKCA

 WM5 Male Regular Adult GKCA

http://imagej.nih.gov/ij
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the dried blood collected from the erythristic leopard 
was extracted by using the Kapa Express DNA extraction 
kit (Kapa Biosystems, Cape Town, South Africa), follow-
ing the manufacturer’s protocols.

Haemogregarine-specific primers 4558F (5ʹ-GCT AAT 
ACA TGA GCA AAA TCT CAA-3ʹ) and 2733R (5ʹ-CGG 
AAT TAA CCA GAC AAA T-3ʹ) [41] were used for the 
detection of Hepatozoon species through PCR (polymer-
ase chain reaction) amplification of the 18S rRNA gene. 
Fragments of between 995 and 1002 nucleotide (nt) were 
amplified using the primer set as mentioned above. PCRs 
were performed with 1.25  µl (10 µM) of each primer, 
12.5 µl Kapa Blood Mix B, 7.5 µl molecular grade nucle-
ase-free water (Thermo Fisher Scientific, Vilnius, Lithu-
ania) and 2.5 µl whole blood to make up a final volume of 
25 µl per sample. The PCR was undertaken in a Bio-Rad 
C1000 TouchTM Thermal Cycler PCR machine (Bio-Rad, 
Hemel Hempstead, UK), under the following conditions. 
Initial denaturation step of 5 min at 95 °C, followed by 35 
cycles of denaturation for 30 s at 95 °C, annealing for 30 
s at 50 °C and extension for 1 min at 72 °C. This was fol-
lowed by a final extension of 7 min at 72 °C, and products 
were held at 4  °C. Resulting amplicons were visualised 
on a 1% agarose gel stained with gel red and using a Bio-
Rad Gel-DocTM XR+ imaging system (Bio-Rad, Hemel 
Hempstead, UK) under ultraviolet light.

All positive, purified PCR products were sent for 
sequencing to Inqaba Biotechnical Industries (Pty) Ltd. 
(IBSA) (Pretoria, South Africa), a commercial sequencing 
company, for sequencing in both directions. Resultant 
sequences species identity was verified against previously 
published sequences using the Basic Local Alignment 
Search Tool (BLAST) [42]. Haemogregarine species iden-
tity was determined by establishing the closest BLAST 
match (97–100% to existing sequences available on the 
GenBank database). All sequences matching Hepatozoon 
spp. were considered positive and, since they were iden-
tical within each new species, only one representative 
sequence of each was included in further analysis.

The software package Geneious R11 (http://www.genei​
ous.com [43]) was used to assemble and edit resultant 
sequence fragments. Sequences were aligned using the 
Clustal W 2.1 alignment tool [44] implemented within 
Geneious R11. A model test was performed using jMod-
elTest 2·1·7 [45], to determine the most suitable nucle-
otide substitution model, according to the Bayesian 
information criterion (BIC). The model with the best BIC 
score was the General Time Reversible [46] model with 
estimates of invariable sites and a discrete Gamma distri-
bution (GTR+I+G). 18S rDNA sequences for species of 
Hemolivia Petit, Landau, Baccam & Lainson, 1990, Hepa-
tozoon Miller, 1908, Karyolysus Labbé, 1894, Haemogre-
garina Danilewsky, 1885 and Dactylosoma Labbé, 1894 

(parasitising amphibian, reptilian and mammalian hosts) 
were downloaded from GenBank and aligned with the 
sequences generated in this study (Table  2). Adelina 
dimidiate Schneider, 1875, Adelina grylli Butaeva, 1996 
(GenBank: DQ096835-DQ096836) and Klossiella equi 
Smith & Johnson, 1902 (GenBank: MH211602), from 
the suborder Adeleiorina Léger, 1911 were selected as 
outgroup. Although eight sequences were obtained from 
infected leopards, only a single representative of each 
species of Hepatozoon amplified in the present study 
was used for phylogenetic analyses. Phylogenetic analy-
ses consisted of two datasets, the first alignment a large 
dataset (n = 297) including all representative H. felis 
sequences from GenBank (Additional file  1: Figure S1), 
and the second alignment based on the results of the first 
included 57 representative sequences (Table 2). Bayesian 
inference (BI) was used to infer phylogenetic relation-
ships. The BI analysis was performed using MrBayes 3.2.2 
[47] implemented from within Geneious R11. To assess 
posterior probability support the Markov Chain Monte 
Carlo (MCMC) algorithm was run for one million gen-
eration for the first larger dataset (297 sequences), and 
10 million generations for the second the smaller data-
set (57 sequences), sampling every 100 generations and 
using the default parameters. The first 25% of the trees 
were discarded as ‘burn-in’ with no ‘burn-in’ samples 
being retained. Results were visualised in Trace, to assess 
convergence and the ‛burn-inʼ period. Furthermore, 
uncorrected p-distances for the sequences used were also 
calculated in PAUP (Phylogenetic Analysis Using Parsi-
mony) version 4.0a152 (Additional file 2: Table S1).

Results

Taxonomy

Phylum Apicomplexa Levine, 1970
Class Conoidasida Levine, 1988
Order Eucoccidiorida Léger & Dubosq, 1910
Suborder Adeleorina Léger, 1911
Family Hepatozoidae Wenyon, 1926
Genus Hepatozoon Miller, 1908

Hepatozoon luiperdjie n. sp.

Type-host: Panthera pardus pardus (L.) (Carnivora: 
Felidae).
Type-locality: Lajuma Research Centre (23°02ʹ17.1ʺS, 
29°26ʹ26.5ʺE), Limpopo Province, South Africa.
Other localities: Greater Kruger Conservation Area 
(24°34ʹ43.50ʺS, 31°25ʹ46.48ʺE), Mpumalanga Province; 
Lydenburg area (25°9ʹ51.31ʺS, 30°26ʹ55.46ʺE), Mpuma-
langa Province, South Africa.

http://www.geneious.com
http://www.geneious.com
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Table 2  List of taxa used in the phylogenetic analyses of this study, with associated GenBank accession numbers, host, host family, 
host common name, country and references

Haemoparasite Host species Class Family Common name Country GenBank ID Reference

Hepatozoon ameri-
canum

Canis familiaris Mammalia Canidae Domestic dog USA AF176836 [41]

Adelina dimidiata Scolopendra cin-
gulata

Scolopendromor-
pha

Scolopendridae Megarian banded 
centipede

Bulgaria DQ096835 [70]

Adelina grylli Gryllus bimaculatus Insecta Gryllidae African field cricket Bulgaria DQ096836 [70]

Dactylosoma 
ranarum

Pelophylax kl. escu-
lentus

Amphibia Ranidae Edible frog Canada HQ224957 [33]

Haemogregarina 
balli

Chelydra serpentina Reptilia Chelydridae Common snapping 
turtle

Canada HQ224959 [33]

Haemogregarina 
pellegrini

Malayemys subtri-
juga

Reptilia Geoemydidae Mekong snail-
eating turtle

Vietnam KM887508 [82]

Haemogregarina sp. Pelusios subniger Reptilia Pelomedusidae East African black 
mud turtle

Mozambique KF257925 [78]

Haemogregarina 
stepanowi

Mauremys caspica Reptilia Geoemydidae Striped-neck ter-
rapin

Iran KF257926 [78]

Hemolivia mariae Egernia stokesii Reptilia Scincidae Gidgee skink Australia KF992711 [79]

Hemolivia mauri-
tanica

Testudo marginata Reptilia Testudinidae Marginated tortoise Greece KF992699 [79]

Hemolivia parvula Kinixys zombensis Reptilia Testudinidae Eastern hinged 
back tortoise

South Africa KR069082 [34]

Hemolivia sp. Rhinoclemmys pul-
cherrima manni

Reptilia Geoemydidae Central American 
painted wood 
turtle

Nicaragua KF992713 [79]

Hemolivia stellata Rhinella marina Amphibia Bufonidae Cane toad Brazil KP881349 [83]

Hepatozoon angela-
daviesae

Philothamnus semi-
variegatus

Reptilia Colubridae Spotted bush snake South Africa MG519502 [89]

Hepatozoon apri Sus scrofa leuco-
mystax

Mammalia Suidae Japanese boar Japan LC314791 [87]

Hepatozoon ayor-
gbor

Python regius Reptilia Pythonidae Ball python Ghana EF157822 [72]

Hepatozoon canis Pseudalopex gymno-
cercus

Mammalia Canidae Pampas fox Brazil AY461376 [50]

Hepatozoon canis Canis lupus familiaris Mammalia Canidae Domestic dog Venezuela DQ439540 [71]

Hepatozoon canis Canis lupus familiaris Mammalia Canidae Domestic dog Israel KC138535 [25]

Hepatozoon canis Canis lupus familiaris Mammalia Canidae Domestic dog Israel MH615006 [91]

Hepatozoon cecil-
hoarei

Philothamnus natal-
ensis natalensis

Reptilia Colubridae Natal green snake South Africa MG519504 [89]

Hepatozoon domer-
guei

Madagascarophis 
colubrinus

Reptilia Lamprophiidae Madagascar cat-
eyed snake

Madagascar KM234646 [81]

Hepatozoon felis Felis catus Mammalia Felidae Domestic cat Spain AY620232 [50]

Hepatozoon felis Felis catus Mammalia Felidae Domestic cat Spain AY628681 [50]

Hepatozoon felis Panthera leo persica Mammalia Felidae Asiatic lion India HQ829440  [11]

Hepatozoon felis Panthera pardus 
fusca

Mammalia Felidae Indian leopard India HQ829444 [11]

Hepatozoon felis Panthera tigris tigris Mammalia Felidae Bengal tiger India HQ829445 [11]

Hepatozoon felis Felis catus Mammalia Felidae Domestic cat Brazil JN123435 [76]

Hepatozoon felis Panthera leo persica Mammalia Felidae Asiatic lion Thailand KY056823 [86]

Hepatozoon fitzsi-
monsi

Kinixys zombensis Reptilia Testudinidae Eastern hinged 
back tortoise

South Africa KR069084 [34]

Hepatozoon involu-
crum

Hyperolius marmo-
ratus

Amphibia Hyperoliidae Painted reed frog South Africa MG041594 [16]

Hepatozoon ixoxo Sclerophrys pusilla Amphibia Bufonidae Merten’s Striped 
Toad

South Africa MG041604 [16]
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Type-material: Hapantotype, 1 peripheral blood 
smear from the type-host P. p. pardus and type-locality 
(23°02ʹ17.1ʺS, 29°26ʹ26.5ʺE), deposited under the acces-
sion number NMBP392 in the protozoan collection of 
the National Museum, Bloemfontein, South Africa.
Vector: Unknown.
Representative DNA sequences: Two sequences, of a 
995 nt fragment of the 18S rRNA gene of Hepatozoon 
luiperdjie n. sp., isolated from the type-host P. p. pardus, 
deposited under the accession numbers MN793002 and 
MN793003 in the GenBank database.
ZooBank registration: To comply with the regula-
tions set out in article 8.5 of the amended 2012 version 
of the International Code of Zoological Nomenclature 

(ICZN) [48], details of the new species have been sub-
mitted to ZooBank. The Life Science Identifier (LSID) 
of the article is urn:lsid:zoobank.org:pub:9E65A924-
729F-43A5-AE1F-8001204B6A6A. The LSID for the new 
name Hepatozoon luiperdjie n. sp. is urn:lsid:zoobank.
org:act:2293B0B3-3B91-4BDC-8246-50215B80F8D5.
Etymology: The species epithet is derived from the Afri-
kaans language diminutive name for the host P. p. pardus, 
which in Afrikaans is referred to as “luiperdjie”.

Description
Gamonts. Most abundant stage in peripheral blood 
smears (Fig.  1a-f ). Extracellular forms (Fig.  1c) and 
immature gamonts (Fig.  1d) rarely observed and no 

Table 2  (continued)

Haemoparasite Host species Class Family Common name Country GenBank ID Reference

Hepatozoon martis Martes martes Mammalia Mustelidae European pine 
marten

Bosnia and Herze-
govina

MG136687 [88]

Hepatozoon silvestris Felis silvestris 
silvestris

Mammalia Felidae European wild cat Bosnia and Herze-
govina

KX757032 [20]

Hepatozoon sipedon Nerodia sipedon 
sipedon

Reptilia Colubridae Northern water 
snake

Canada JN181157 [33]

Hepatozoon sp. Cerdocyon thous Mammalia Canidae Crab-eating fox Brazil AY461377 [50]

Hepatozoon sp. Martes martes Mammalia Mustelidae European pine 
marten

Spain EF222257 [69]

Hepatozoon sp. Sciurus vulgaris Mammalia Sciuridae Eurasian red squir-
rel

Spain EF222259 [69]

Hepatozoon sp. Scelarcis perspicillata Reptilia Lacertidae Moroccan rock 
lizard

Morocco HQ734791 [74]

Hepatozoon sp. Podarcis vaucheri Reptilia Lacertidae Andalusian wall 
lizard

Morocco HQ734792 [74]

Hepatozoon sp. Psammophis 
schokari

Reptilia Lamprophiidae Schokari sand racer Algeria KC696565 [77]

Hepatozoon sp. Meles meles Mammalia Mustelidae European badger Spain KU198330 [84]

Hepatozoon sp. Canis mesomelas Mammalia Canidae Black-backed jackal South Africa MG919977 [31]

Hepatozoon sp. Canis mesomelas Mammalia Canidae Black-backed jackal South Africa MG919980 [31]

Hepatozoon tenuis Afrixalus fornasini Amphibia Hyperoliidae Greater leaf-folding 
frog

South Africa MG041596 [16]

Hepatozoon theileri Amietia delalandii Amphibia Pyxicephalidae Delalande’s river 
frog

South Africa MG041605 [16]

Hepatozoon thori Hyperolius marmo-
ratus

Amphibia Hyperoliidae Marbled reed frog South Africa MG041602 [16]

Hepatozoon ursi Ursus thibetanus 
japonicus

Mammalia Ursidae Asian black bear Japan EU041717 [73]

Hepatozoon ursi Ursus thibetanus 
japonicus

Mammalia Ursidae Asian black bear Japan EU041718 [73]

Hepatozoon ursi Melursus ursinus Mammalia Ursidae Sloth bear India HQ829437 [75]

Karyolysus lacazei Lacerta viridis Reptilia Lacertidae European green 
lizard

Slovakia KJ461943 [69]

Karyolysus latus Podarcis muralis Reptilia Lacertidae European wall lizard Slovakia KJ461939 [69]

Karyolysus paradoxa Varanus albigularis Reptilia Varanidae Rock monitor South Africa KX011040 [85]

Karyolysus sp. Zootoca vivipara Reptilia Lacertidae Viviparous lizard Poland KJ461945 [80]

Klossiella equi Equus ferus caballus Mammalia Equidae Horse Canada MH211602 [90]
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division stages detected. Mature gamonts measure 
9.9–12.6 × 4.1–5.0 (11.0 ± 0.9 × 4.7 ± 0.4) (n = 53), area 
of 39.5–46.2 (42.0 ± 2.9)  µm2 (n = 53). Mature gamonts 
mostly conspicuous within neutrophil cytoplasm 
(Fig.  1a–c), sometimes hardly visible and concealed by 
host cell nucleus; elongate, with bluntly rounded extremi-
ties, thin visible capsule (Fig. 1a); cytoplasm stained pale 
purple with some gamonts containing bright magenta 
and basophilic staining granules (Fig.  1a, f ). Some 
gamonts with 2 to 3 small, slightly noticeable posteri-
orly situated vacuoles (Fig.  1e, thick arrow). Gamont 
nuclei measure 3.0–3.6 × 3.1–3.8 (3.5 ± 0.3 × 3.4 ± 
0.3) (n = 53), area of 8.8–9.6 (9.2 ± 0.3) µm2 (n = 53); 
rounded and acentric, usually as wide as gamont at wid-
est point, mostly located closer to anterior than posterior 
of gamont and stained dark purple, with densely stranded 
chromatin. Capsules 0.3–0.7 (0.5 ± 0.2) thick (n = 53) 
and observable in most gamonts (Fig. 1e, thin arrow).

Prevalence and parasitaemia. Hepatozoon luiperdjie n. 
sp. occurred in peripheral blood of 8/16 (prevalence 50%) 
individual P. p. pardus sampled. This haemogregarine 
formed co-infections with Hepatozoon ingwe n. sp. (see 
below) in 6 out of 16 leopards (prevalence of 38%), and 
was the sole species of Hepatozoon detected in 2 out of 
16 individuals (prevalence of 13%). Prevalence of 63% 
(5/8) in males and 38% (3/8) in females infected. No cap-
tive individuals infected by this haemogregarine. Para-
sitaemia varied between individuals and could only be 
determined in WM1 (11.3%), WF1 (21.5%), WM3 (1.9%), 
WF3 (15.4%) and WM4 (4.8%). Average parasitaemia in 
all five leopards was 11.0%.

Effect on host cells. Gamonts sometimes compressed 
the lobulated nucleus of neutrophils, either towards the 
periphery of the host cell (Fig.  1a), or towards one side 
(Fig.  1b). Parasitized neutrophils measured 12.7–14.3 
× 12.1–14.1 (13.6 ± 0.8 × 13.1 ± 0.7) (n = 53), area of 
130.2–186.0 (146.3 ± 22.9) µm2 (n = 53). Healthy, unin-
fected neutrophils measured 7.6–14.4 × 7.0–13.0 (11.1 
± 1.5 × 10.3 ± 1.3) (n = 450), area of 46.3–127.2 (89.1 

± 18.3) µm2 (n = 450). Nuclei of parasitized neutrophils 
measured 12.8–25.3 × 3.3–13.3 (19.8 ± 5.2 × 5.7 ± 4.2) 
(n = 53), area of 53.3–116.9 (68.8 ± 27.0) µm2 (n = 53). 
Dimensions of healthy neutrophil nuclei were 10.3–
29.3 × 1.7–4.5 (20.5 ± 3.9 × 2.7 ± 0.6) (n = 450), area 
of 25.1–58.1 (41.7 ± 7.4) µm2 (n = 450). Thus, infected 
neutrophils were slightly longer and wider, with larger 
surface area. Nuclei of infected neutrophils were slightly 
longer and narrower, with greater surface area.

Remarks

Prior to this study, Hepatozoon spp. reported from wild 
carnivores were only H. felis, H. canis and mostly as an 
unidentified species of Hepatozoon [6, 10–12, 22, 24, 
25, 29, 49–63], except by Hodžić et al. [20] who recently 
described Hepatozoon silvestris Hodžić, Alić, Prašović, 
Otranto, Baneth & Duscher, 2017 in an European wildcat 
from eastern Europe. Infection with a morphologically 
and genetically distinct Hepatozoon sp. was confirmed 
by our study in wild African leopards in various areas 
throughout South Africa, both in male and female hosts. 
The haemogregarine described here appears to develop 
only gamont stages in the peripheral blood of P. p. par-
dus. Therefore, with no division stages detected, it was 
placed within the genus Hepatozoon.

Hepatozoon luiperdjie n. sp. was on average longer 
than H. canis from Cerdocyon thous (L.) in Brazil [51], 
and longer, but with a similar average width to H. felis 
from Felis catus (L.) in Israel [19], therefore within the 
relative morphometrical range of both species (Table 3). 
This haemogregarine was morphometrically most similar 
to an unnamed species of Hepatozoon detected in Lynx 
rufus (Schreber) from the USA [57]. It also differed from 
the other species of Hepatozoon detected in the mono-
cytes of leopards during our study. The most striking 
feature of H. luiperdjie n. sp. is the densely chromati-
sized, acentric nucleus, relatively smaller than that of H. 
felis [19, 20]. Hepatozoon luiperdjie n. sp. also seemed to 
exclusively infect the neutrophils of the host. The life-
cycle of this parasite remains to be determined.

(See figure on next page.)
Fig. 1  a–f Peripheral blood gamont stages of Hepatozoon luiperdjie n. sp. in the African leopard Panthera pardus pardus from hapantotype slide 
(NMBP392). a, b, e, f Mature gamonts within neutrophils, where enlargement of host cell and displacement of host cell nucleus is apparent. c 
Extracellular gamont. d Immature gamont. e Mature gamont in which small posterior vacuoles (thick arrow) and thin capsule (thin arrow) can be 
seen. c, f Disintegration of neutrophils by infecting gamonts. g–k Peripheral blood gamont stages of Hepatozoon ingwe n. sp. in the African leopard 
Panthera pardus pardus from hapantotype slide (NMBP393). g, h, k Mature gamonts within lymphocytes, where lateral compression of host cell is 
apparent. g Mature gamont in which bright pink granules and thin capsule (thick arrow) can be seen. h Mature gamont with prominent posterior 
vacuoles (thin arrow). i Extracellular gamont. j Immature gamont. k Co-infection of Hepatozoon luiperdjie n. sp. (on the left) and Hepatozoon ingwe n. 
sp. in the same leopard. Scale-bar: 10 µm
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Hepatozoon ingwe n. sp.

Type-host: Panthera pardus pardus (L.) (Carnivora: 
Felidae).
Type-locality: Lajuma Research Centre (23°02ʹ17.1ʺS, 
29°26ʹ26.5ʺE), Limpopo Province, South Africa.
Other localities: Greater Kruger Conservation Area 
(24°34ʹ43.50ʺS, 31°25ʹ46.48ʺE), Mpumalanga Prov-
ince; captive facility (24°30ʹ52.44ʺS, 30°54ʹ8.82ʺE), 
Mpumalanga Province; Lydenburg area (25°9ʹ51.31ʺS, 
30°26ʹ55.46ʺE), Mpumalanga Province, South Africa.
Type-material: Hapantotype, 1 peripheral blood 
smear from the type-host P. p. pardus and type-locality 
(23°02ʹ17.1ʺS, 29°26ʹ26.5ʺE), deposited under accession 
number NMBP393 in the protozoan collection of the 
National Museum, Bloemfontein, South Africa.
Vector: Unknown.
Representative DNA sequences: Two sequences, rep-
resenting a 995 nt fragment of the 18S rRNA gene of 
Hepatozoon ingwe n. sp., isolated from the type-host 

P. p. pardus, deposited under the accession numbers 
MN793000 and MN793001 in the GenBank database.
ZooBank registration: To comply with the regula-
tions set out in article 8.5 of the amended 2012 version 
of the International Code of Zoological Nomenclature 
(ICZN) [48], details of the new species have been sub-
mitted to ZooBank. The Life Science Identifier (LSID) 
of the article is urn:lsid:zoobank.org:pub:9E65A924-
729F-43A5-AE1F-8001204B6A6A.The LSID for the 
new name Hepatozoon ingwe n. sp. is urn:lsid:zoobank.
org:act:65A2DC3D-BABB-443A-82A7-DBCFFCAE3636.
Etymology: The species epithet is derived from that of 
the Zulu language name for the host P. p. pardus, which 
in Zulu is referred to as “ingwe”. Noun in apposition.

Description
Gamonts. Most abundant stage in peripheral blood 
smears (Fig.  1g–k). Extracellular forms (Fig.  1i) and 
immature gamonts (Fig.  1j) rarely observed, no division 
stages detected. Mature gamonts measure 9.8–12.6 × 

Table 3  Details and measurements for Hepatozoon luiperdjie n. sp. and Hepatozoon ingwe n. sp. and closely related Hepatozoon 
species in wild and domestic carnivores

a  Mean ± standard deviation (SD)

Abbreviations: n, number measured; L, length; W, width

Hepatozoon spp. Host species Country Host cells 
infected

GenBank ID Gamont 
dimensions
L × W in µma

(LW in µm2)

Gamont nuclei 
dimensions
L × W in µma

(LW in µm2)

n Reference

H. canis Canis familiaris India Neutrophils – 9.5–11.8 × 
5.1–6.0

– – [92]

H. canis Cerdocyon thous Brazil Leukocytes – 11.4 × 5.4 (45.9) – – [51]

H. canis Cerdocyon thous Brazil Neutrophils – 9.1 ± 0.5 × 5.3 
± 0.5

– – [61]

H. felis Felis catus Israel Neutrophils. KC138534 10.5 ± 0.6 × 4.7 
± 0.8

4.0 ± 0.3 × 3.2 
± 0.5

13 [19]

H. felis Felis silvestris Bosnia and Her-
zegovina

Extracellular KX757033 10.5 ± 0.4 × 4.4 
± 0.4

4.7 ± 0.3 × 4.4 
± 0.3

– [20]

H. ingwe n. sp. Panthera pardus 
pardus

South Africa Lymphocytes MN793000; 
MN793001

11.4 ± 1.2 × 4.8 
± 0.2

(44.2 ± 4.4)

5.1 ± 0.6 × 3.0 ± 
0.6 (12.2 ± 3.3)

87 This study

H. luiperdjie n. sp. Panthera pardus 
pardus

South Africa Neutrophils MN793002; 
MN793003

11.0 ± 0.9 × 4.7 
± 0.4

(42.0 ± 2.9)

3.5 ± 0.3 × 3.4 ± 
0.3 (9.2 ± 0.3)

53 This study

H. silvestris Felis silvestris Bosnia and Her-
zegovina

Extracellular KX757032 11.7 ± 0.5 × 5.2 
± 0.7

6.3 ± 1.3 × 3.0 
± 0.8

11 [20]

Hepatozoon sp. Felis catus Brazil Neutrophils – 9.9 ± 0.4 × 5.3 
± 0.2

(45.9 ± 4.9)

– – [65]

Hepatozoon sp. Prionailurus 
bengalensis

Thailand Neutrophils GQ926902 9.8 ± 0.4 × 5.2 
± 0.4

– 10 [54]

Hepatozoon sp. Leopardus pardalis Brazil Neutrophils EU028344 7.4 × 4.2 (27.0) – 1 [35]

Hepatozoon sp. Lynx rufus USA Leukocytes – 11.0 × 2.5 – – [57]

Hepatozoon sp. Panthera pardus 
ciscaucasica

Iran Neutrophils – 11.4 ± 0.3 × 5.2 
± 0.2

(39.5 ± 3.2)

– – [12]
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4.5–5.0 (11.4 ± 1.2 × 4.8 ± 0.2) (n = 87), surface area of 
38.7–48.9 (44.2 ± 4.4) µm2 (n = 87); mostly visible within 
leukocyte cytoplasm (Fig.  1g, h, k), but in some cases 
gamonts were concealed by leukocyte nucleus; elongate 
with round extremities, cytoplasm stained pale blue, 
slight granulation, minimal basophilic stippling anteri-
orly; cytoplasm contained bright pink staining granules 
(Fig. 1g, h). Gamonts with thin visible capsules (Fig. 1g, 
thick arrow) and 2 to 4 prominent vacuoles posteriorly 
situated (Fig.  1h, thin arrow); gamont nuclei measure 
4.4–5.7 × 2.5–3.7 (5.1 ± 0.6 × 3.0 ± 0.6) (n = 87), area 
of 8.7–16.5 (12.2 ± 3.3) µm2 (n = 87). Nuclei stained dark 
purple with loosely stranded chromatin, through which 
parts of cytoplasm were often visible (Fig. 1g, h). Nuclei 
elongate, usually narrower than gamont at widest point, 
mostly anteriorly located. Capsule measured 0.4–0.7 (0.5 
± 0.1) thick (n = 87) and observable in most gamonts.

Prevalence and parasitaemia. Detected in the periph-
eral blood of 7 out of 16 individual P. p. pardus sampled 
(prevalence of 44%). Of these 6 out of 16 leopards had 
co-infections with H. luiperdjie n. sp. (prevalence of 38%) 
and 1 out of 16 individuals was solely infected with this 
species of Hepatozoon (prevalence 6%). More males than 
females were infected, prevalence 50% (4/8) of males and 
38% (3/8) of females. One captive female was infected 
(prevalence in captivity 13% or 1/8). Parasitaemia var-
ied between individuals and could only be determined 
in WM1 (32%), WF1 (57%), WF3 (13%), WM4 (21%) and 
WM5 (7%). Average parasitaemia was 30.8%. Gamonts 
not observed in smears of CF5; however, prevalence con-
firmed by PCR amplification.

Effect on host cells. Gamonts usually compacted lympho-
cyte nuclei towards one side and completely usurped lym-
phocyte cytoplasm (Fig.  1g, h). Parasitized lymphocytes 
measured 10.9–11.6 × 8.4–9.7 (11.3 ± 0.3 × 9.1 ± 0.6) (n 
= 87), area of 73.6–83.4 (79.2 ± 4.3) µm2 (n = 87). Healthy, 
uninfected lymphocytes measured 6.8–15.7 × 6.1– 13.9 
(10.9 ± 2.1 × 9.7 ± 1.9) (n = 261), area of 36.6–156.8 (81.7 
± 29.4) µm2 (n = 261). Nuclei of parasitized lymphocytes 
measured 8.4–11.9 × 3.8–5.7 (10.0 ± 1.5 × 4.78 ± 0.8) (n 
= 87), area of 30.2–36.9 (33.5 ± 3.0) µm2 (n = 87). Dimen-
sions of healthy lymphocyte nuclei were 6.1–16.1 × 4.2–
10.7 (9.7 ± 2.2 × 7.3 ± 1.4) (n = 261), area of 26.2–92.1 
(56.2 ± 15.4) µm2 (n = 261). Thus, infected lymphocytes 
were slightly longer and narrower, with smaller surface 
area. Infected lymphocyte nuclei measured slightly longer 
and narrower, with smaller surface area.

Remarks
This haemogregarine appears to develop only gamont 
stages in the peripheral blood of P. p. pardus, and with no 

division stages detected it was placed within Hepatozoon. 
Hepatozoon ingwe n. sp. measured within the same range 
size as H. luiperdjie n. sp. described above. However, H. 
ingwe n. sp. seemed to exclusively infect the lymphocytes 
of the host, unlike the gamonts of H. luiperdjie n. sp. 
Hepatozoon ingwe n. sp. was morphometrically similar to 
an unnamed Hepatozoon detected in the neutrophils of P. 
p. ciscaucasica from Iran [12] (Table 3). This haemogre-
garine also measured longer and wider than H. felis from 
domestic cats in Israel [19], widely considered a rede-
scription of H. felis (Table 3). Hepatozoon ingwe n. sp. was 
significantly longer (P = 0.0064) and somewhat wider (P 
= 0.3023), with a comparatively larger surface area than 
that of H. luiperdjie n. sp. (P = 0.0593) (Table 3). Char-
acteristic features of H. ingwe n. sp. include the pale blue 
staining cytoplasm containing bright pink staining gran-
ules, prominent vacuoles at the posterior, and elongated 
nuclei similar to that of H. canis. The life-cycle of this 
parasite remains to be determined.

Differential diagnoses
Each species of haemogregarine described here infected 
a particular type of leukocyte: H. luiperdjie n. sp. were 
exclusively found in neutrophils and H. inwe n. sp. in 
lymphocytes. The parasitaemia of H. ingwe n. sp. (30.8%), 
and H. luiperdjie n. sp. (11.0%), was higher than the range 
of 0.1–4.0% reported by other studies on domestic cats 
in Israel [64], an ocelot Leopardus pardalis (L.) in Bra-
zil [35], a Tsushima leopard cat Prionailurus bengalensis 
(Kerr) in Thailand [54], Iriomote cats P. b. iriomotensis 
(Imaizumi) in Japan [52] and a Tsushima leopard cat P. 
bengalensis in Japan. The parasitaemia of H. ingwe n. sp. 
was also higher than that of H. luiperdjie n. sp., possi-
bly indicating that leopard host immune system may be 
better at suppressing infections by H. luiperdjie n. sp. in 
neutrophils, than H. ingwe n. sp. in lymphocytes. Addi-
tionally, there seemed to be a clear association between 
sex and parasitaemia in this study, with average parasi-
taemia in females (H. luiperdjie n. sp. parasitized 18.2% 
and H. ingwe n. sp. parasitized 35% of host cells) higher 
than that in males (H. luiperdjie n. sp. parasitized 5.99% 
and H. ingwe n. sp. parasitized 20%  of host cells). This 
may be a noticeable health concern, since it is still unclear 
whether feline hepatozoonosis can be transferred within 
the uterus. However, this trend in parasitaemia needs 
further investigation over a larger variety and number of 
felid hosts.

In addition to infecting different types of host cells, the 
two new species showed clear morphological distinc-
tions of peripheral blood gamont stages on a morpho-
metric basis and differences in staining properties. The 
gamonts of H. luiperdjie n. sp. are shorter, thinner and 
with a smaller surface area than those of H. ingwe n. sp. 
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Furthermore, the staining properties of their cytoplasm, 
the marked presence of vacuoles in H. ingwe n. sp. and 
the morphometric and staining differences in their 
nuclei. In terms of nucleus dimensions, the nucleus of 
H. luiperdjie n. sp. was significantly shorter (P < 0.0001), 
broader (P < 0.0001) and larger than that of H. ingwe n. 
sp. (P = 0.0025). Both species described here had a larger 
surface area compared to the unnamed species of Hepa-
tozoon parasitizing neutrophils of Leopardus pardalis 
from Brazil [35] and an unnamed species of Hepatozoon 
parasitising neutrophils of P. p. ciscaucasica from Iran 
[12] (Table  3). While both new species of Hepatozoon 
had a smaller surface area as compared to an unnamed 
species of Hepatozoon from domestic cats [65] and H. 
canis from Cerdocyon thous from Brazil, respectively [61] 
(Table 3). Data on the morphometrics of large numbers 
of gamonts are scarce, with some studies measuring only 
a few gamonts [19, 20], or even only a single gamont [35]. 
Our study focused on screening live hosts, while most 
other studies analysed necropsied or biopsied samples 
[19, 20, 66], or did not focus on morphological descrip-
tions of the gamont stage [10, 11, 22, 24, 27, 29, 31, 52, 53, 
55, 58, 64, 67–69]. Several of these studies reported only 
on molecular detection due to the general low parasitae-
mia of these haemogregarines [66], as confirmed by the 
absence of gamonts in the peripheral blood smear of CF5 
in our study.

Molecular analyses
Amplicons were derived from H. luiperdjie n. sp. and H. 
ingwe n. sp. from the blood of leopards and the details of 
all sequences used for analysis are presented in Table 2. 
Although eight sequences were obtained from infected 
leopards, only a single sequence per species of Hepato-
zoon was used in the phylogenetic analysis (Fig.  2), as 
sequences obtained from samples with single species 
infections were identical for the respective new species. 
Sequences obtained from leopards with mixed Hepa-
tozoon infections were not included in the phylogenetic 
analysis, as sequences contained a double chromatogram 
peak or two separate bases called at the same position 
(heterozygous positions) from the two new species of 
Hepatozoon amplified. Based on the uncorrected p-dis-
tance for the 18S rRNA gene between H. ingwe n. sp. 
and H. felis [amplified from the Asiatic lion, Panthera 
leo persica (L.) (GenBank: HQ829440) and Indian leop-
ard, Panthera pardus fusca (L.) (GenBank: HQ829444)] 
interspecific divergence was 1.0% (Additional file  2: 
Table S1). Hepatozoon luiperdjie n. sp. and H. felis ampli-
fied from domestic cats, F. catus (GenBank: AY620232 
and AY628681) and from a Bengal tiger, P. tigris tigris (L.) 
(GenBank: HQ829445) had an interspecific divergence 
of 1.0% (Additional file  2: Table  S1). The interspecific 

divergence between H. luiperdjie n. sp. and H. ingwe n. 
sp. was 1.0%.

For the BI phylogenetic analyses, first a large dataset 
was used comprising 297 sequences (Additional file  1: 
Figure S1). This analysis included all the available 18S 
rDNA sequence data of H. felis downloaded from Gen-
Bank. The genera Hemolivia, Hepatozoon (parasitis-
ing amphibian, reptilian and rodent hosts), Karyolysus, 
Haemogregarina and Dactylosoma formed separate 
and well-supported clades at the base of the phylogeny 
(Additional file  1: Figure S1). Species of Karyolysus and 
several species most likely incorrectly identified as spe-
cies of Hepatozoon, formed a sister group to a large clade 
comprising species of Hepatozoon from large mammals. 
The phylogenetic analysis showed H. felis as paraphy-
letic forming several clusters, along with Hepatozoon 
americanum Vincent-Johnson, MacIntire, Lindsay, Lenz, 
Baneth, Shkap & Blagburn, 1997, Hepatozoon apri Yama-
moto, Tokiwa, Tobiume, Akamatsu, Matsuo, Moribe & 
Ike, 2017, Hepatozoon canis, Hepatozoon martis Hodžić, 
Alić, Beck, Beck, Huber, Otranto, Baneth & Duscher, 
2018, Hepatozoon silvestris, Hepatozoon ursi Kubo, Uni, 
Agatsuma, Nagataki, Panciera, Tsubota, Nakamura, 
Sakai, Masegi & Yanai, 2008 and H. luiperdjie n. sp. and 
H. ingwe n. sp. Although several sequences are identified 
or designated as H. felis, we consider the sequences iso-
lated from H. felis in domestic cats from Spain (GenBank: 
AY620232; AY628681) as sufficient representatives of H. 
felis based on phylogenetic comparisons to sequences in 
the formal redescription and molecular characterisation 
of H. felis [19].

The second BI phylogenetic analysis was based on 57 
18S rDNA sequences (Fig.  2). Species of Hepatozoon 
isolated from large mammal hosts formed a large well-
supported clade (Clades A-E, Fig.  2). Clades A and B 
(monophyletic group), and Clades C, D and E, formed 
a polytomy of four distinct groups. In Clade A, H. 
ingwe n. sp. was shown as a sister taxon to a well-sup-
ported monophyletic cluster of H. felis in big cats from 
India, namely the Asiatic lion (GenBank: HQ829440) 
and Indian leopard (GenBank: HQ829444) (Clade A in 
Fig. 2). Furthermore, H. silvestris (GenBank: KX757032), 
isolated form the European wild cat Felis silvestris sil-
vestris Schreber, and H. apri (GenBank: LC314791) iso-
lated from the Japenese boar, Sus scrofa leucomystax 
Temminck formed a polytomy at the base of clade A. 
In clade B, H. luiperdjie n. sp. clustered with sequences 
isolated from H. felis in domestic cats from Spain (Gen-
Bank: AY620232; AY628681), a bengal tiger, P. tigris tigris 
(GenBank: HQ829445) from India, and H. felis amplified 
from a tick Rhipicephalus sanguineus (Latreille) that was 
collected from an Asiatic lion Panthera leo persica (Gen-
Bank: KY056823). Clade C was a monophyltic clade of H. 
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canis and species of Hepatozoon isolated from various 
canid hosts. In clade D, H. martis isolated from the Euro-
pean badger Meles meles (L.) and the European pine mar-
ten Martes martes (L.), formed a sister group to H. ursi 
isolated from the Japanese black bear Ursus thibetanus 

japonicus Schlegel and the sloth bear Melursus ursinus 
(Shaw). Clade E comprised H. americanum, isolated from 
domestic dogs, Canis familiaris L. and an unnamed spe-
cies of Hepatozoon in crab-eating foxes Dusicyon thous 
azarae (L.).
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Discussion
Since the late 1960’s, the African leopard has been a 
favoured research subject of ethologists and ecologists. 
However, research on haematozoans of large carnivores 
is sparse and often occurs as non-specific reports, and 
according to Peirce et al. [6] researchers often automati-
cally identify species of Hepatozoon in African carni-
vores as H. canis or H. felis. According to Baneth et  al. 
[19], most studies on hepatozoonosis have emphasized 
the detection of the parasite, with little attention given 
to other aspects such as transmission and epidemiology. 
It is therefore not unexpected that the scant research on 
health aspects of African leopards left gaps in knowledge 
of especially their haemoparasites. Our study addressed 
these gaps and confirmed co-infection of two morpho-
logically and genetically distinct Hepatozoon species 
in wild and captive African leopards in various areas 
throughout South Africa, both in male and female hosts.

No leopards sampled during our study displayed any 
clinical symptoms associated with hepatozoonosis, con-
firming similar reports by authors such as Brocklesby & 
Vidler [62], Averbeck et al. [22] and East et al. [25]. Preva-
lence of Hepatozoon varies between hosts and regions. 
The overall prevalence of hepatozoonosis recorded in 
this study was 56%, which is similar to that reported in 
Iriomote cats Prionailurus bengalensis iriomotensis from 
Japan (56.7%) [55], spotted hyenas Crocuta crocuta (Erx-
leben) from Zambia (56%) [28], and captive Asiatic lions 
P. l. persica from India (55.56%) [11]. Prevalence found 
during our study was slightly higher than the prevalence 
of unknown species of Hepatozoon reported from Indian 
leopards P. p. fusca (50%) [11] and much higher than that 
of African wild dogs Lycaon pictus (Temminck) in South 
Africa (0.7%) [31]. The prevalence of H. luiperdjie n. sp. 
(50%) was similar to that of an unknown species of Hepa-
tozoon reported from Indian leopards P. p. fusca in India 
(50%) [11], and it was lower than the prevalence of H. 
ingwe n. sp. (44%). The prevalence of both new species 
described in this study was higher in males than females, 
with 63% of males infected with H. luiperdjie n. sp. and 
50% of males infected with H. ingwe n. sp., and 38% of 
females infected with H. luiperdjie n. sp. and H. ingwe n. 
sp., respectively.

The two new haemogregarines had dissimilar effects 
on their respective host cells. Hepatozoon luiperdjie n. sp. 
caused enlargement of neutrophil cells and their nuclei 
and H. ingwe n. sp. reduced the size of lymphocytes 
and condensed their nuclei. Although Baneth et  al. [19] 
reported on a species of Hepatozoon that infects both 
neutrophils and lymphocytes, our study showed that 
co-infecting species of Hepatozoon can inhabit different 
types of leukocytes, with different effects and morpho-
logical characteristics of their gamont stages.

It is evident based on morphological and molecular 
data that H. luiperdjie n. sp. and H. ingwe n. sp. are dis-
tinct species. These species are also distantly related to H. 
felis (GenBank: AY628681) based on 18S rDNA sequence 
comparisons, isolated by Criado-Fornelio et al. [50] from 
domestic cats from Spain. The H. felis isolates from Spain 
[50] are widely regarded as the representative H. felis iso-
lates to be used for comparison [25, 55, 60]. Thus, based 
on the phylogenetic relationships and comparisons of H. 
felis and H. felis-like species of Hepatozoon, the identity 
of the Hepatozoon infecting large carnivores, currently 
identified as H. felis by Pawar et  al. [11] is questioned. 
Therefore, based on these genetic distinctions, as well 
as morphological characteristics and effect on host cells, 
the two haemogregarines described here were deemed 
to be two different species and new to science. The phy-
logenetic results from our study showed H. luiperdjie n. 
sp. and H. ingwe n. sp. as distinct species as compared to 
the currently recognised species of Hepatozoon infect-
ing large mammal hosts, i.e. H. americanum, H. apri, 
H. canis, H. felis, H. martis, H. silvestris and H. ursi. We 
therefore suggest that these haemogregarines may need 
to be re-classified based on morphological, morphomet-
ric and molecular analysis.

Prior to our study, only H. felis, H. canis and several 
unknown species of Hepatozoon have been reported 
from African carnivores [6, 8, 10, 22, 24, 28, 31, 57, 64, 
65], but this study confirmed a mixed population of two 
genetically distinct haemogregarines from both captive 
and wild leopards, across males and females and from 
leopards representative from three core populations as 
identified by Daly et al. [36]. The topology of our BI tree 
confirmed the suggestion of Hodžić et al. [20], that H. 
felis should be viewed as a species complex.

Conclusions
As shown in this study, morphology and the effect on 
host cells are important parameters that should be 
taken into account when identifying species of Hepa-
tozoon. By using different techniques of identification, 
a better understanding of the parasite and its relation 
to its host may become possible. Thus, Hepatozoon spe-
cies identified as either H. felis or H. canis based on 
the host parasitized should be re-evaluated using both 
morphological and molecular characteristics, as well as 
the type of and effect on the host cells. The value of the 
results from our study, in addition to describing two 
new haemogregarine species, is that we present results 
obtained from live animals in the wild. It is important 
to identify these parasites to species level in order to 
better understand potential zoonotic effects on differ-
ent host species, and to further investigate the possible 
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transfer of haemogregarines from wild to domestic ani-
mals. In addition, this paper provides valuable criteria 
to be considered when describing Hepatozoon infec-
tions from wild carnivores. Possible future work on 
these haemogregarines should include in depth inves-
tigations on the life cycles and vectors of these species.
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et al. Hemolivia and Hepatozoon: haemogregarines with tangled evolu-
tionary relationships. Protist. 2014;165:688–700.

	80.	 Haklová-Kočíková B, Hižňanová A, Majláth I, Račka K, Harris DJ, Földvári 
G, et al. Morphological and molecular characterization of Karyolysus—a 
neglected but common parasite infecting some European lizards. Parasit 
Vectors. 2014;7:555.

	81.	 Maia JP, Crottini A, Harris DJ. Microscopic and molecular characterization 
of Hepatozoon domerguei (Apicomplexa) and Foleyella furcata (Nema-
toda) in wild endemic reptiles from Madagascar. Parasite. 2014;21:47.

	82.	 Dvořáková N, Kvičerová J, Hostovský M, Široký P. Haemogregarines of 
freshwater turtles from Southeast Asia with a description of Haemogre-
garina sacaliae sp. n. and a redescription of Haemogregarina pellegrini 
Laveran and Pettit, 1910. Parasitology. 2015;142:816–26.

	83.	 Karadjian G, Chavatte JM, Landau I. Systematic revision of the adeleid 
haemogregarines, with creation of Bartazoon n. g., reassignment of 
Hepatozoon argantis Garnham, 1954 to Hemolivia, and molecular data on 
Hemolivia stellata. Parasite. 2015;22:31.

	84.	 Barandika JF, Espí A, Oporto B, Del Cero A, Barral M, Povedano I, et al. 
Occurrence and genetic diversity of piroplasms and other apicomplexa 
in wild carnivores. Parasitology. 2016;2:1–7.

	85.	 Cook CA, Netherlands EC, Smit NJ. Redescription, molecular characteri-
sation and taxonomic re-evaluation of a unique African monitor lizard 
haemogregarine Karyolysus paradoxa (Dias, 1954) n. comb. (Karyolysidae). 
Parasit Vectors. 2016;9:347.

	86.	 Bhusri B, Sariya L, Mongkolphan C, Suksai P, Kaewchot S, Changbunjong T. 
Molecular characterization of Hepatozoon felis in Rhipicephalus sanguineus 
ticks infested on captive lions (Panthera leo). J Parasit Dis. 2017;41:903–7.

	87.	 Yamamoto M, Tokiwa T, Tobiume M, Akamatsu S, Matsuo K, Moribe J, et al. 
Hepatozoon apri n. sp. (Adeleorina: Hepatozoidae) from the Japanese wild 
boar Sus scrofa leucomystax (Mammalia: Cetartiodactyla). Int J Parasitol 
Parasites Wildl. 2017;6:354–60.
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