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Abstract 

Background:  It is hypothesised that being a blood-feeding ectoparasite, Argulus foliaceus (Linnaeus, 1758), uses 
similar mechanisms for digestion and host immune evasion to those used by other haematophagous ecdysozoa, 
including caligid copepods (e.g. sea louse). We recently described and characterised glands associated with the 
feeding appendages of A. foliaceus using histological techniques. The work described in the present study is the first 
undertaken with the objective of identifying and partially characterising the components secreted from these glands 
using a proteomic approach.

Methods:  Argulus foliaceus parasites were sampled from the skin of rainbow trout (Oncorhynchus mykiss), from Loch 
Fad on the Isle of Bute, Scotland, UK. The proteins from A. foliaceus secretory/excretory products (SEPs) were collected 
from the supernatant of artificial freshwater conditioned with active adult parasites (n = 5–9 per ml; n = 560 total). Pro-
teins within the SEPs were identified and characterised using LC-ESI-MS/MS analysis. Data are available via ProteomeX-
change with identifier PXD016226.

Results:  Data mining of a protein database translated from an A. foliaceus dataset using ProteinScape allowed identi-
fication of 27 predicted protein sequences from the A. foliaceus SEPs, each protein matching the criteria of 2 peptides 
with at least 4 contiguous amino acids. Nine proteins had no matching sequence through OmicsBox (Blast2GO) 
analysis searches suggesting that Argulus spp. may additionally have unique proteins present in their SEPs. SignalP 
5.0 software, identified 13 proteins with a signal sequence suggestive of signal peptides and supportive of secreted 
proteins being identified. Notably, the functional characteristics of identified A. foliaceus proteins/domains have also 
been described from the salivary glands and saliva of other blood-feeding arthropods such as ticks. Identified proteins 
included: transporters, peroxidases, metalloproteases, proteases and serine protease inhibitors which are known to 
play roles in parasite immune evasion/induction (e.g. astacin), immunomodulation (e.g. serpin) and digestion (e.g. 
trypsin).
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Background
Argulus foliaceus (Linnaeus, 1758) is a member of the 
branchiuran family Argulidae and has a worldwide distri-
bution [1–3]. In the UK, this parasitic arthropod causes 
the condition argulosis, which has economic impacts for 
both aquaculture and sports fishing industries [4] and 
affects wild and cultured fish populations [5, 6].

Argulus spp. attach to their hosts for extended peri-
ods using the first maxillae, which form hooks as larvae 
but are modified into suction discs as adults. It has been 
hypothesised that to enable long term host contact and 
feeding, Argulus spp., like other ectoparasitic arthropods 
such as ticks and salmon lice (Lepeophtheirus salmonis 
(Krøyer, 1837)), must secrete a range of pharmacologi-
cally active components. These components have been 
suggested to be produced in the parasite’s spinal, probos-
cis and labial glands and to be delivered through the pre-
oral spine and the mouth tube to facilitate blood-feeding 
[7, 8]. Argulus spp. have been reported to feed on blood 
[9–11], mucus [12] and host skin [13] and thus have 
a presumed requirement to modulate host immunity. 
Pharmacologically active substances delivered in para-
site secretions aid in modulating such defence mecha-
nisms including those associated with pain, haemostasis, 
inflammation, complement activation and tissue repair 
[14–19]. However, to date there are limited genomic 
resources available for detailed investigation of this para-
site. Furthermore, little formal data have been collected 
on either the composition or function of Argulus spp. 
secreted proteins or other active components [20].

During blood-feeding, other haematophagous arthro-
pods inject the host with salivary products rich in diges-
tive enzymes and other pharmacologically active proteins 
that have anti-haemostatic, anti-inflammatory and 
immunomodulatory properties. These salivary products 
help in counteracting the host immune response and 
wound recovery and hence facilitate feeding [21–28]. 
Recently, proteomics-based studies have contributed 
considerably to the identification of proteins from the 
salivary glands of a number of haematophagous insects 
including different species of mosquitoes i.e. Anoph-
eles stephensi Liston, 1901, A. campestris-like, Aedes 
aegypti (Linnaeus in Hasselquist, 1762) and Culex pipiens 
quinquefasciatus Say, 1823. These studies have provided 

data relating to the functional roles of these proteins, and 
have facilitated their molecular and biological characteri-
sation [21]. Recent transcriptomic and proteomic stud-
ies of salivary glands from different species of ticks have 
similarly identified a diverse range of active molecules/
proteins that modify the hosts’ physiology [29–31]. Given 
the success of these studies in identifying active compo-
nents of the saliva of other haematophagous arthropods, 
a proteomics approach may prove similarly productive to 
decipher the composition and role of A. foliaceus SEPs.

In two earlier studies, western blots of whole body 
extracts of A. siamensis (Wilson, 1926) [32] and A. folia-
ceus [33] revealed the presence of a number of immuno-
dominant polypeptides recognised by immune rainbow 
trout (Oncorhynchus mykiss (Walbaum, 1792)) and rab-
bit serum. Notably, and despite phylogenetic distance, 
antigenic cross-reactivity between A. foliaceus and para-
sitic caligid copepod (L. salmonis and Caligus elongatus 
(von Nordmann, 1832)) antigens was demonstrated using 
serum antibodies raised against A. foliaceus in rainbow 
trout [20]. Both caligid sea lice and branchiuran fresh-
water lice feed on the fish epithelium, mucus and blood 
to some degree. To allow this, sea lice SEPs comprise a 
number of immunomodulatory proteins [34, 35] includ-
ing metallopeptidases, serine proteinases and cysteine 
proteinases; previously identified in tick saliva [36]. Sea 
lice SEPs also contain anti-oxidant proteins identified in 
helminths [37], and serine endopeptidases, e.g. trypsins, 
identified in flies [38]. Whether the mechanisms involved 
in parasitism are similar between sea lice and other 
arthropods parasitising fish has yet to be established.

From the foregoing, the aim of the present study was 
to identify and characterise protein components of the 
SEPs produced by A. foliaceus. Characterisation of these 
proteins is key to establishing the biological function of 
branchiuran/A. foliaceus SEPs and can assist in identify-
ing potential vaccine candidates or drug targets for the 
future development of more sustainable argulosis con-
trol strategies. To this end, proteomic data generated by 
LC-ESI-MS/MS were searched against a bespoke protein 
database assembled using proteins translated from an A. 
foliaceus transcriptomic dataset (submitted to the EBI 
with a project number PRJEB34947) and likely biological 
roles for discovered proteins ascribed.

Conclusions:  To our knowledge, the present study represents the first proteomic analysis undertaken for SEPs from 
any branchiuran fish louse. Here we reveal possible functional roles of A. foliaceus SEPs in digestion and immunomod-
ulation, with a number of protein families shared with other haematophagous ectoparasites. A number of apparently 
unique secreted proteins were identified compared to other haematophagous ecdysozoa.

Keywords:  Secretions, Immunomodulation, Fish lice, Argulus, Branchiura
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Methods
Sample collection and incubation in artificial freshwater
Adult argulids were collected directly from fish hosts, 
rainbow trout, from Loch Fad on the Isle of Bute, Scot-
land, UK. A total of 560 adult male and female parasites 
were used. Between five and nine parasites (depending on 
the parasite sizes) were placed in 1.5 ml sterile Eppendorf 
tubes containing 1  ml of artificial freshwater, prepared 
as described by Klüttgen et al. [39]. Artificial freshwater 
without parasites was used as a negative control (50 × 1.5 
ml sterile tubes of 1 ml of artificial freshwater). All the 
tubes were incubated at 10 °C overnight (18 h). The fol-
lowing day all parasites were alive and active and water 
samples expected to contain SEPs from A. foliaceus 
were pooled into 2 × 50  ml sterile Falcon tubes and the 
negative controls pooled into an additional 50 ml sterile 
tube. These samples and the control were rapidly chilled 
to − 70  °C and maintained frozen until used for sodium 
dodecyl sulphate-polyacrylamide gel electrophoresis 
(SDS-PAGE).

SDS PAGE
Secretion/excretion samples and the negative control 
were thawed on ice and centrifuged at 4000×g for 30 min 
to concentrate proteins of > 3  kDa through 3  kDa cut-
off centrifugal filters (Amicon® Ultra, Millipore, Cork, 
Ireland) prior to sample denaturation. The protein con-
tent of concentrated SEPs was measured using a Pierce 
Bicinchoninic acid (BCA) protein assay kit (Thermo 
Fisher Scientific, USA) according to the manufacturer’s 
instructions.

A dilution series of A. foliaceus SEP samples for SDS-
PAGE analysis [40] was set up for different stains, one 
for silver stain and one for Coomassie stain. The concen-
trated sample (1:1) was combined with 2× SDS sample 
buffer (SDS reducing buffer; 2.5 ml 0.5 M Tris-HCL pH 
6.8, 2  ml glycerol, 4  ml 10% SDS, 0.31  g dithiothreitol 
(DTT), 2  mg bromophenol blue and DW added to give 
10  ml). Sequential 2-fold dilutions of 1:4 and 1:8 dilu-
tions were then made with RNAse-free water. The sam-
ples were kept on ice then denatured at 100 °C in boiling 
water for 5 min then centrifuged (Micsolite, Thermo IEC) 
for 2 min at 16000×g. Five µl of 2–250 kDa mixed range 
pre-stained molecular weight markers (Precision Plus 
Protein™ Standards- Bio-Rad, Hemel Hempstead, UK) 
were used to estimate the size of proteins and loaded into 
two Precast 12-well Polyacrylamide gels (12% Mini-PRO-
TEAN® TGX™ Precast Protein Gels, Bio-Rad) followed 
by 15 µl of the samples in each well in descending order 
of sample concentration. The gels were run at 130 V for 
75 min followed by washing with DDW for 5 min. After 
electrophoresis, fixed proteins were visualised with QC 
colloidal Coomassie stain (Bio-Rad) and silver stain using 

a silver staining kit (ProteoSilver ™-PROTSIL1-1KT, St. 
Louis, USA). The gel was scanned using a benchtop scan-
ner (EPSON expression 1680 Pro) and kept at 4  °C in a 
sealed polyethylene bag with DDW until sent for gel and 
liquid chromatography electrospray ionisation tandem 
mass spectrometry (GeLC-ESI-MS/MS). The lane of the 
1:2 sample dilution was selected for MS/MS analysis con-
ducted at the Moredun Research Institute, Midlothian, 
UK.

LC‑ESI‑MS/MS
The protein identifications were performed at The More-
dun Proteomics Facility, Moredun Research Institute 
(Scotland, UK). The gel lane was excised and sliced hori-
zontally from top to bottom to yield a series of 24 equal 
gel slices of 2.5 mm depth. Each of the resulting gel slices 
was then subjected to standard in-gel destaining, reduc-
tion, alkylation and trypsinolysis procedures [41]. Digests 
were transferred to low-protein-binding HPLC sample 
vials immediately prior to LC-ESI-MS/MS analysis. Liq-
uid chromatography was performed using an Ultimate 
3000 Nano-HPLC system (Dionex, Leeds, England) 
comprising a WPS-3000 well-plate micro auto sampler, 
an FLM-3000 flow manager and column compartment, 
a UVD-3000 UV detector, an LPG-3600 dual-gradient 
micropump and an SRD-3600 solvent rack controlled 
by Chromeleon™ chromatography software (Dionex). A 
micro-pump flow rate of 246 µl min−1 was used in com-
bination with a cap-flow splitter cartridge, affording a 
1/82 flow split and a final flow rate of 3 µl min−1 through 
a 5  cm × 200  µm ID monolithic reversed phase column 
(Dionex) maintained at 50  °C. Samples of 4  µl were 
applied to the column by direct injection. Peptides were 
eluted by the application of 15 min linear gradient from 
8–45% solvent B (80% acetonitrile, 0.1% (v/v) formic acid) 
and directed through a 3 nl UV detector flow cell. LC was 
interfaced directly with a 3-D high capacity ion trap mass 
spectrometer (amaZon-ETD, Bruker Daltonics, Bremen, 
Germany) via a low-volume (50  µl  min−1 maximum) 
stainless steel nebuliser (cat. no. G1946-20260; Agilent, 
Santa Clara, CA, USA) and ESI. Parameters for tandem 
MS analysis were based on those described previously 
[42].

Database mining
The MS/MS data, formatted as Mascot Generic Format 
(mgf), was imported into ProteinScape™ V3.1 (Bruker 
Daltonics) proteomics data analysis software for down-
stream mining of a custom Argulus database. This cus-
tom database was constructed using translated proteins 
from the transcriptome dataset of Argulus foliaceus (in 
the absence of a full Argulus genome sequence) and com-
prised 60,257 protein sequences in total (the sequence 
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data for the transcriptome were submitted to the EBI 
with a project number PRJEB34947 under the title “De 
novo transcriptome sequencing of branchiuran fish lice, 
Argulus foliaceus (Linnaeus, 1758) and Argulus coregoni 
(Thorell, 1865)”). De novo assembly was performed on 
the cleaned RNA-seq raw data using Trinity v2.1.1 [43]. 
The selection of the Trinity tool for final assembly was 
decided upon following a trial with other assembler soft-
ware such as Velvet and ABySS whereby the use of Trin-
ity was found to give higher numbers of more consistent 
reads. All the sample reads were merged into a single 
dataset for each species and the assembly was run. Then 
Transdecoder v2.0.1 [44] was used to find the coding 
region within the transcripts. Identification of the coding 
region transcripts gave open reading frames (ORFs) and 
amino acid sequences, to prepare the assembled dataset 
for annotation. Annotation was achieved by (i) BLAST 
v2.2.31 software [45, 46] using the uniprot/trembl-
invertebrates database as query [47]; and (ii) Annotation 
HMMER v3.1b2 [48] using the Pfam A v29.0 as query 
[49].

Database searches were conducted utilising the Mas-
cot™ V2.5.1 (Matrix Science) search engine. Mascot 
search parameters were set in accordance with published 
guidelines [50] and to this end, fixed (carbamidomethyl 
“C”) and variable (oxidation “M” and deamidation “N, 
Q”) modifications were selected along with peptide (MS) 
and secondary fragmentation (MS/MS) mass tolerance 
values of 0.5 Da whilst allowing for a single 13C isotope. 
Protein identifications obtained from each of the 24 indi-
vidual gel slices were compiled using the “protein list 
compilation” feature within ProteinScape, which parses 
the data to remove redundancies. From the compiled 
protein lists individual identifications deemed significant 
by MASCOT (score > 35 which indicates P-value < 0.05) 
(Additional file  1: Table  S1) were inspected manually 
and considered significant only if (i) two peptides were 
matched for each protein; (ii) peptides were represented 
by a sequence coverage of > 5%; and (iii) each matched 
peptide contained an unbroken “b” or “y” ion series rep-
resented by a minimum of four contiguous amino acid 
residues. The compilation of all gel slices and manual val-
idation left a list of 27 proteins significantly identified by 
LC-ESI-MS/MS analysis from the custom transcriptome 
derived Argulus database.

Functional analysis
To assign identity and function to the sequences of the 
proteins passing the criteria for significance follow-
ing LC-ESI-MS/MS, the sequences were then searched 
using OmicsBox/ (Blast2Go) analysis. Searches were 
performed using the whole NCBI Blast and InterProscan 
for Protein function assignment, and then sequences of 

the proteins were finally blasted using BLAST P against 
NCBI ‘Metazoan’ database to get accession numbers 
with the most reliable hits. Proteins were then assigned 
into functional groups by searching the InterProScan 
databases and Gene ontology databases. Annotations 
from both searches were then merged. The Gene Ontol-
ogy (GO) terms assigned to each protein were then used 
to construct pie charts based on biological process, cel-
lular component and molecular function. The number 
of proteins and percentage were included with each GO 
term. Separate Pfam searches were conducted and Sig-
nalP 5.0 (http://www.cbs.dtu.dk/servi​ces/Signa​lP/) was 
used to predict the presence and location of signal pep-
tide cleavage sites in amino acid sequences, which could 
inform of any associated secretory property of the pro-
tein. The mass spectrometry proteomics data have been 
deposited to the ProteomeXchange Consortium via the 
PRIDE partner repository with the dataset identifier 
PXD016226.

Results
Protein profiles in secretory/excretory products (SEPs) 
by SDS PAGE
The protein content of harvested A. foliaceus SEPs was 
approximately 410 μg ml−1. SDS-PAGE analysis showed 
10 intense bands of proteins with molecular masses in 
the range of 3–45  kDa. The use of three different dilu-
tions of the secretions indicated a dilution effect in the 
intensity and number of bands obtained. The lack of 
bands observed from the sterilised artificial water (nega-
tive control) confirmed that the protein bands resulted 
from A. foliaceus parasites, either as secretions or excre-
tory products, i.e. minimal environmental contamination 
(Fig. 1). Notably, there were 4 intense bands even in the 
most diluted sample; 1:8, with approximate molecular 
weights of 5, 25, 28 and 46 kDa, and an intense band was 
seen in the more dilute samples at around 100 kDa com-
pared to the 1:2 diluted sample (Fig. 1b).

LC‑ESI‑MS/MS analysis
SEPs were collected from 560 live and active A. foliaceus 
parasites of mixed sex adult life stages for GeLC-MS/MS 
analysis and protein identifications were confirmed by 
positive matches (Additional file 2: Table S2) with tran-
script sequences (unpublished data). From the compiled 
identified protein lists obtained from pooled A. foliaceus 
SEPs, 27 passed the specified “stringent” quality criteria 
and were associated with 27 annotated proteins (Tables 1, 
2). To assign functional identity to these proteins, the 
amino acid sequences were searched against OmicsBox 
(Blast2GO) database and in order to find homologous 
metazoan proteins, the NCBI BLASTP program was used 
(Tables 1, 2) and the e-values of the proteins shown in the 

http://www.cbs.dtu.dk/services/SignalP/
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Table  1 were from the OmicsBox output. The InterPro-
Scan search assigned functional identity to 18 proteins, 
listed in Table  1, which shows Pfam functional descrip-
tions, suggested functions from other arthropod studies 
and signal peptide predictions. The number of peptides, 
Signal P, molecular weight of proteins and percentage of 
sequence coverage are also listed (Table 1).

From the initial list 9 proteins did not return any 
matches from OmicsBox (Blast2GO) and only 6 out of 
these 9 showed significant hits when blasted against 
Metazoa in NCBI BLASTP (Table 2).

Signal P analysis showed that out of these 27 pro-
teins 13 were found to have a signal peptide sequence 
(Tables 1, 2).

Assigned function of SE products
Proteins identified from the SEPs were assigned GO 
terms within the biological process, cellular component 
and molecular function domains (Fig. 2). Proteins associ-
ated with molecular function accounted for 8% catalytic 
activity and 50% hydrolase activity. The most represented 
proteins in the biological process category (Fig. 2b) were 
assigned to oxidation-reduction processes. Cellular com-
ponent represented only one GO term (with 2 entries), 
assigned to cellular anatomical entity (Fig.  2c) indicat-
ing the difficulty in characterising parasite SEPs in the 
absence of an annotated genome. OmicsBOx data (Addi-
tional file 3: Table S3) summarised the GO, InterProScan 

domain, families and IDs distributions data that resulted 
from OmicsBox hits of SE products, which showed func-
tional data of the 27 identified proteins. This table repre-
sents the range of nominal roles assigned to the group of 
proteins found in SEPs of A. foliaceus.

Discussion
Identifying the SEPs of A. foliaceus is important for 
determining how the parasite establishes host attach-
ment and facilitates blood-feeding, as the components 
of ectoparasite secretions are known to play functional 
roles in such interactions [51–53]. In this regard, the 
secretions of Argulus spp. resemble those in the saliva 
of ticks and other haematophagous arthropods, contain-
ing bioactive molecules released to maintain a successful 
feeding site. Using LC-ESI-MS/MS, proteins such as ser-
pin, trypsin and fascilin have been previously associated 
with this role in ticks (e.g. Ornithodoros moubata [25]), 
mosquitoes (e.g. Anopheles culicifacies [54]) and sea lice 
(e.g. L. salmonis [55]) saliva/salivary glands and SEPs. Sea 
lice trypsins, vitellogenin-like proteins and proteins with 
immunomodulatory functions or host adhesion proper-
ties have similarly been studied with suggestions of their 
potential as vaccine antigen candidates [56–58]. In order 
to feed, Argulus spp. doubtless needs to modulate host 
immune defence mechanisms (haemostasis and immu-
nity) and inhibit host tissue repair responses in similar 

Fig. 1  SDS-PAGE of A. foliaceus secretions. Secretory/excretory products (SEPs) were collected and proteins separated on 12% SDS-PAGE gels and 
stained with QC colloidal Coomassie stain (a) and silver stain (b) to visualise the protein bands. Numbers on the left indicate the approximate 
molecular mass (MW; kDa) of the proteins within the most diluted sample. Ten distinct bands (arrows) were observed after staining the gels. 
Molecular mass (2–250 kDa) marker is shown in the middle between the two gels. Asterisk indicates the lane from the Coomassie stained gel that 
was selected for GeLC-MS/MS analysis. No bands were seen in the water control
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ways to other haematophagous arthropods such as ticks 
[59–62].

SDS-PAGE of the SEPs of A. foliaceus revealed a range 
of different protein bands between 3–100  kDa. Ruane 
et  al. [33] showed similar, but more numerous, protein 
profile ranges from whole A. foliaceus homogenates, 
with proteins of molecular weights between 15–100 kDa; 
however, the authors suggested that the absence of higher 
molecular weight proteins may be due to the inability of 
the Coomassie stain to detect these potentially low abun-
dance proteins in their study. From A. siamensis homoge-
nates [32], protein bands between 16.22–130.55  kDa 
were detected by SDS-PAGE with intensely stained bands 
of > 66 kDa. In contrast to these previous studies, analysis 
in the present study was limited to A. foliaceus SEPs run 
under denaturing conditions, confirming the presence of 
secreted proteins, which were detectable in the most con-
centrated sample preparation (1:2 dilution) by Coomas-
sie stain, mostly in the lower molecular weight range of 
5–46 kDa. No proteomic studies on the secretions of any 
branchiuran including Argulus spp., had previously been 
conducted prior to this study, especially since genomic 
resources are limited. Therefore, in order to identify the 
major proteins of A. foliaceus SEPs, an integrated tran-
scriptomic (manuscript in preparation) and proteomic 
approach was used. The (LC-ESI-MS/MS) data combined 
with the A. foliaceus transcriptome, used as a reference 
database, resulted in the identification of a number of dif-
ferent proteins nominally secreted by the parasite.

Overall, the analysis of the SEPs sample identified 27 
proteins, of which only 18 were recognised by OmicsBox 
(Blast2GO) analysis and the other 9 protein sequences 
could not be recognised, and therefore could not be 
assigned a role at the present time. This is far fewer 
than the number of proteins identified from other para-
site secretory products (e.g. 135 in the saliva of the hard 
tick Haemaphysalis longicornis [36] or 187 in the SEPs 
of L. salmonis [55]. Parasite SEP protein yields can be 
enhanced by inducing salivation or stimulation of the 
salivary glands using dopamine and pilocarpine, but with 
varying success [34, 36, 51, 55]. The overall number of 
identified proteins would also be anticipated to increase 
when a fully annotated genome becomes available. Some 
of the proteins that were identified are highly abundant 
in arthropods, particularly ecdysozoans, for example 
vitellogenins (vitellogenin-N) (e.g. in L. salmonis [63]) 
and haemocyanins (e.g. in crabs (Cancer magister) [64]) 
thus may simply be residual. Nonetheless, many of these 
proteins have previously been suggested to play a role 
in host infection in other haematophagous arthropods. 
These include metallopeptidases such as Peptidase_M14 
and Astacin (Peptidase family M12A), proteases such 
as trypsin; and serpin; and other protein domains such 

as fasciclin and VIT (Vault protein inter-alpha-trypsin 
domain). Of the 27 identified proteins, 13 proteins car-
ried a predicted signal sequence using Signal P suggesting 
them to be extracellular proteins and discharged within 
the secretions of the parasites. Identification of a number 
of signal peptides, short peptides (~ 16–30 aa) that direct 
newly synthesized proteins towards the secretory path-
way [65], suggests that some of the proteins identified in 
the present study are secreted products, which notably 
included some vitellogenins and haemocyanins (Table 1). 
Such signal peptides target a protein for translocation 
across the endoplasmic reticulum (ER) membrane in 
eukaryotes [66]. The lack of a predicted signal peptide for 
other proteins discovered in this study may not indicate 
that they were not secreted but may simply result from 
the partial nature of the protein sequences, which were 
insufficient for prediction by Signal P; however, further 
studies need to confirm this.

This study identified a number of putative novel pro-
teins (i.e. with no similarity in metazoan databases) from 
A. foliaceus secretions. Although the biological functions 
of these secreted proteins are unknown, they may have 
properties controlling physiological functions during 
Argulus attachment. As homologues for some of these 
proteins could not be found in the OmicsBox (Blast2GO) 
and NCBI databases, this could suggest that Argulus may 
have other unique proteins compared to other well char-
acterised haematophagous ecdysozoa, such as insects, 
ticks and nematodes, for potentially modulating or evad-
ing their host’s immune system. However, consider-
ing the low SC% values and high e-values of a number 
of these proteins, their functional role is questionable 
at the current time. Other proteins, however, were ana-
lysed where functional identification was successful in 
this study and these have also previously been described 
in other haematophagous arthropods such as in tick sali-
vary proteomes [36, 67, 68]. The role of this latter group 
of proteins from A. foliaceus secretions may therefore 
be similar to that played by their homologues in other 
ectoparasites during host-parasite interactions and sup-
ports their importance for A. foliaceus in feeding, diges-
tion and evading host immune defences.

Vitellogenin is a lipoprotein generally related to repro-
duction in arthropods; however, it has been shown that 
the production of this protein can be positively associ-
ated with the size of blood meals, as is the case in ticks, 
where vitellogenin binds to the derivative haem from 
the host to initiate the reproduction cycle [69–71]. This 
was supported by the findings of Galay et  al. [69] who 
showed that silencing of the secretory ferritin gene of the 
hard tick H. longicornis affected two vitellogenin genes. 
Moreover, Rosell-Davis & Coons [71] showed that onset 
of feeding initiates vitellogenin production.
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Recent proteomic analysis of L. salmonis SEPs found 
a vitellogenin-like protein unique to adult females [55]. 
Dalvin et al. [63] examining L. salmonis did not observe 
any transcription of this protein in the ovary but they 
did localise the presence of these proteins in the haemo-
lymph [63] indicating the protein is circulated through 
the louse and thus may have a role in reproductive pro-
cesses following feeding similar to ticks. Further studies 
to localise this protein in Argulus spp. need to be con-
ducted to give an indication of its reproductive or addi-
tional functional roles in this parasite.

Haemocyanin proteins in arthropods have been 
characterised as the main oxygen transporters in the 
haemolymph of many species [72]. In addition to their 
respiratory role, haemocyanin proteins are also involved 
in a range of other physiological processes including 
osmoregulation, protein storage and enzymatic activi-
ties [73, 74]. Destoumieux-Garzón et  al. [75] revealed 
the importance of this protein to crustacean immunity 
in terms of the production of antifungal (poly) peptides. 
Recently, Pinnow et  al. [72] identified two haemocya-
nin subunits from A. foliaceus, which were confirmed in 
this study, including two haemocyanin protein domains, 
hemocyanin subunit type 1 precursor and hemocya-
nin A chain. Although the production of haemocyanins 
is normal for respiration, Pinnow et  al. [72] described 
haemocyanin 2 as a storage protein. Although apparently 
secreted proteins, i.e. possessing signal peptides, it should 
be noted, however, that both vitellogenin and haemo-
cyanin could also be present as a result of damage to 
individual specimens and subsequent leakage of haemo-
lymph. Therefore, the potential secretory roles of vitello-
genin and haemocyanin proteins in Argulus, should they 
indeed be secreted, needs further investigation.

Metalloendopeptidase astacin and carboxypeptidase 
M14 identified in A. foliaceus SEPs have also been identi-
fied in the saliva of the haematophagous Mediterranean 

colubrariid (vampire) snail Colubraria reticulata which 
feeds on the blood of fishes [76] and also in L. salmonis 
[77]. Members of the astacin family have been considered 
to maintain blood flow to the lesion site through hydroly-
sis of fibrinogen and fibronectin [78, 79] leading to local 
haemorrhage [80]. It has been hypothesised that astacins 
have digestive and anticoagulation roles, also inactivating 
prey/host vasoactive peptides [76, 81] to maintain host-
parasite relationships [82–85]. However, sea lice astacin 
is expressed in tegument glands associated with probable 
roles in lubrication of integument as opposed to feed-
ing [86]. Therefore, the presence of these proteases in 
Argulus SEPs may be associated with functional roles in 
haematophagy, but as the feeding activity is similar to L. 
salmonis, they may also be involved in preventing drag 
when infecting moving fish.

Trypsins are proteases that have been found overex-
pressed in Atlantic salmon-fed L. salmonis lice (compared 
to lice feeding on less susceptible hosts) [77] and were 
also identified in A. foliaceus SEPs. Trypsins are secretory 
endopeptidases within the serine protease superfamily, 
known to facilitate food digestion, host penetration and 
to help in maintaining the host-parasite relationship [84]. 
They can also act as anticoagulating proteins [35, 76, 87, 
88]. Although proteases have diverse biological functions 
within different tissues of blood-feeding arthropods [87], 
the detection of putative secreted trypsins in SEPs, veri-
fied by signal peptides, suggests that these trypsins have 
a vital role in A. foliaceus feeding processes and might 
play a role in parasite-host interactions. Trypsin-like 
serine proteases secreted in the salmon louse gut act as 
a general digestive protease [88, 89]. Trypsin-like pro-
teases have been detected in the sea lice species C. rog-
ercresseyi and L. salmonis and in their SEPs [35, 55, 77, 
90, 91]. In addition, trypsin-like proteases have also been 
detected in the skin mucus of Atlantic salmon infected 
with L. salmonis, and have been suggested to play a role 

Table 2  Proteins identified from A. foliaceus secretory/excretory products by mass spectrometric analysis that showed no hits in 
OmicsBox/Blast2GO and were blasted against Metazoa in NCBI BLASTP, signal P

Abbreviations: MW, molecular weight of protein; SC, sequence coverage; E-value, from the NCBI BlastP

Protein ID Protein length MW (kDa) SC (%) E-value (BlastP) NCBI ID Signal P

afol_3444.2p 192 20.7 40.1 No

afol_55421.1p 140 14.9 42.1 0.57 XP_008192422.1 Yes

afol_9654.1p 408 44.7 16.2 5.4 XP_027221531.1 Yes

afol_25364.1p 438 48.9 14.4 0.24 XP_029189514.1 No

afol_15401.2p 230 25.7 13 No

afol_2470.1p 111 11.7 17.1 0.006 XP_017135474.1 No

afol_50565.1p 388 43.8 10.6 Yes

afol_52850.1p 399 43.7 6 0.083 XP_023212714.1 Yes

afol_45298.1p 189 21.5 25.4 0.49 EEC08850.1 Yes
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in facilitating feeding and evasion of the host immune 
response [92]. Whether the trypsins detected here are 
derived from salivary glands of A. foliaceus or simply gut 
contents requires further work.

Serpins, serine proteinase inhibitors, have previously 
been found to be secreted in arthropod saliva at the 
feeding site in order to facilitate blood meal acquisi-
tion through counteracting host defence mechanisms 
[36]. Two protein domains of serpin were identified in 
A. foliaceus SEPs. Serpin-mediated modulation of host 
immune response is achieved in ticks by impairing the 
hosts homeostatic and inflammatory responses, platelet 
aggregation and anticoagulation activity [24, 26, 54, 60, 
93–98]. Salivary serpin 6 in the lone star tick, Ambly-
omma americanum, has been shown to have an inhibi-
tory role in blood clotting and complement activation 
[60]. Moreover, Ixodes scapularis salivary serpin was 
found to inhibit the action of thrombin, platelet aggrega-
tion and trypsin at the tick-host interface [54]. Such ser-
pins are likely to be inhibitors of pro-inflammatory and 
pro-coagulant proteases [99], such as Iris2, whereas ser-
pins in Ixodes ricinus have been shown to inhibit inflam-
mation by inhibiting cathepsin G and chymase [26]. Kim 
et  al. [100] concluded that serpin was involved in host 
defence mechanisms during feeding by the inhibition 

of host trypsin and trypsin-like proteases. Weakened 
inflammatory responses have been reported recently in 
more susceptible carp species infected by A. siamensis 
[101] and suppression of pro-inflammatory responses by 
L. salmonis on infected Atlantic salmon is considered to 
contribute significantly to greater salmonid host suscep-
tibility to salmon lice [102–104].

The presence of serpin in A. foliaceus secretions there-
fore implies a similar role in facilitating parasitism and 
modulating host immune responses in argulids. The 
observed presence of serpins by MS with a predicted 
MW of 51.4 kDa (afol_27409.2p; Table  1) is supported 
by SDS-PAGE of the SEPs sample, where an intense band 
was observed at 46.6 kDa. Similar to other blood-sucking 
arthropods these findings suggest that serpin in Argulus 
spp. may be one of the major components involved in 
evasion of the host defence mechanisms for ingestion of 
a successful blood meal. We recently used lectin-binding 
assays to characterise the A. foliaceus glands and have 
localised proteins with binding affinity to glycoaminogly-
cans (GAGs) to the spinal gland [7]. Serpins utilise GAGs 
for protease inhibition activity including modulation 
of coagulation [105] so it is likely that the spinal glands 
secretions are involved in A. foliaceus serpin activity.

Fasciclin protein domain from the A. foliaceus SEPs, 
also known as transforming growth factor-beta-induced 
protein [84], possessed a signal peptide. This protein has 
also been identified in the saliva of the argasid tick Orni-
thodoros moubata with the presence of signal peptides 
supporting a secretory nature [25], and salivary glands in 
the mosquito Anopheles culicifacies [106] and L. salmonis 
[77]. The fasciclin protein function was predicted to be 
associated with mediation of cell adhesion and signalling 
[106, 107], although its role in haematophagous arthro-
pods remains unclear.

VIT (Vault protein inter-alpha-trypsin protein) domain 
was detected in the SEPs of A. foliaceus with an associ-
ated signal peptide, albeit with a relatively low SC% of 
7.4 (Table 1). Interestingly, this protein domain has been 
identified recently, associated with von Willebrand factor 
type A protein domain, in the salivary subset of vampire 
snail C. reticulata (Mollusca: Gastropoda), feeding on 
fish blood. VIT has also been reported as the most over-
expressed salivary transcript of the feeding-related pro-
teins in the salivary glands of the parasitic snail [76]. This 
proteinase inhibitor was found, among several proteinase 
inhibitors, in the saliva of the hard tick H. longicornis, to 
be secreted into the feeding site to maintaining homeo-
stasis, thus facilitate blood meal acquisition [36]. Due to 
the presence of VIT with a signal peptide in A. foliaceus 
SEPs, a similar mode of action may exist to that of H. lon-
gicornis VIT, but further validation is required.

Fig. 2  GO distribution of the proteins identified from A. foliaceus 
secretory/excretory products
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In terms of molecular function, GO analysis was very 
restricted but revealed that the majority of the identified 
A. foliaceus proteins are nominally involved in catalytic 
activity acting on a protein (8%) and hydrolase activity 
(50%), and 17% in ion binding and oxireducatase activ-
ity, which were found also from L. salmonis adult SEPs 
[55]. Notably, in terms of biological function, oxidation-
reduction processes accounted for 100% of the A. folia-
ceus SEPs identified, which may have roles in protection 
against host-derived reactive oxygen species [55, 108]. 
Proteins that were detected amongst the A. foliaceus SEPs 
but for which no biological function could be assigned on 
account of the absence of homologues in the Pfam and 
NCBI databases, remain of potential interest as the basis 
for further study.

The most common SE proteins assigned to molecular 
function were catalase, peptidases, hydrolases, endo-
peptidases, serine type endopeptidases, metallopeptidases 
and oxidoreductase. These proteinases were observed in 
both adult stages of L. salmonis in the study conducted 
by Hamilton et al. [55] and were suggested to potentially 
facilitate host-parasite interactions. For instance, serine 
peptidases and serine type endopeptidases may be of key 
importance to the success of the pre-adult- salmon louse 
in evading the host immune system before going into the 
final stage in the parasite life-cycle [109]. Catalase and 
other proteins detected in the saliva from the tick H. lon-
gicornis are suggested to play a role in detoxifying gener-
ated oxidants during blood meal acquisition and/or host 
oxidants associated with inflammation [36].

Conclusions
To our knowledge, this study represents the first prot-
eomic analysis undertaken for SEPs from any branchi-
uran fish louse. Here we reveal possible functional roles 
of A. foliaceus SEPs in digestion and immunomodula-
tion, with a number of protein families shared with other 
haematophagous ectoparasites. A number of apparently 
unique secreted proteins were identified compared to 
other haematophagous ecdysozoa.
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