
Chali et al. Parasites Vectors          (2020) 13:120  
https://doi.org/10.1186/s13071-020-3998-2

RESEARCH

Comparison of infectivity of Plasmodium 
vivax to wild-caught and laboratory-adapted 
(colonized) Anopheles arabiensis mosquitoes 
in Ethiopia
Wakweya Chali1†, Temesgen Ashine1†, Elifaged Hailemeskel1,2,3†, Abrham Gashaw1, Temesgen Tafesse1, 
Kjerstin Lanke3, Endashaw Esayas1, Soriya Kedir4, Girma Shumie1, Sinknesh Wolde Behaksra1, John Bradley5, 
Delenasaw Yewhalaw6, Hassen Mamo2, Beyene Petros2, Chris Drakeley5, Endalamaw Gadisa1, Teun Bousema3,5 
and Fitsum G. Tadesse1,3,7* 

Abstract 

Background: Mosquito-feeding assays that assess transmission of Plasmodium from man-to-mosquito typically use 
laboratory mosquito colonies. The microbiome and genetic background of local mosquitoes may be different and 
influence Plasmodium transmission efficiency. In order to interpret transmission studies to the local epidemiology, it is 
therefore crucial to understand the relationship between infectivity in laboratory-adapted and local mosquitoes.

Methods: We assessed infectivity of Plasmodium vivax-infected patients from Adama, Ethiopia, using laboratory-
adapted (colony) and wild-caught (wild) mosquitoes raised from larval collections in paired feeding experiments. Feed-
ing assays used 4–6 day-old female Anopheles arabiensis mosquitoes after starvation for 12 h (colony) and 18 h (wild). 
Oocyst development was assessed microscopically 7 days post-feeding. Wild mosquitoes were identified morphologi-
cally and confirmed by genotyping. Asexual parasites and gametocytes were quantified in donor blood by microscopy.

Results: In 36 paired experiments (25 P. vivax infections and 11 co-infections with P. falciparum), feeding efficiency 
was higher in colony (median: 62.5%; interquartile range, IQR: 47.0–79.0%) compared to wild mosquitoes (median: 
27.8%; IQR: 17.0–38.0%; Z = 5.02; P < 0.001). Plasmodium vivax from infectious individuals (51.6%, 16/31) infected 
a median of 55.0% (IQR: 6.7–85.7%; range: 5.5–96.7%; n = 14) of the colony and 52.7% (IQR: 20.0–80.0%; range: 
3.2–95.0%; n = 14) of the wild mosquitoes. A strong association (ρ(16) = 0.819; P < 0.001) was observed between the 
proportion of infected wild and colony mosquitoes. A positive association was detected between microscopically 
detected gametocytes and the proportion of infected colony (ρ(31) = 0.452; P = 0.011) and wild (ρ(31) = 0.386; P = 
0.032) mosquitoes.
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Background
With the move towards malaria elimination and eradi-
cation, new tools and strategies to reduce onward 
transmission of Plasmodium infections, including trans-
mission-blocking interventions (TBI), are considered 
highly beneficial [1, 2]. An increasing number of drug- 
and vaccine-based TBI are in the pipeline [3] and will 
require monitoring tools for efficacy. Additionally, it is 
considered highly beneficial to characterize the human 
infectious reservoir for malaria in low endemic settings 
approaching elimination, to better target and monitor 
TBI [4, 5]. Both TBI evaluation and infectious reservoir 
characterization require robust tools to measure human 
infectivity to mosquitoes. Mosquito-feeding assays can 
directly assess Plasmodium transmission from man-to-
mosquitoes and play central role to estimate efficacy of 
TBI and the assessment of the infectious reservoir [6].

Mosquito-feeding assays allow mosquitoes to feed 
directly on skin of individuals (direct feeding) or on fresh 
human blood through an artificial membrane (mem-
brane-feeding) [7], after which mosquito midguts are 
examined for parasite developmental stages (oocysts), the 
definitive proof that the mosquito became infected [6, 8]. 
Mosquito-feeding experiments are logistically demand-
ing but increasingly used in field-based studies [5, 9–14]. 
Previous studies used mainly mosquitoes colonized in 
laboratories for several generations [5, 7, 9, 14–23]. Lab-
oratory-adapted (colony) mosquitoes offer significant 
advantage over wild-caught (wild) mosquitoes in terms 
of logistics, ease of maintenance, flexibility of scaling-up 
and reproducibility of experiments [24]. However, col-
ony mosquitoes may not fully reflect natural mosquito 
populations.

Maintenance of insects in artificial breeding condi-
tions favors accumulation of traits that favor survival in 
the new environment, resulting in a change in genetic 
make-up over generations [25]. Parasite-mosquito com-
binations and their susceptibility to malaria infection are 
regulated at multiple steps during the development of the 
parasites [26] and numerous factors may modulate this 
interaction. These factors range from mosquito genet-
ics [27, 28] and immune system [29] to parasite poly-
morphisms that allow evasion of the mosquito immune 
system [30]. Environmental factors such as midgut 
microbiota [31, 32], mosquito larval diet [33, 34], and 

temperature to support sporogony [35] are also impli-
cated. These findings emphasize that infectivity studies 
from colony mosquitoes might not represent the infec-
tivity in natural settings and therefore, assessment of the 
relative permissiveness of colony and wild mosquitoes 
could assist in the interpretation of mosquito-feeding 
assays to the local context. In this study, the relative per-
missiveness to Plasmodium vivax infection of colony and 
wild Anopheles arabiensis mosquitoes was assessed in 
paired experiments.

Methods
Study site, immature mosquito stages collection 
and rearing
Data was collected from September 2018 to February 
2019 in Adama, Ethiopia (formerly called Nazareth), a 
city located within the Great Rift Valley, with an aver-
age elevation of ~ 1624 meters above sea level. Extensive 
irrigation activities characterize the area surrounding 
Adama with an annual peak malaria transmission sea-
son occurring between September and November [5, 36]. 
Both P. falciparum and P. vivax are endemic; the latter 
contributes towards ~ 60% of the cases [5, 37].

Immature mosquito stages (larvae/pupae) were col-
lected by standard dipping method from potential breed-
ing sites located at ~ 35 km from the city, close to a hot 
spring resort (Sodere, 8°24′N, 39°23′E, at an altitude of 
1360 meters above sea level) [38]. The breeding habitat is 
located at a publicly accessible site where there are tem-
porary/permanent puddles made of rock pool or pools 
in a grassy area (Additional file 1: Figure S1) emanating 
from a natural hot spring sources which exist through-
out the year and form a marshy area. The collected lar-
vae, transported in plastic jars to the field laboratory, 
were maintained in plastic trays in the original water 
collected from the breeding sites and provided with fish 
food (Cichlid Sticks; Tetra, Maidenhead Aquatics, Leices-
ter, UK). Pupae were picked in glass beakers containing 
sedimented water from the breeding sites and kept in 
cages until emergence to adults. Adult female An. arabi-
ensis mosquitoes were identified morphologically using 
standard keys [39, 40]. Colony mosquitoes (> 800th gen-
eration) were reared to adulthood as described previ-
ously [5]. Mosquitoes of both sources were maintained at 
the same laboratory settings; developmental stages were 

Conclusions: Infectivity assessments with colony and wild mosquitoes yielded similar infection results. This finding 
supports the use of colony mosquitoes for assessments of the infectious reservoir for malaria in this setting whilst 
acknowledging the importance of mosquito factors influencing sporogonic development of Plasmodium parasites.
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reared using fish food (Cichlid Sticks, Tetra) and adult 
mosquitoes were maintained on sucrose solution (10%) 
at ambient conditions at temperatures of 26–30 °C and a 
relative humidity of 60–80% before and after feeding.

Membrane‑feeding assays
Venous blood samples (5 ml) were collected after obtain-
ing informed written consent from patients with micros-
copy-confirmed P. vivax infection attending the Adama 
Malaria Clinic. Blood collected in lithium heparin tubes 
(Vacutainer; BD, Oxford, UK) was offered to colony 
and wild An. arabiensis mosquitoes in parallel using 
membrane-feeding apparatus as detailed previously [7]. 
Briefly, 5–6 day-old female mosquitoes were starved for 
12 h (colony) and 18 h (wild) before feeding. This tim-
ing was decided upon following pilot experiments where 
aggressiveness was unfavorable for wild mosquitoes 
after 12 h starvation. We have observed a positive asso-
ciation between starvation time and feeding efficiency 
(ρ(41) = 0.352; P = 0.024); 18 h was considered appropri-
ate for wild-caught mosquitoes with sufficient numbers 
of fully fed mosquitoes and minimal mortality. Feeding 
was performed in the dark for 25 min using water-jack-
eted glass-feeders (mini-feeder; Coelen Glastechniek, 
Arnemuiden, the Netherlands) that were covered with 
an artificial membrane (parafilm) and connected to a cir-
culating water bath (Julabo GmbH; Seelbach, Germany) 
maintained at 38 °C. Unfed and partially-fed mosquitoes 
were removed from the holding cages, leaving fully-fed 
mosquitoes undisturbed. Fully-fed mosquitoes were 
maintained for 7 days under the same laboratory con-
dition using 10% sucrose solution. At least 10 mosqui-
toes were dissected, and oocyst presence was assessed 
microscopically after staining with 1.0% mercurochrome 
(Sigma-Aldrich, Taufkirchen, Germany). This minimum 
number was mainly determined by the feeding efficiency 
and availability of wild mosquitoes. Asexual parasite 
and gametocyte densities were quantified in thick blood 
films, screening against 1000 leukocytes.

Mosquito genotyping
A representative set of wild and colony mosquitoes 
were genotyped using multiplex polymerase chain reac-
tion targeting the intergenic spacer gene of the ribo-
somal DNA of all cryptic species in the An. gambiae 
complex as described previously [41], with a few modi-
fications. All conditions, including primers, were as per 
the original protocol except that the  MgCl2 concentra-
tion was increased to 2 mM and the amplification time 
(at 72 °C) was raised to 40 s. Two microliters of eluate 
of whole mosquito body crushed in phosphate buffer 
saline was run in a final reaction volume of 25 µl without 
prior DNA extraction. In every reaction round, negative 

(non-template and An. stephensi mosquitoes) and posi-
tive controls (An. arabiensis colony mosquitoes) were 
included.

Statistical analysis
All analyses were performed in STATA version 13 (Stata-
Corp., TX, USA) and GraphPad Prism 5.3 (GraphPad 
Software Inc., CA, USA). Feeding efficiency (propor-
tion of fully-fed mosquitoes) was compared in matched 
experiments using the Wilcoxon matched-pairs signed-
rank test. Proportions were compared by Chi-square and 
Fischer’s exact tests. Differences between median parasite 
densities between single-species infections and co-infec-
tions were assessed using Wilcoxon rank-sum test. The 
bias between wild and colony mosquitoes was compared 
using the Bland-Altman test. The correlation between 
mosquito infection prevalence and gametocyte density as 
continuous variable was determined by Spearman’s rank 
correlation coefficient for colony and wild mosquitoes 
separately. Logistic regression was performed to compare 
infection status between colony and wild mosquitoes 
using individual mosquito data. A fixed effect for human 
participant was included thus taking into account the 
number of mosquito experiments and adjusting for cor-
relations between mosquito observations from the same 
blood donor.

Results
A total of 36 matched membrane-feeding assays (MFA)
with colony and wild mosquitoes were performed on 
blood samples from patients (25 P. vivax single- and 11 
mixed-species infections with P. falciparum). The median 
age of the patients was 23.5 years (interquartile range, 
IQR: 18.0–29.5) and the majority of participants were 
male (72.2%, 26/36) (Table  1). A total of 1755 colony 
and 2303 wild mosquitoes were used for feeding experi-
ments of which 1035 (59.0%) and 662 (28.7%) success-
fully took a blood meal, respectively. Feeding efficiency 
varied between colony (median: 62.5%; IQR: 47.0–79.0%) 
and wild (median: 27.8%; IQR: 17.0–38.0%; Z = 5.02; P < 
0.001) mosquitoes (Fig. 1a). Of the total feeding experi-
ments, 52.8% (19/36) infected at least one colony and/
or wild mosquitoes. Of P. vivax single-species infected 
patients, 64.0% (16/25) were infectious to mosquitoes 
while 27.3% (3/11) of co-infected (P. falciparum + P. 
vivax) patients infected at least one mosquito (odds ratio, 
OR: 4.74; 95% confidence interval, CI: 1.0–22.5; P = 
0.04). Parasite and gametocyte densities were highest in 
P. vivax infections (Table 1).

After excluding 5 matched experiments for which 
fewer than 10 wild mosquitoes were available for dissec-
tion, there were 31 (21 P. vivax single- and 10 co-infec-
tions) successful matched feeding experiments with a 
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minimum of 10 dissected mosquitoes for both feeding 
approaches. In total, 66.7% (14/21) of P. vivax single-
species infected patients infected at least one mosquito. 
Two patients infected either colony or wild mosqui-
toes; one of them infecting only colony mosquitoes but 
not wild (5.8% infected mosquitoes, 4/69) and vice versa 
(6.7%, 1/15). Infectious individuals infected a median of 

55.0% (IQR: 6.7 – 85.7; range: 5.5–96.7%; n = 14) colony 
and 52.7% (IQR: 20.0–80.0%; range: 3.2–95.0%; n = 14) 
wild mosquitoes (Fig. 1b). The two infectious co-infected 
patients infected either of the colony or wild mosquitoes; 
one infected 5.5% (1/18) colony and the other infected 
3.2% (1/32) wild mosquitoes. The median proportions of 
infected colony and wild mosquitoes were not different 

Table 1 Comparison between P. vivax single species and mixed species infections with P. falciparum 

a All values indicated, except sex, are median (interquartile range)
b Indicated only among gametocyte carriers

P. vivax single-species  infectionsa P. vivax + P. falciparum co-infectionsa Total

N 25 11 36

Sex, % male (n/N) 68.0 (17/25) 81.8 (9/11) 72.2 (26/36)

Age, years 23 (20–29) 25 (12–30) 23.5 (18.0–29.5)

P. vivax asexual parasite density 10322.5 (2847.0–181,169.0) 5540.5 (1944.5–37,900.5) 8740.8 (2173.5–24,185.3)

P. vivax gametocyte  densityb 332.3 (133.0–605.5) 368.3 (228.5–623.8) 358.8 (133.0–605.5)

Feeding rate, colony mosquitoes 63.0 (47.0–80.0) 62.0 (44.0–78.0) 62.5 (47.0–79.0)

Feeding rate, wild mosquitoes 29.0 (16.0–38.0) 25.0 (18.0–38.2) 27.8 (17.0–38.0)

Fig. 1 Mosquito infection outcomes in matched colony and wild An. arabiensis membrane-feeding experiments. The proportion of mosquitoes 
that were fully-fed on the patient blood through the membrane feeder (a) with the resulting proportion of infected mosquitoes (b) are indicated 
together with the  log10-transformed oocyst intensity per midgut of infected mosquito (c) for colony (filled dots) and wild-caught (unfilled dots) 
mosquitoes. d The association between the proportion of infected mosquitoes (Y-axis) and  log10-transformed gametocyte densities/µl (X-axis) 
measured by microscopy for colony (filled dots) and wild-caught (unfilled dots) mosquitoes. Lines in a–c indicate median values and 25th and 75th 
percentiles. The asterisks in a indicate a statistically significant difference between the wild and colony mosquitoes (P < 0.001)
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between the matched experiments (Z = 0.785; P = 0.433; 
Fig. 1b). A strong association was observed between the 
proportion of infected wild and colony mosquitoes (ρ(16) 
= 0.819; P < 0.001; Fig. 2a). Overall, there was good agree-
ment in the likelihood of becoming infected between 
wild and colony-reared mosquitoes. Estimation of infec-
tivity to mosquitoes in MFAs showed no significant bias 
towards either mosquito source (average bias: − 4.79; 95% 
limits of agreement: − 40.79–31.22; P = 0.381; Fig.  2b). 
Similarly, there was no difference in the median num-
ber of oocysts (Z = 209; P = 0.835; Fig.  1c) detected 
in infected midguts between the colony (median: 25.0 
oocysts/midgut; IQR: 5.0–83.0) and wild (median: 20.5 
oocysts/midgut; IQR: 5–47) mosquitoes. In an analysis of 
individual mosquito data adjusted for human participant, 
we observed a borderline significant lower proportion of 
infected wild mosquitoes (OR: 0.67; 95% CI: 0.45–1.00; P 
= 0.051); plausibly reflecting differences in the number of 
mosquito observations in experiments.

Microscopically detected parasite density (median: 
8765.5; IQR: 2199.5–26158.0; n = 31) was not different 
between patients with P. vivax single-species infections 
and patients with co-infections (U(31) = − 103.5; Z = 
− 0.085; P = 0.933). Gametocytes were more frequently 
detected by microscopy in patients with P. vivax single-
species infections (81.0%, 17/21) than in patients with P. 
vivax + P. falciparum co- infections (30.0%, 3/10; OR, 
9.9; 95% CI, 1.75–56.30; P = 0.010) with a borderline 
significantly higher gametocyte density among gameto-
cyte-positive P. vivax single-species infections compared 
to gametocyte-positive co-infections (U(31) = − 149.5; 

Z = 1.902; P = 0.057). In co-infections, all microscopy-
detected gametocytes were P. vivax. Microscopically 
detectable gametocyte carriers were more infectious than 
patients without microscopically detectable gametocytes 
to both colony (65.0%, 13/20 vs 9.1%, 1/11; OR: 18.6; 95% 
CI: 2.0–176.5; P = 0.002) and wild mosquitoes (60.0%, 
12/20 vs 18.2%, 2/11; OR: 6.8; 95% CI: 1.1–39.8; P = 
0.021). The proportion of infected colony (ρ(31) = 0.452; 
P = 0.011) and wild (ρ(31) = 0.386; P = 0.032) mosquitoes 
associated positively with gametocyte density (Fig.  1d) 
but not with parasite density assessed by microscopy 
(ρ(31) = 0.044; P = 0.816) and (ρ(31) = 0.239; P = 0.195), 
respectively. Morphologically identified wild mosqui-
toes were confirmed to be An. arabiensis using species-
specific PCR for the vast majority of tested mosquitoes 
(96.5%; 55/57).

Discussion
In recent years, there is increasing interest in transmis-
sion assays to evaluate TBI and assess the human infec-
tious reservoir for malaria. More and more laboratories 
are establishing mosquito colonies to examine infectiv-
ity among natural infections [42]. Whilst established 
colonies offer some advantage in terms of feeding effi-
ciency [43], it is generally assumed that locally relevant 
mosquitoes are important to allow inference to the local 
transmission situation. We evaluated the permissiveness 
of An. arabiensis mosquitoes raised from wild-collected 
larvae in comparison with colony mosquitoes main-
tained for over 800 generations in 36 paired MFA. Whilst 

Fig. 2 Comparison of the proportion of infected colony vs wild mosquitoes. a The proportion of infected wild mosquitoes (Y-axis) is plotted 
against colony mosquitoes (X-axis) for P. vivax single-species infections with at least 10 mosquitoes dissected. The dotted line is the line of perfect 
agreement. b The differences between the proportion of infected colony and wild mosquitoes plotted against the averages of the two mosquito 
sources. The average of the proportion of infected colony and wild mosquitoes for each paired infection is indicated in the X-axis vs excess 
infections in wild mosquitoes (differences between proportions of infected wild mosquitoes vs colony mosquitoes) in the Y-axis. The limits of 
agreement are indicated as the mean difference (middle dotted line) and the 95% confidence interval of the limit of agreement (mean ± 1.96 SD of 
differences) with horizontal dotted lines. Unfilled dots indicate P. falciparum + P. vivax co-infections
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mosquito feeding rates were markedly higher in colony 
mosquitoes, we found no evidence for epidemiologically 
meaningful differences in infection prevalence or infec-
tion burden between mosquito sources.

In our experiments, we encountered challenges with 
the aggressiveness of wild mosquitoes, exemplified by 
roughly two-fold lower feeding rates on the membrane 
for wild versus colony mosquitoes, which is not surpris-
ing given the selection over several hundred generations 
in the latter. Colony mosquitoes were maintained using 
rabbits as source of blood for generations in the present 
study. Fewer mosquito observations were available for 
wild mosquitoes on the day of dissection for some of 
the infections. This may have contributed to the border-
line higher proportion of MFA resulting in at least one 
infected colony mosquito, simply reflecting the higher 
number of mosquito observations [7]. Despite this, we 
observed a similar proportion of infected mosquitoes 
among infectious feeds between colony and wild mosqui-
toes, in line with several other studies [24, 44]. This holds 
true when mosquitoes were of the same [24] or different 
[44] species. The F1 progeny of wild-caught An. funes-
tus compared with colonized An. coluzzii mosquitoes 
[44] and similarly, colonized An. stephensi mosquitoes 
compared with their field counterpart raised from wild-
caught larvae and pupae [24] were equally susceptible, 
when the end point was oocyst detection in the midgut.

Importantly, oocyst density was high and similar 
between the colony and wild mosquitoes in our study in 
line with previous studies on P. vivax that used mosqui-
toes of different species [11, 12, 45]. Lower oocyst den-
sities are typically observed in P. falciparum [46–48]. 
Earlier studies also examined sporozoite prevalence 
and load in feeding experiments; most reporting simi-
lar levels between colonized and wild mosquitoes [15]. 
Similar prevalence but higher sporozoite density (but 
only at higher sporozoite loads) was detected in the wild 
mosquitoes in one of the studies [24]. Given the strong 
association between oocyst prevalence and intensity 
[49] and the strong association between oocyst density 
and sporozoite densities [6, 8, 50], it seems intuitive that 
highly similar oocyst burden, as observed in our study, 
precludes large differences in sporozoite density. Further-
more, variations in insectary and natural conditions that 
allow sporogony might potentially explain some of the 
differences observed [15, 24]. Mosquito innate immune 
responses can abrogate infections through melanization 
[51]. We have not observed any evidence for melaniza-
tion in the present study. In addition, we also examined 
mosquito guts for pathogens that may influence parasite 
development such as microsporidia [43] and found no 
evidence for this. Future studies may nevertheless benefit 
from examining sporozoites, a limitation of the present 

study. Investigation of effects of environmental factors 
on sporogony with a specific focus on midgut microbiota 
that can influence transmission efficiency by stimulating 
the mosquito innate immune system and production of 
metabolites directly impairing parasite survival will also 
be informative [32]. In addition, mosquito blood-meal 
size, a poorly studied parameter that may be higher in 
colony- and membrane-adapted mosquitoes, needs to 
be considered in future evaluations. We have reared 
wild collected and colony developmental stages to adults 
at the same laboratory conditions using the same larval 
food to minimize the chance this could contribute to a 
larger body size [52] and subsequently to higher oocyst 
prevalence and density as a function of larger volume 
of blood ingested (and therefore more gametocytes) 
[53, 54]. Future studies would benefit by including wing 
length measurement as an indication of mosquito body 
size.

To the best of our knowledge, our findings are the first 
of its kind with African vivax malaria which is commonly 
referred to as a major cause of malaria outside sub-Saha-
ran Africa [55]. Ethiopia forms an exception with vivax 
malaria, contributing towards three-quarters of the 
global burden together with India and Pakistan [56]. One 
of the unique features of P. vivax is the earlier generation 
of gametocytes, i.e. within 3–4 days after the first appear-
ance of asexual parasites [57]. As a result, most patients 
start infecting mosquitoes before the onset of symptoms 
[58]. Despite a limited number of studies reporting a 
lack of association between microscopically determined 
gametocyte density and infectivity to mosquitoes [59], a 
very strong association was observed in the likelihood of 
infectivity between gametocyte densities and both col-
ony and wild mosquitoes in our study. This is concord-
ant with previous reports that used colonized An. dirus 
[9] and An. arabiensis mosquitoes [5] as well as An. ste-
phensi [60] and An. darligi wild mosquitoes [61] raised 
from wild-collected immature stages and F1 generations, 
respectively.

One relevant limitation of our study was the limited 
sample size, relying on 36 blood donors but a total of 
1755 colony and 2303 wild mosquitoes were used for the 
feeding experiments. We can thus not rule-out subtle dif-
ferences between colony and wild mosquitoes. It would, 
however, be questionable whether small differences 
would render colony mosquitoes less suitable for assess-
ments of the human infectious reservoir or the evalua-
tion of interventions.
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Conclusions
The results of the present study indicate that colony mos-
quitoes perform at a similar level with mosquitoes caught 
from the wild that reflect the natural phenomenon, indi-
cating colony mosquitoes can be used interchangeably. 
Our understanding of malaria transmission dynamics 
would benefit from similar studies in different settings 
with different vector and parasite species combinations, 
with a specific focus on mosquito determinants affecting 
sporogonic development.
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Additional file 1: Figure S1. Larva and/or pupa collection habitats. 
Breeding habitats were mainly temporary/permanent puddles (a–f) or 
marshy (g–h) areas, following the streamline of a local hot spring. All the 
potential breeding habitats were not in use by people living close-by 
(within a radius of 300–500 m) and had no shading. Larvae were detected 
at all potential breeding sites with an average larval density of 19.5 larvae 
per dip. Pupae were detected at 4/9 sites where larvae were detected 
during a single visit. The median volume of the breeding habitat was 0.20 
 m3 (IQR: 0.08–0.57  m3; range: 0.004–7.50  m3).
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