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Abstract 

Background:  Mosquito bloodmeal sources determine the feeding rates, adult survival, fecundity, hatching rates, 
and developmental times. Only the female Anopheles mosquito takes bloodmeals from humans, birds, mammals, and 
other vertebrates for egg development. Studies of the host preference patterns in blood-feeding anopheline mosqui-
toes are crucial to determine malaria vectors. However, the human blood index, foraging ratio, and host preference 
index of anopheline mosquitoes are not known so far in Bure district, Ethiopia.

Methods:  The origins of bloodmeals from all freshly fed and a few half-gravid exophagic and endophagic females 
collected using Centers for Disease Control and Prevention light traps were identified as human and bovine using 
enzyme-linked immunosorbent assay. The human blood index, forage ratio, and host feeding index were calculated.

Results:  A total of 617 specimens belonging to An. arabiensis (n = 209), An. funestus (n = 217), An. coustani (n = 123), 
An. squamosus (n = 54), and An. cinereus (n = 14) were only analyzed using blood ELISA. Five hundred seventy-five of 
the specimens were positive for blood antigens of the host bloods. All anopheline mosquitoes assayed for a blood-
meal source had mixed- rather than single-source bloodmeals. The FR for humans was slightly > 1.0 compared to 
bovines for all Anopheles species. HFI for each pair of vertebrate hosts revealed that humans were the slightly pre-
ferred bloodmeal source compared to bovines for all species (except An. squamosus), but there was no marked host 
selection.
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Introduction
Malaria is transmitted by the blood feeding of infec-
tious female Anopheles mosquitoes [1, 2] and has a com-
plex parasite life-cycle, which depends on both humans 
and mosquitoes [3, 4]. In Ethiopia, malaria is the leading 
health problem [5] because three-fourths (75%) of the 
total area of the country is malarious and more than two-
thirds (approximately 68%) of the total population lives 
below 2000  m altitude [5]. Amhara is one of the many 
regions in the country, and malaria remains a major 

public health problem there. Bure is one of the approxi-
mately 15 districts in the region and carries > 13% of the 
malaria burden [6]. Across the country, the nature of 
malaria transmission is seasonal and unstable [7], varying 
with elevation, temperature, and rainfall [8, 9].

In Ethiopia, over 42 species of Anopheles have been 
identified [10, 11], but Anopheles arabiensis is the prin-
cipal malaria vector while An. pharoensis, An. funestus, 
and An. nili are secondary vectors [12, 13]. Therefore, 
understanding of the biology and behavior of Anoph-
eles mosquitoes can help to understand how malaria is 
transmitted and can aid in designing appropriate con-
trol strategies [14]. Each species of Anopheles has its 
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own blood-feeding pattern, host preference, biting, flight 
range, and host selection behavior [15, 16].

The blood-feeding behavior of malaria vectors is an 
important parameter in malaria epidemiology [3]. This 
behavior can influence vectorial potential [1], depending 
on the vertebrate host groups with which the mosquito 
makes contact, and influence the spatial distribution of 
a disease [17]. The most successful malaria vectors com-
monly feed on humans and secondarily on cattle and 
other domestic animals, depending on host availability 
[3]. Host choices and subsequent feeding success depend 
on host availability [15, 18] including host accessibility, 
density, host defense mechanisms, host size, proximity to 
mosquito habitats [19, 20], environmental factors, flight 
behavior, and feeding periodicity of the mosquitoes [21]. 
Interventions through long-lasting insecticide-treated 
nets (LLINs) and insecticide residual spraying (IRS) 
determine the successful feeding and oviposition nature 
of malaria mosquitoes [22].

Preference of anophelines to feed on humans can be 
estimated using the human blood index (HBI). HBI 
represents the proportion of bloodmeals derived from 
humans by mosquito vectors [23]. Study of the host-feed-
ing pattern is an essential part of understanding the epi-
demiology of diseases transmitted by arthropods [24, 25]. 
Host preference studies have also been used to monitor 
the effectiveness of vector control programs by observing 
a reduction in blood-feeding behavior and have served as 
evidence of control failure [26–28].

Anophelines exhibit a wide range of host preferences, 
including humans, cattle, sheep, horses, pigs, dogs, cats, 
other mammals, birds, and reptiles [29–31]. Particularly 
animal-feeding vectors are known to suppress human 
bloodmeal sources and reduce the level of infection in 
the local vector population [32, 33]. However, HBI results 
do not always reflect host preference [34, 35]. Therefore, 
several authors have proposed different indices to sepa-
rate preferential versus opportunistic feeding patterns 
of mosquitoes [24, 36]. The forage ratio (FR) measures 
host selection patterns, i.e. quantifies vector selection of 
a particular vertebrate host rather than other available 
hosts [34]. It only shows the attributes of one host prefer-
ence [23] and does not require a full host census [37]. The 
other parameter is the feeding index (FI), which com-
pares the observed proportion of blood feeds from one 
host to another host divided by the expected comparative 
proportion of feeds on the two hosts [17, 24].

Generally, the knowledge of the HBI, blood-feeding 
preferences, and pattern of a mosquito species provides 
insight into its vector potential [17, 38] and the epidemi-
ology of disease transmission [24, 25, 29, 39] and allows 
designing and implementing efficient strategies for vector 
control [23, 29, 30]. For our study, the HBI, FR, and host 

preference index (HFI) of anopheline mosquitoes have 
not been known so far, so we aimed to determine the 
abdominal status, HBI, FR, and HFI of anopheline mos-
quitoes in Bure district, northwest Ethiopia.

Materials and methods
Study area
A longitudinal study was conducted in Bure district, 
northwestern Ethiopia, from July 2015 to June 2016. 
Geographically, Bure district is situated at an altitude 
ranging from 700 (Blue Nile gorge) to 2350 m above sea 
level (Fig.  1). Socioeconomically, the majority (85%) of 
the population is farmers who grow maize, teff (Eragros-
tis teff), pepper, potatoes, wheat, and millet, followed by 
beans and peas, sunflowers, niger, spices, vegetables, and 
others. The rest of the population includes merchants 
(6.8%) and others (non-governmental organizations, civil 
servants) (8.2%). Animals such as cattle, sheep, hens, 
mules, and donkeys are reared by most farmers. The pro-
portions of the animals reared in the study district are 
described in Table 2. In addition, there are both modern 
and traditional beekeepers. Most of the population in 
the district lives in houses made of mud with corrugated 
iron roofs. The mud houses are partly smooth and partly 
rough. Some of them are painted. The doors and win-
dows of the houses do not have mosquito screening. In 
each farmer’s compound, there is a separate kitchen and 
latrine house. The distance between farmers’ houses is 
10–15 m. Both humans and animals live inside the same 
house.

Most of Bure district has a subtropical zone (Woina-
Dega) climate with annual mean minimum and maxi-
mum temperature of 9.9  °C and 29.2  °C, respectively, 
and 2000 mm mean annual rainfall ranging being 1350–
2500 mm. The major rainy season of the district is from 
July to September, and a small amount falls from May to 
June and from October to December. The other months 
(January–April) are dry seasons [40].

The study was conducted in three rural villages, Bukta, 
Workmidr, and Shnebekuma, from July 2015–June 2016. 
The detailed description of the three villages is provided 
elsewhere [41]. These villages are malarious. Bed nets 
have been distributed to the three villages once every 3 
years before malaria infestation begins, in the first week 
of September. Moreover, anti-malaria chemical spraying 
(IRS) (Deltamethrin, K-Othrine Flow) has been adminis-
tered in the three villages according to the national spray-
ing operation guidelines [12].

Adult mosquito collection, identification, and processing
Mosquito collection
Anopheles mosquitoes were collected each month from 
July 2015–June 2016 using Centers for Disease Control 
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and Prevention light trap catches (LTCs), pyrethrum 
spray catches (PSCs), and artificial pit shelters (APSs). 
In each village, nine houses for LTCs and ten houses 
for PSCs were randomly selected, distributed near the 
breeding sites, in the middle and on the periphery of the 
village. Similarly, nine LTCs were prepared to collect out-
door host-seeking mosquitoes in each village. In addi-
tion, six APSs were prepared in three villages to collect 
outdoor resting mosquitoes; each village had two.

Indoor host-seeking Anopheles mosquitoes were col-
lected from 6:00 p.m. (sunset) to 6:00 a.m. (sunrise) using 
LTCs (Model 512; J. W. Hock Co., Atlanta, GA, USA) 
once per month per house for 1 year [42, 43]. Likewise, 
the outdoor host-seeking mosquitoes were collected 
by LTCs from 06:00 p.m. to 06:00 a.m. once per month. 
Indoor-resting mosquitoes were collected in the morn-
ings from 6:00 a.m. to 8:30 a.m. using PSCs for 1 consec-
utive year. Collection was carried out using white floor 
sheets, hand lenses, baygon aerosol (Tetramethrin: 0.4% 
and Permethrin: 0.4%; SC. Johnson & Sons Inc., USA), 

small Petri dishes, paper cups with net covers, forceps, 
cotton wool, and a torch [44].

Additionally, outdoor-resting mosquitoes were col-
lected in the morning from 6:30 a.m. to 7:30 a.m. using 
APSs by handheld mouth aspirator. APSs were con-
structed under the shade of various dense shrub trees 
10–15  m away from the residential villages. Before col-
lection began, the mouth of each pit shelter was covered 
with insecticide-untreated white net to prevent mosqui-
toes from escaping and for visibility purposes. Resting 
mosquitoes were collected for about 10–20 min in each 
pit [45]. The number of human occupants and other 
potential vertebrate hosts in each surveyed house during 
the previous night was recorded (Table 2). Moreover, the 
condition of each surveyed house was recorded, includ-
ing the type of house, type of walls, number of long-
lasting insecticide-treated nets (LLINs) used, and spray 
status.

Collection of mosquitoes was carried out after 
obtaining ethical approval from the ethics review 

Fig. 1  Map of the study area. a Ethiopia, b Amhara region, and c Bure district
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committee of Addis Ababa University (reference no. 
CNSDO/382/07/15), Amhara Health Regional Bureau 
(permission reference no. H/M/TS/1/350/07), and the 
Head of the Bure District Health Office (permission ref-
erence no. BH/3/519L/2). Moreover, informed consent 
was obtained from the heads of the selected households.

Anopheles mosquito species identification
Mosquitoes collected by LTCs, PSCs, and APSs were 
identified morphologically at the genus level using taxo-
nomic keys [46, 47]. In addition, morphologically identi-
fied and separately stored An. gambiae specimens were 
identified by species-specific PCR [48] at the Molecu-
lar Biology Laboratory of Tropical and Infectious Dis-
eases Research Center, Jima University. Then, DNA was 
extracted from individual preserved An. gambiae com-
plex species based on DNeasy Blood and Tissue Kits [49]. 
DNA amplification was then carried out followed by gel 
electrophoresis [48]. Finally, agarose gel was placed on 
the UVP. Those mosquitoes that remained unamplified 
were tested three times independently.

Survey of vertebrate hosts
Human and domestic animal (hens and mammals) cen-
sus reports were obtained by interviewing the heads 
of households during house-to-house visits in the dis-
trict. The number of humans and domestic vertebrates 
in neighboring houses was not counted. Potential blood 
hosts for Anopheles mosquitoes from PSCs were not 
included because of the presence of fewer engorged 
Anopheles.

Determination of abdominal status of Anopheles 
mosquitoes
The abdominal conditions of Anopheles were determined 
based on blood digestion and ovarian development using 
standard keys as unfed, freshly fed, half-gravid, and 
gravid [50]. Finally, freshly fed and half-gravid anophe-
lines were taken to Jima University for bloodmeal ELISA 
(enzyme-linked immunosorbent assay) tests.

Identification of the bloodmeal sources of Anopheles 
mosquitoes
The origins of bloodmeals of all freshly fed and a few 
half-gravid female Anopheles mosquitoes (An. arabien-
sis, An. funestus, An. coustani, An. squamosus, and An. 
cinereus) collected using LTCs were identified as human 
and bovine using ELISA [51]. Each mosquito abdomen 
was ground with 100  μl of phosphate-buffered saline 
(PBS) using an electrical pestle. The pestle was rinsed 
with 100  μl PBS to make a total of 200  μl final volume, 
and 100  μl homogenate was added to 96-well ELISA 
plates. Similarly, 100  μl animal sera (1/100 in PBS) and 

100 μl unfed female adult Anopheles mosquitoes of each 
species (from a laboratory colony) were added to 96-well 
ELISA plates as a positive and negative control, respec-
tively. Moreover, 100 μl PBS was used alone as a negative 
control. Then, the plates were covered and incubated at 
room temperature for 2 h. After incubation, the well con-
tents were discarded, and they were tapped upside-down 
five times on tissue paper and washed three times with 
200  μl PBS-Tween-20 using ELISA washer. Then, 50  μl 
human peroxidase conjugate (lot no. 023M4782; batch 
no. 023M4782; product no. A0170) was added; plates 
were covered and incubated for 1 h at room temperature. 
Plates were washed with ELISA washer three times with 
200  μl PBS-Tween-20, and 100  μl of ABTS was added 
to each well and incubated for 30 min for human blood 
detection.

To bovine blood sources, 50  μl bovine phosphatase 
conjugate (lot no. 062M4761V/Sigma-Aldrich.com) was 
added and then covered and incubated for 1 h at room 
temperature. The wells were washed three times with 
200  μl PBS-Tween-20 with ELISA washer, and 100  μl 
pNPP (catalog no. 0421-01; lot no. H4014-VG96) sub-
strate was added to each plate and incubated for 1 h. 
Finally, positive samples, including positive control, were 
changed to blue-green color for human blood (peroxi-
dase) and dark yellow reactions (phosphatase) for bovine 
blood (detected visually). Immediately, using the ELISA 
reader, the value of each plate was determined at 405 nm 
wavelength. Samples were considered positive if absorb-
ance values exceeded two times the mean of three nega-
tive controls, unfed mosquitoes/PBS-blank solution.

Data analysis
Data were entered and cleaned using Microsoft Excel 
2007 and analyzed using the SPSS software package, ver-
sion 20.0 (SPSS, Chicago, IL, USA). Before applying mean 
comparison, normality of bloodmeal sources (host types), 
HBI, and BBI data were checked, and data were log 
transformed [log 10 (x + 1)]. The HBI and bovine blood 
index (BBI) were calculated as the proportion of mos-
quitoes that fed on human and bovine bloodmeals out 
of the total bloodmeals determined/tested [23]. Mixed 
(human + bovine) bloodmeals were added to the number 
of a human and bovine bloodmeals when calculating the 
overall HBI and BBI. The presence of significant differ-
ences between HBI and BBI and indoor and outdoor HBI/
BBI was checked by independent t-test (p < 0.05). Varia-
tion among bloodmeal sources (host types) for Anoph-
eles mosquitoes was separated by one-way ANOVA. The 
Tukey HSD test was run for mean separation variation 
(in ANOVA) (HSD) (p < 0.05). Statistical test significance 
was considered at p < 0.05 during the analysis.
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Foraging ratios (FRs) were determined  to  obtain the 
proportion of bloodmeals taken only from humans 
and cattle. FRs were calculated as the percent of female 
Anopheles mosquitoes (five species as described in the 
Results section) containing blood of a particular host 
divided by the percent of the total available host popula-
tion represented by the particular host [36] as follows:

 where FR = the foraging ratio of Anopheles species, 
NAE = number of engorged female mosquitoes contain-
ing blood from host-1, NTE = total number of engorged 
females, NAP = number of type 1 hosts in the collection 
area, and NTP = total number of hosts of all types in the 
collection area.

A foraging ratio of 1 indicated neither a selective bias 
nor avoidance of a particular host animal (opportun-
istic = equally feeding); FRs significantly > 1 indicated 
a selective bias, and values < 1 indicated avoidance of 
a host in favor of other available hosts [24, 36]. How-
ever, in our study, the percentage of FRs was only calcu-
lated for humans and cattle, and comparison was made 
between the two hosts. The host preference indices (HFI) 
is defined as the observed proportion of feeding on one 
host compared to another divided by the expected com-
parative proportion of feeds on these two hosts [17, 24]; 
the formula is as follows:

where ‘Nx’ and ‘Ny’ are the mean numbers of bloodmeals 
taken from hosts ‘x’ and ‘y’ per study site, respectively, 
and ‘Ax’ and ‘Ay’ are the mean numbers of hosts ‘x’ and ‘y’ 
per study site, respectively. An index of 1 indicated equal 
feeding on the two hosts. HFI > 1 indicated that host ‘x’ 
was preferentially fed upon, whereas a value < 1 indicated 
that host ‘y’ was preferentially fed upon [17]. HFIs were 
calculated for each pair of hosts (humans: cattle) [24].

FR = (NAE/NTE)/(NAP/NTP)

HFI =
(

Nx/Ny
)

/
(

Ax/Ay
)

Results
Abdominal status of female Anopheles mosquitoes
The overall abdominal status of each adult female Anoph-
eles mosquito is presented in Table 1 and Fig. 2. Of 4703 
Anopheles mosquitoes collected, a higher proportion of 
mosquitoes were unfed (69.7%), followed by fed (24.5%), 
gravid (3.9%), and half-gravid (1.9%).

Overall, 56.0% (n = 646/ 1153) fed Anopheline mos-
quitoes were from indoor and 44.0% (n = 507/1153) 
from outdoor collections. The proportion of half-gravid 
(HG) mosquitoes collected outdoors (n = 50, 56.2%) was 
greater than that of HG mosquitoes collected indoors 
(n = 39, 43.8%). Collection method comparison indi-
cated that > 99.6% of unfed (UF), fed (F), HG, and gravid 
(G) were collected by LTCs while the remaining catches 
were by PSCs. However, APSs was not fully productive 
(Table  1). Because of the unsuccessful catches by PSCs 
and APS, the degrees of exophily and endophily behavior 
were not determined.

Compositions and abundances of potential vertebrate 
hosts for Anopheles mosquitoes
A total of 3803 hosts were recorded from 324 surveyed 
houses in three villages. Of these, hosts from Bukta 
accounted for 39.2%, Shnebekuma 33.0%, and Workmidr 
27.8%. Hosts included: bovines (40.0%), humans (37.7%), 
sheep (16.0%), donkeys (0.8%), mules (0.7%), chickens 
(4.0%), and dogs (0.7%). Of these, a higher proportion of 
human and cattle hosts was recorded in the study area 
(F6, 77 = 160.863; p = 0.001) (Table 2).

Distribution of bloodmeals across villages
As indicated in Table 3, 609 (collected by LTs) Anopheles 
mosquitoes were assayed for bloodmeal source analy-
sis using ELISA. Most of them had fed (n = 575, 94.4%); 
however, the distribution was not equal, and a large 
proportion was from Shnebekuma (76.5%). In the study 
area, both humans and animals were living in the same 

Table 1  Abdominal status of female Anopheles mosquitoes by place and method of collection in Bure district, Ethiopia, from July 2015 
to June 2016

Unfed (UF), fed (F), half-gravid (HG), and gravid (G)

Blood digestion 
stage

Place of collection % Abdominal status by method of collection

Indoor Outdoor Total (%)

(LTs and PSCs), n (%) (LTs), n (%) LTs, n (%) PSCs, n (%) APTs, n (%) Total (%)

UF 1023 (31.2) 2253 (68.8) 3276 (69.7) 3267 (99.7) 9 (0.3) 0 3276 (69.7)

F 646 (56.0) 507 (44.0) 1153 (24.5) 1145 (99.3) 8 (0.7) 0 1153 (24.5)

HG 39 (43.8) 50 (56.2) 89 (1.9) 89 (100.0) 0 0 89 (1.9)

G 89 (48.1) 96 (51.9) 185 (3.9) 183 (98.9) 2 (0.1) 0 185 (3.9)

Total 1797 (38.2) 2906 (61.8) 4703 (100) 4684 (99.6) 19 (0.4) 0 4703 (100)
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houses. Of these, most mosquitoes had a mixed blood-
meal source (human and bovine) (88.8%, n = 541). The 
proportion of mixed blood meals was greater than that 
of single bloodmeals (either human or bovine) across the 
three villages. However, a higher proportion of mixed 
blood (74.4%, n = 419/541) was recorded in Shnebekuma.

Bloodmeal indices of Anopheles mosquitoes
Table 4 shows the bloodmeal origins and HBI of Anoph-
eles mosquitoes by site and collection method. Overall, 

617 (LTs and PSCs) Anopheles mosquitoes (fed and HG) 
belonging to five species (An. arabiensis, An. funestus, 
An. coustani, An. squamosus, and An. cinereus) were 
tested by ELISA. Of these, 94.2% (n = 581) were positive 
for host blood antigen and the remaining 5.8% (n = 36) 
were unidentified. From 581 positive samples (LTs and 
PSCs), the largest proportion (99.0%, n = 575) was from 
LTCs and the smallest proportion (1.0%, n = 6) from 
PSCs. Of 575 positive samples (LTs), the majority (5p7%) 
was from indoor collection.

Of 208 tested An. arabiensis, only 94.7% were positive. 
Of these positive bloodmeals, 91.8% were mixed blood-
meal (LTs-in and out) and 3.0% only of bovine bloodmeal 
origin. No single An. arabiensis specimen had blood 
from human only. However, the indoor and outdoor 
HBI (t = 1.587; df = 22; p = 0.127), BBI (t = 1.406; df = 22; 
p = 0.173), and overall HBI and BBI of An. arabiensis did 
not show any statistically significant difference between 
them (t = − 0.05; df = 22; p = 0.961).

The result of this study revealed that from 213 tested 
An. funestus specimens, only 95.8% were positive for 
bloodmeal ELISA. Of the total positive specimens, 91.5% 
had mixed bloodmeals (LTs, inside and outside), and the 
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Fig. 2  Abdominal statuses of Anopheles mosquito species in Bure district, Ethiopia. UF, unfed; F, fed; HG, half gravid; G, gravid

Table 2  Mean difference between hosts

Identified hosts (M ± SE)

Humans 4.419 ± 0.07a

Bovines (cattle) 4.681 ± 0.100a

Sheep 1.881 ± 0.093b

Donkeys 0.166 ± 0.045b

Mules 0.180 ± 0.046b

Hens 1.417 ± 0.252b

Dogs 0.2658 ± 0.05973b

Table 3  Distribution of bloodmeal sources of Anopheles mosquitoes in the three villages using LTs in Bure, Ethiopia, from July 2015 to 
June 2016

Villages Total numbers of tested 
mosquitoes (%)

Total tested positive 
mosquitoes (%)

Only human blood 
positive (%)

Only hovine blood 
positive (%)

Mixed

Bukta 88 (14.4) 79 (13.7) 2 (100) 7 (21.9) 70 (12.9)

Workmidr 58 (9.5) 56 (9.7) 0 4 (12.5) 52 (9.6)

Shnebekuma 463 (76.1) 440 (76.5) 0 21 (65.6) 419 (77.4)

All total 609 (100%) 575 (100) 2 (100) 32 (100) 541 (100)
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remaining 4.2% had only bovine. From mixed blood-
meals, 54.9% were from indoor and 40.8% from outdoor 
collection. However, a single bovine bloodmeal was 
found from indoor collection. The overall (single plus 
mixed) HBI of An. funestus was 91.5%, which was slightly 
less than that of the overall BBI (95.8%). However, the 
indoor and outdoor HBI (t = 1.322; df = 22; p = 0.2), BBI 
(t = 1.355; df = 22; p = 0.189) and overall HBI and BBI of 
An. funestus did not show any statistically significant dif-
ference between them (t = − 0.168; df = 22; p = 868).

A total of 122 specimens of An. coustani were tested 
for blood ELISA. Most (92.6%) were positive for blood 
feeding, and the rest had bovine (4.1%) and human blood 
meals only (1.6%). Of these, the overall mixed blood-
meal (LTs-in and out) was 86.9%. For all positive sam-
ples, 49.2% were from indoor collection and 43.4% from 
outdoor collection. An. coustani was the only species 
that had only human bloodmeals. However, the indoor 
and outdoor HBI (t = 0.546; df = 22; p = 0.591) and BBI 
(t = 0.662; df = 22; p = 0.515) as well as overall HBI and 
BBI of An. arabiensis did not show any statistically sig-
nificant differences between them (t = − 0.043; df = 22; 
p = 0.966). Similar to this species, both An. squamosus 
and An. cinereus did not show any statistically significant 
difference between the indoor and outdoor HBI and BBI 
and overall HBI and BBI (p > 0.05).

Foraging ratio and host feeding/preference index 
of Anopheles mosquitoes
The foraging ratio values and feeding preference index of 
Anopheles mosquitoes are presented in Table 5. Humans 
and cattle were the most common vertebrate hosts in the 
study area (Table 2). The FR for humans was slightly > 1.0 
for all Anopheles species. Similarly, the FR for cattle was 
slightly > 1.0 for all Anopheles species. Calculation of 

the HFI for each pair of vertebrate hosts revealed that 
humans were the preferred bloodmeal source for bovines 
for all species (except An. squamosus), but there was no 
marked host selection (Table 5).

Discussion
In this study, > 95% of Anopheline mosquitoes were 
collected by LTCs. This is identical to other findings in 
which more malaria vectors were trapped while host 
seeking than resting [52–56]. Of the 4703 collected mos-
quitoes, most (69.7%) were unfed. Consistent with our 
study, Fornadel et  al. [57] in Zambia, Bashar et  al. [58] 
in Bangladesh, and Getachew et al. [56] in Ethiopia col-
lected mostly unfed Anopheles mosquitoes using LTCs. 
These unfed mosquitoes are stimulated and attracted 
by the light generated by incandescent bulbs from light 
traps [58, 59]. As a result, mosquitoes were caught while 
searching for their bloodmeals before they took blood. 
However, contrary to this study, Animut et  al. [60] col-
lected more freshly fed than unfed Anophelines species 
using light traps in Ethiopia. The catches of more freshly 
fed mosquitoes using light traps could be due to the 
recapturing of mosquitoes after repeated feeding behav-
ior [61].

This study revealed that the majority of the bloodmeal 
sources of Anopheles mosquitoes were mixed bloodmeal 
(both human and bovine) (88.8%, n = 541), which was 
extremely large compared with single bloodmeal sources. 
Compared with villages, most blood-feeding mosquitoes 
were from Shnebekuma village (77.4%, n = 419). This 
implies that this village needs more attention than the 
rest.

The present study showed that no single An. arabi-
ensis specimen had a human bloodmeal origin. This 
is inconsistent with the reports of Massebo et  al. [62] 

Table 5  Foraging ratio (FR) and host preference/feeding index (HFI) of Anopheles mosquitoes in Bure, Ethiopia, from July 2015 to June 
2016

Hosts Vertebrate
Host, n (%)

Mosquito species HBI BBI Total FR HPI 
human: 
bovineHBI BBI

Human 1435 (48.6) An. arabiensis 91.8 – 1.88 – 1.03

Cattle 1520 (51.4) – 94.7 – 1.84

Human 1435 (48.6) An. funestus 91.5 – 1.88 – 1.01

Cattle 1520 (51.4) – 95.8 – 1.86

Human 1435 (48.6) An. coustani 88.5 – 1.82 – 1.03

Cattle 1520 (51.4) – 91 – 1.77

Human 1435 (48.6) An. squamosus 72.2 1.49 – 0.81

Cattle 1520 (51.4) – 94.4 – 1.84

Human 1435 (48.6) An. cinereus 83.3 – 1.71 – 1.06

Cattle 1520 (51.4) – 83.3 – 1.62
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(8.0%), Animut et  al. [60] (33.7%), Yewhalaw et  al. [63] 
(6%), Getachew et al. [56] (50.7%), and Ngom et al. [64] 
(40.1%) in Ethiopia and Senegal. On the other hand, the 
presence of single bovine blood origins of An. arabiensis 
(2.9%) was minimal compared to the reports of Massebo 
et  al. [64], Animut et  al. [60], Yewhalaw et  al. [63], and 
Getachew et al. [56], which found 7.1%, 38.2%, 23.5%, and 
20.9% bovine bloodmeals in Ethiopia, respectively (using 
LTs). This is probably due to the presence of high human 
populations as well as cattle for bloodmeal sources, 
diverting more An. arabiensis to feed on both humans 
and cattle.

In the present study, the majority of An. arabiensis had 
mixed bloodmeals, which was higher compared to other 
studies [56, 60, 63, 64] that reported 65%, 13.2%, 1.6%, 
and 4.4% in various parts of south and southwest Ethio-
pia, respectively. The highest proportion of mixed feed-
ing implies that the sites are mixed dwellings (humans 
and cattle) [29, 65]. The practice of having humans, cattle, 
hens, donkeys, mules, etc., in the same house (one house) 
was confirmed during this survey (personal observa-
tion), which contributes to having higher rates of mixed 
feeding because of the alternative hosts. Moreover, this 
is also probably associated with the very high incidence 
of disturbances [34] or climatic factors [58, 65]. Gener-
ally, in this study the proportion of mixed bloodmeals 
was higher than that of single feeding, implying that An. 
arabiensis has plasticity in feeding behavior in the area. 
Other studies also strengthen this finding [66–69].

The overall HBI and BBI and indoor and outdoor HBI 
and BBI of An. arabiensis did not show any statistically 
significant differences between them, which indicates 
opportunistic feeding behavior in the area. Similar feed-
ing preferences are reported from southern Ethiopia 
where people and livestock either share the same houses 
or where cattle are kept separate but close to houses dur-
ing the night [60, 70].

This study demonstrated that most An. funestus had 
mixed bloodmeals (humans and cattle) but no single 
human bloodmeal was detected, similar to An. arabien-
sis. The absence of a single human bloodmeal source is in 
agreement with the findings Massebo et al. [64] but con-
tradicts other studies [71, 72] that reported an extremely 
high single HBI for An. funestus in Kenya (90.8%, 99.5%) 
and Cameroon (98%), respectively. Therefore, our result 
indicated that An. funestus changes its bloodmeal sources 
from only humans [67, 73] to both cattle and humans. 
Various reports have indicated that An. funestus now 
feeds on the blood of humans, goats, calves, chickens, 
cows, dogs, goats, and equines [66–69], depending on the 
availability of host types.

The overall (single plus mixed) HBI and BBI and indoor 
and outdoor HBI and BBI of An. funestus did not show 

any statistically significant differences among them, indi-
cating its opportunistic feeding behavior in the area. 
However, the overall (single plus mixed) HBI (91.5%) 
and BBI (95.8%) of An. funestus were higher than other 
findings from Kenya (HBI = 25.2%; BBI = 57.7%) [68] and 
Ethiopia (HBI = 86.0%; BBI = 14.3%) [74]. These equal 
proportions of bloodmeal sources in our study were due 
to the practice of mixed dwelling activities in the three 
villages. In Ethiopia, An. arabiensis and An. funestus 
are well-known malaria vectors [12, 13]. In Bure dis-
trict, these species were found together with Plasmo-
dium species [76]. Therefore, the role of mixed dwellings 
and combination zooprophylaxis should be appreci-
ated to discourage the roles of these species in malaria 
transmission.

The blood ELISA result of An. coustani indicated that 
the majority (92.6%) of this species had mixed blood-
meals, and the rest had only bovine (4.1%) and human 
bloodmeals (1.6%). Though proportionally different, 
Muriu et al. [68] reported 71.4% and 5.4% of An. coustani 
feeding on humans and bovines blood alone in Kenya, 
respectively. In southwest Ethiopia, Getachew et al. [56]. 
also reported that An. coustani had 3.3% (2/59) human 
and 92.8% (64/69) bovine bloodmeals alone. In our study, 
An. coustani was found with human bloodmeals, which 
is corroborated by Getachew et al. [56]. On the contrary, 
Yewhalaw et al. [63] did not detect any An. coustani with 
human blood in southwest Ethiopia. Although this spe-
cies still was not confirmed as a malaria vector in Ethi-
opia, many studies in Ethiopia [63, 75, 76], Cameroon 
[77], and Kenya [78, 79] have reported An. coustani with 
malaria parasites (Plasmodium spp.). These results sug-
gest that An. coustani is responsible for malaria transmis-
sion in Bure district.

Moreover, the FRs for humans were > 1.0 for all of the 
anopheline species, except An. squamosus. Based on the 
HFIs for each pair of vertebrate hosts, humans were rel-
atively the preferred blood source for all tested species, 
except for An. squamosus. The limitation of this study 
is that the other bloodmeal sources of Anopheles mos-
quitoes (blood ELISA), such as sheep, donkeys, mules, 
hens, and dogs, were not determined although they were 
recorded in the district. Therefore, HFI could not be cal-
culated for the aforementioned vertebrate hosts.

Conclusions
This animal census survey indicated that humans, 
bovines, sheep, donkeys, mules, hens, and dogs were 
the common vertebrate hosts in the study area; how-
ever, the proportions of humans and bovines were sig-
nificantly high. Therefore, Anopheles mosquitoes have 
many alternative bloodmeal sources. Houses were 
traditional (made of mud) and served for cooking, 



Page 10 of 12Adugna et al. Parasites Vectors          (2021) 14:166 

sleeping, and tethering of livestock, resulting in higher 
indoor temperatures. Hence, this microclimate attracts 
more mosquitoes and provides more access to blood-
meal sources, and a relatively high proportion of indoor 
feeding mosquitoes were recorded.

All the anopheline mosquitoes assayed for blood 
ELISA indicated the presence of a high proportion of 
mixed bloodmeals (humans and cattle), which is very 
important compared to single human meals because 
mixed feeding tends to diminish the density of game-
tocytes in the mosquito stomach, thereby reducing the 
chance of fertilization of female gametes and reducing 
the chances of malaria vector infection [34, 58, 64, 68, 
80]. Moreover, among assayed anopheline mosquitoes, 
only An. coustani had solely human blood, implying 
that his species may be linked with malaria transmis-
sion. Therefore, proper investigation is required to gain 
certainty about its role as a malaria vector. Further con-
firmation is needed on whether the existing interven-
tion activity against An. coustani is fully effective or 
not. Combination zooprophylaxis should be reinforced 
as a means of vector control because the study sites are 
mixed dwellings.
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