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Abstract 

Background:  Entamoeba species harbored by humans have different degrees of pathogenicity. The present study 
explores the intra- and interspecific diversity, phylogenetic relationships, prevalence and distribution of tetra- and 
octonucleated cyst-producing Entamoeba in different Brazilian regions.

Methods:  Cross-sectional studies were performed to collect fecal samples (n = 1728) and sociodemographic data 
in communities located in four Brazilian biomes: Atlantic Forest, Caatinga, Cerrado, and Amazon. Fecal samples were 
subjected to molecular analysis by partial small subunit ribosomal DNA sequencing (SSU rDNA) and phylogenetic 
analysis.

Results:  Light microscopy analysis revealed that tetranucleated cysts were found in all the studied biomes. The 
highest positivity rates were observed in the age group 6–10 years (23.21%). For octonucleated cysts, positivity 
rates ranged from 1 to 55.1%. Sixty SSU rDNA Entamoeba sequences were obtained, and four different species were 
identified: the octonucleated E. coli, and the tetranucleated E. histolytica, E. dispar, and E. hartmanni. Novel haplotypes 
(n = 32) were characterized; however, new ribosomal lineages were not identified. The Entamoeba coli ST1 subtype 
predominated in Atlantic Forest and Caatinga, and the ST2 subtype was predominant in the Amazon biome. E. histol-
ytica was detected only in the Amazon biome. In phylogenetic trees, sequences were grouped in two groups, the first 
containing uni- and tetranucleated and the second containing uni- and octonucleated cyst-producing Entamoeba 
species. Molecular diversity indexes revealed a high interspecific diversity for tetra- and octonucleated Entamoeba 
spp. (H ± SD = 0.9625 ± 0.0126). The intraspecific diversity varied according to species or subtype: E. dispar and E. histo-
lytica showed lower diversity than E. coli subtypes ST1 and ST2 and E. hartmanni.

Conclusions:  Tetra- and octonucleated cyst-producing Entamoeba are endemic in the studied communities; E. 
histolytica was found in a low proportion and only in the Amazon biome. With regard to E. coli, subtype ST2 was 
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Background
Entamoeba species harbored by the human digestive 
tract have different degrees of pathogenicity and impact 
on public health [1]. Although some species are consid-
ered commensal and non-pathogenic, E. histolytica can 
cause serious, life-threatening, and invasive infections 
such as amoebic dysentery and liver abscess [2]. Enta-
moeba histolytica produces tetranucleated cysts which 
are indistinguishable from those produced by E. dispar. 
The similarity of the cysts led to the adoption of the 
nomenclature E. histolytica/E. dispar complex, which 
also includes Entamoeba moshkovskii, another tetranu-
cleated cyst-producing species. Although E. dispar and 
E. moshkovskii are considered to have less pathogenic 
potential [3], they have occasionally been associated with 
invasive disease [4, 5]. These findings have led to the need 
for further studies to assess the epidemiology of indistin-
guishable tetranucleated amoebas [3]. Entamoeba species 
that parasitize other animals can also infect humans [6].

Entamoeba coli, which are considered a commensal 
and harmless organism, produce octonucleated cysts and 
can be considered a marker of inadequate sanitary con-
ditions, denoting greater exposure to other fecal patho-
gens. Recently, however, potential pathogenicity has been 
attributed to this species. Mexican children infected with 
E. coli have higher levels of stool leucocytes than unin-
fected children, pointing to the possibility of intestinal 
inflammatory activity triggered by this organism [7, 8]. 
Additionally, considerable intraspecific genetic variability 
has been demonstrated for E. coli, which can be divided 
into two subtypes: E. coli ST1 and E. coli ST2 [9].

Typically, the clinical detection of Entamoeba spe-
cies in fecal samples has been performed through light 
microscopy. However, the overlap of morphological char-
acteristics between some species and the morphological 
and size variation in structures are limiting factors for 
microscopic species-specific diagnosis [10]. The imple-
mentation of molecular tools for Entamoeba species 
characterization has enabled a greater understanding of 
their taxonomy, phylogenetic relationships and epidemi-
ology [11].

Despite recent advances, the proportion of house-
holds without sanitation systems in many regions of Bra-
zil remains high. The country has great socioeconomic, 
environmental and demographic diversity, and appro-
priate access to drinking water is restricted in many 

communities. Similarly, peri-urban and urban communi-
ties in large Brazilian cities in more industrialized states 
frequently have poor sanitation infrastructure. In the 
present study, we explored the species composition, the 
inter- and intraspecific genetic diversity and phylogenetic 
relationships, and the prevalence and distribution of 
Entamoeba species infecting populations living in differ-
ent Brazilian biomes.

Methods
Description of study area and population, study design 
and sampling
Communities from cities located in four Brazilian biomes 
were selected: Cachoeiras de Macacu (CAM) in the state 
of Rio de Janeiro (Atlantic Forest biome), Teresina (TER) 
and São João do Piauí (SJPI) in Piauí (Cerrado and Caat-
inga biomes, respectively), and Santa Isabel do Rio Negro 
(SIRN) in Amazonas and Bagre (BAG) in Pará (Amazon 
biome) (Fig.  1). In the five municipalities, the studied 
communities had precarious access to drinking water 
and poor sanitation systems, to varying degrees and for 
distinct reasons. Table 1 shows the socio-environmental 
and demographic characteristics of each municipal-
ity and the number of individuals included in each one. 
These regions differ with respect to climate, proportion 
of the population living in poverty and human develop-
ment index, among other parameters. Cross-sectional 
studies were carried out in the included areas to collect 
fecal samples and sociodemographic data. Entamoeba 
spp. fecal samples were identified as positive using para-
sitological methods (Ritchie’s modified ethyl acetate cen-
trifugation) [12].

DNA extraction, polymerase chain reaction (PCR) and DNA 
sequencing
Fecal samples positive on light microscopy were sub-
jected to molecular analyses for species characterization 
and phylogenetic studies. In addition, some Entamoeba 
spp.-negative samples on microscopy were selected, 
randomly or when another individual from the same 
household was positive, to be tested by PCR. This was 
performed in order to improve the number of DNA 
sequences for genetic analyses. Genomic DNA was 
extracted from 200  µl of the sedimented fecal material 
using the ZR Fungal/Bacterial DNA MiniPrep™ extrac-
tion kit (Zymo Research, Irvine, CA, USA). PCR was 

predominant in the Amazon biome. The molecular epidemiology of Entamoeba spp. is a field to be further explored 
and provides information with important implications for public health.
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performed using the Platinum Taq DNA Polymerase kit 
(Invitrogen, Waltham, MA, USA), with a final volume of 
50 μl. The small subunit rRNA gene locus (SSU rDNA) 
of Entamoeba spp. (550 base pairs [bp]) was targeted for 
amplification, as described in Verweij et al. [13]. Amplifi-
cation conditions were as follows: each deoxynucleoside 
triphosphate at 200 mM, 25 pmol of each specific primer, 
10X PCR buffer, 1 U of Taq DNA Polymerase, and 5 μl of 
the DNA sample. The thermal cycling conditions were as 
follows: initial denaturation of 5 min at 94  °C, 35 cycles 
of 30 s at 94 °C, 30 s at 55 °C, and 30 s at 72 °C; and final 
extension of 2 min at 72 °C. The PCR products were puri-
fied with polyethylene glycol (PEG) [14] and sequenced 
using the BigDye Terminator v3.1 kit (Applied Biosys-
tems, Foster City, CA, USA) in an ABI 3730 automated 
DNA sequencer (Applied Biosystems).

Data analysis
The obtained sequences were edited and analyzed using 
BioEdit version 7.2.5 software [15]. The Basic Local 
Alignment Search Tool (BLASTn; NCBI https://​www.​
ncbi.​nlm.​nih.​gov/) was used to verify similarity with 

Entamoeba species. The obtained sequences were depos-
ited in GenBank under accession numbers MW026735–
MW026794. BioEdit version 7.2.5 [15] was used to align 
and cut the sequences into equal fragments (542 bp). 
Phylogenetic inferences were performed using Molecu-
lar Evolutionary Genetics Analysis (MEGA) version 
7.0.20 software [16]. The maximum likelihood (ML) and 
neighbor joining (NJ) methods were applied. The substi-
tution model for the data set was chosen using the Bayes-
ian information criterion (BIC) in MEGA version 7.0.20 
software [16]. According to the lower BIC score, the 
Tamura 3-parameter model (T92) was chosen. Branch 
support was provided by bootstrapping with 1000 repli-
cations. Entamoeba spp. orthologous sequences (n = 46) 
were used to construct an alignment using the BLASTn 
tool against the Nucleotide Collection (nr/nt) database 
(https://​www.​ncbi.​nlm.​nih.​gov/​nucle​otide/) (Additional 
file 1: Table S1). The reference sequences were selected to 
be representative of the genus. Sequences with degener-
ate bases were not included.

A median-joining (MJ) haplotype network was con-
structed in Network version 10.1.0.0 software [17] (www.​

Fig. 1  Map of the studied areas in Brazil. The map was created using Google Earth Pro

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/nucleotide/
http://www.fluxusengineering.com
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fluxu​sengi​neeri​ng.​com), with the input file previously 
prepared in DnaSP (DNA Sequence Polymorphism) 
version 6 software [18]. Diversity indexes of tetra- and 
octonucleated Entamoeba populations were determined 
using the pairwise distance in Arlequin version 3.5.2.2 
software [19]. The pairwise Fst (fixation index) value was 
tested in all populations using Arlequin version 3.5.2.2 
software [19] to estimate the extent of genetic differentia-
tion among populations with a significance of 1000 ran-
dom permutations.

Results
Study population
Figure  2 presents the detection rates for tetra- and 
octonucleated Entamoeba cysts in fecal microscopic 
examinations in distinct age groups and settings. In the 
Amazon and Atlantic Forest biomes, tetranucleated cysts 
were found in fecal samples from children up to 2 years 
of age, with positivity rates ranging from 3.8 to 10.3%, 

respectively. In these biomes, one of the highest rates was 
found in the age group of 11–15 years, reaching 26.5%. In 
the four studied states, octonucleated cysts were detected 
through microscopy in 1–20.6% of children up to 2 years 
of age, and 10.8–49.3% of children aged 6–10 years.

Molecular epidemiology and genetic diversity 
of Entamoeba spp.
A total of 60 SSU rDNA Entamoeba spp. sequences 
(542 bp) were obtained from fecal samples. The BLAST 
analyses revealed four different Entamoeba species: E. 
coli (n = 32), E. dispar (n = 18), E. hartmanni (n = 8) 
and E. histolytica (n = 2) (Table 2). With regard to the E. 
histolytica/E. dispar complex, the Amazon biome pre-
sented the greatest species diversity. In Piauí, only E. 
dispar was identified. With respect to E. coli, ST1 pre-
dominated in Rio de Janeiro and Piauí, and ST2 was pre-
dominant in Amazonian states (Amazonas and Pará). 
Figure 3 displays the ML and NJ trees inferred from uni-, 

Table 1  Sampling, sociodemographic and environmental characteristics of distinct study areas

AM Amazonas, PA Pará, PI Piauí, RJ Rio de Janeiro

*MPCHI—monthly per capita house income, **USD 1 = BRL 4

Characteristic Biome

Amazon Cerrado and Caatinga Atlantic forest

Santa Isabel do Rio Negro 
(AM)

Bagre (PA) Teresina (PI) São João do Piauí (PI) Cachoeiras de Macacu (RJ)

Population 22.404 30.673 864.845 20.601 58.937

Human development index 0.479 0.471 0.751 0.645 0.700

Gini index 0.35 0.37 0.50 0.45 0.45

Year of study 2011 2020 2017 2018 2018

Localization of districts 
included

Urban Urban Rural Rural Urban and rural

Fecal samples 392 362 298 131 545

Income (MPCHI*, USD**)

 ≤ 45 302 (77%) 209 (57.7%) 153 (51.4%) 67 (51.1%) 192 (35.2%)

 > 45 90 (23%) 163 (44.9%) 145 (48.6%) 64 (48.9%) 290 (53.2%)

Data not available – – – – 63 (11.6%)

Water supply Negro River and artesian 
wells

Furo Santa Maria 
River (Baía de 
Marajó)

Artesian wells Artesian wells and 
water stored in 
cistern

Macacu River and artesian 
wells

% open evacuation – 142/362 (39%) 106/298 (35.5%) 63/131 (48%) –

Gender

 Male 207 188 147 69 284

 Female 185 174 151 62 261

Age group (years)

 0–2 87 80 11 7 99

 3–5 108 83 15 7 120

 6–10 142 135 29 14 184

 11–15 49 62 35 27 235

 > 15 – – 207 76 5

Data not available 6 – 1 – 43

http://www.fluxusengineering.com
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Fig. 2  The green and brown bars show the number of positive and negative fecal samples for the presence of tetranucleated (a) and 
octonucleated (b) Entamoeba cysts by light microscopy among subjects studied, by age group, in the four states; red lines depict the proportion of 
positive samples
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tetra- and octonucleated Entamoeba spp. cysts, with 
a total of 106 Entamoeba SSU rDNA sequences (n = 60 
sequences from the present study plus 46 reference 
sequences). Two major groups were observed, the first 
one containing uni- and tetranucleated cyst-producing 
Entamoeba species, and the second containing Enta-
moeba species producing uni- and octonucleated cysts. 
The main differences between the two trees were as fol-
lows: (i) in the ML tree, E. moshkovskii was grouped in a 
single clade (Fig. 3a), while in the NJ tree it was grouped 
together with other tetranucleated cyst-producing Enta-
moeba species (Fig.  3b); and (ii) Entamoeba RL5, RL6 
and E. insolita were grouped in a single clade on the NJ 
tree, while on the ML tree they were grouped close to E. 
hartmanni. 

Among 28 samples containing tetranucleated Enta-
moeba cysts, only two were characterized as the patho-
genic E. histolytica. The other 26 were identified as E. 
hartmanni or E. dispar. Entamoeba histolytica was 
identified only among isolates from the Amazon biome 
(Amazonas, n = 2); E. dispar was identified in the Cer-
rado (Teresina, Piaui, n = 2) and Amazon biomes (Pará, 

n = 10, and Amazonas, n = 6). E. hartmanni was charac-
terized only in the Amazon biome (Pará and Amazonas 
in five and three samples, respectively). No Entamoeba 
moshkovskii or uninucleated cyst-producing Entamoeba 
species were found.

Entamoeba coli was the species most commonly found 
(n = 32) and was present in all localities studied. Both E. 
coli subtypes ST1 (n = 12; 37.5%) and ST2 (n = 20; 62.5%) 
were identified. Subtype ST1 was described in all regions 
studied (Piauí, n = 5; Rio de Janeiro, n = 2; Amazonas, 
n = 3; and Pará, n = 2), while ST2 was found almost 
exclusively in the Amazon region (Amazonas, n = 9 and 
Pará, n = 10) (Fig. 4).

The MJ haplotype network based on tetra- and octo-
nucleated cyst-producing Entamoeba showed a similar 
topology to the ML tree discriminating species or sub-
types (Fig.  5). A total of 60 SSU rDNA sequences from 
the present study plus 29 reference sequences were dis-
tributed in 55 haplotypes. Thirty-six different haplotypes 
were identified in our sequences, and several new haplo-
types were found. In E. coli ST1 and ST2, five and 13 new 
haplotypes were characterized, respectively. Entamoeba 

Table 2  Molecular diversity indexes of tetra- and octonucleated cyst-producing Entamoeba based on SSU rDNA locus (542 bp, n = 89)

H ± SD: gene diversity ± standard deviation. All*: E. dispar, E. histolytica, E. hartmanni, E. coli, Entamoeba sp., E. moshkovskii, E. ecuadoriensis, E. bangladeshi, E. nuttalli, 
E. muris, E. terrapinae, E. insolita, E. invadens, Entamoeba RL7, Entamoeba RL10, Entamoeba RL5, Entamoeba RL6. Further details for reference strains can be found in 
Additional file 1: Table S1. Bold indicates sequences obtained in this study (Brazil). BAG Bagre, CAM Cachoeiras de Macacu, SIRN Santa Isabel do Rio Negro, SJPI São 
João do Piauí, TER Teresina

Species (N) Region (N) Statistics

H ± SD No. of 
haplotypes

No. of 
polymorphic 
sites

No. of 
substitutions

No. of transitions No. of 
transversions

E. coli (38) All ST1 (16) 0.816 ± 0.095 9 45 44 27 17

Brazil (12) 0.772 ± 0.127 7 44 44 27 17

BAG + SIRN (5) 0.700 ± 0.218 3 5 5 3 2

TER (2) 1.0000 ± 0.5000 2 1 1 1 0

SJPI (3) 0.6667 ± 0.3143 2 4 4 2 2

CAM (2) 1.000 ± 0.500 2 7 7 3 4

All ST2 (22) 0.952 ± 0.029 15 52 57 26 31

Brazil (20) 0.957 ± 0.028 14 52 57 26 31

BAG + SIRN (19) 0.959 ± 0.030 14 52 57 26 31

Entamoeba dispar (21) All (21) 0.500 ± 0.132 7 26 22 16 6

Asia (3) 0.000 ± 0.000 1 0 0 0 0

Brazil (18) 0.568 ± 0.137 7 26 22 16 6

TER (2) 0.625 ± 0.139 7 26 22 16 6

BAG + SIRN (16) 0.000 ± 0.000 1 0 0 0 0

E. hartmanni (10) All (10) 0.977 ± 0.054 9 28 24 16 8

Brazil (8) 0.964 ± 0.077 7 28 24 16 8

E. histolytica (6) All (6) 0.533 ± 0.172 2 4 2 1 1

North America (3) 0.000 ± 0.000 1 0 0 0 0

Brazil (2) 0.000 ± 0.000 1 0 0 0 0

All* (89) 0.9625 ± 0.0126 55 353 272 203 199
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hartmanni, E. dispar and E. histolytica had seven, six and 
one new haplotype, respectively. Entamoeba dispar and 
E. coli subtype ST1 presented a star-shaped haplotype 
network (Fig. 5), with a central and dominant haplotype. 
Interestingly, most of our samples belong to this ancestral 
haplotype.

Analysis of molecular diversity indexes revealed high 
interspecific diversity for tetra- and octonucleated Enta-
moeba spp., with H ± SD = 0.9625 ± 0.0126 and 353 
polymorphic sites (Table  2). The intraspecific diversity 
varied according to species or subtype. Entamoeba dispar 
and E. histolytica showed lower intraspecific variability 

(H ± SD = 0.500 ± 0.132 and 0.533 ± 0.172, respectively) 
than E. coli subtypes ST1 and ST2 and E. hartmanni (H 
± SD = 0.816 ± 0.095, 0.952 ± 0.029, and 0.977 ± 0.054, 
respectively) (Table  2). The intraspecific variability of 
these two species was similar to the interspecific variabil-
ity for the species. The Fst results corroborate the diver-
sity analysis results (Additional file  2: Table  S2). The E. 
dispar sequences from different Brazilian biomes showed 
low Fst values, indicating no isolation between popula-
tions. For E. coli ST1 and ST2 sequences, even with high 
genetic variability, there was no evidence of significant 

Fig. 3  a Maximum likelihood and b neighbor-joining trees inferred from uni-, tetra- and octonucleated cyst-producing Entamoeba spp. SSU rDNA 
locus (542 bp, n = 106). Support for the branching order was determined b 1,000 bootstrap replicates, and only values > 70% are reported. The 
number of nuclei in the mature cyst are shown. BAG Bagre, CAM Cachoeiras de Macacu, SIRN Santa Isabel do Rio Negro, SJPI São João do Piauí, TER 
Teresina. GenBank accession numbers are indicated. Further details for reference strains can be found in Additional file 1: Table S1
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isolation between populations (Additional file 2: Table S2 
and Fig. 5).

Tetra- and octonucleated cyst co-infections were iden-
tified by microscopy in 18.6% (72/387) of fecal samples. 
Of these, 39 samples were subjected to PCR. Overlapping 
peaks were not observed in the sequences, indicating 
failure to detect co-infections. Table 3 shows the results 
obtained by microscopy and PCR. All fecal samples col-
lected (n = 1728) were subjected to the traditional para-
sitological technique (Ritchie’s modified ethyl acetate 
centrifugation) and microscopy. It was not possible to 
perform PCR on all samples due to technical or logistical 
limitations. Two hundred and fifty-three samples were 
subjected to PCR. Of these, 65.3% (77/118) were positive 
for both techniques and 34.7% (41/118) were PCR-posi-
tive and microscopy-negative (Table 3). Finally, 60 Enta-
moeba spp. sequences were successfully obtained (50.8% 

of PCR amplifications), and many sequences from other 
organisms were identified, including fungi, bacteria, 
plants and other intestinal protozoa (Endolimax, Ioda-
moeba and Blastocystis genera) (data not shown).

Discussion
In the present study, we describe high positivity rates for 
infection by Entamoeba spp. in economically vulnerable 
communities with poor health infrastructure in different 
regions of Brazil. Amebiasis is a water- and food-borne 
disease with strong socio-environmental determinants, 
and its distribution is poverty-related and heterogeneous 
among human populations [20–22] and remains endemic 
in many Brazilian regions.

We characterized species and subtypes of Entamoeba 
spp. circulating in different communities. The interspe-
cific variability of Entamoeba spp. based in SSU rDNA 

Fig. 4  Map of the haplotypes found by locality, Brazil. The colors in the graphs represent the diversity of haplotypes found for each species. The 
map was created using QGIS version 3.12.3
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locus was high, H close to 1. Our results draw attention 
to the characterization of new haplotypes for all Enta-
moeba species. Of the 36 haplotypes found, only four 
had already been described. These four haplotypes were 
in a central region of the haplotype network, indicating 

their ancestral nature, as in E. dispar and in E. coli ST1 
and ST2. In addition, 14 new haplotypes described here 
originated from these ancestral haplotypes. Despite 
this, no new ribosomal lineages were identified. Among 
the members of the family Entamoebidae, the genus 

Fig. 5  Haplotype network based on SSU rDNA locus of tetra- and octonucleated cysts of Entamoeba (542 bp, n = 89). Area of the circle is 
proportional to number of sequences

Table 3  Entamoeba spp. microscopy and PCR results in the present study

Only fecal samples positive on light microscopy were subjected to molecular analyses for species characterization and phylogenetic studies. Some Entamoeba spp. 
negative samples on microscopy were selected, randomly or when another individual from the same household was positive, to be tested on PCR. AM Amazonas, PA 
Pará, PI Piauí, RJ Rio de Janeiro. N: absolute number. (%): percentage. *Includes microscopy positive and negative results. **Sequences from other organisms were also 
obtained, including fungi, bacteria, plants and other intestinal protozoa (Endolimax genus)

Biome/locality Samples Result

Microscopy-positive
N (%)

PCR-positive*
N (%)

Microscopy-
positive + PCR-
positive
N (%)

Microscopy-
negative + PCR-
positive
N (%)

Entamoeba 
spp. sequences 
obtained**
N (%)

Amazon

 Santa Isabel do Rio Negro (AM) 392 160/392 (40.8) 38/98 (38.7) 16/38 (42.1) 22/38 (57.9) 23/38 (60.5)

 Bagre (PA) 362 65/362 (17.9) 36/59 (61) 30/36 (83.3) 6/36 (16.7) 27/36 (75)

Caatinga and Cerrado

 Teresina (PI) 298 59/298 (19.7) 14/26 (53.8) 10/14 (71.4) 4/14 (28.6) 4/14 (28.5)

 São João do Piauí (PI) 131 31/131(23.6) 16/33 (48.4) 13/16 (81.3) 3/16 (18.7) 4/16 (25)

Atlantic Forest

 Cachoeiras de Macacu (RJ) 545 72/545 (13.2) 14/37 (37.8) 8/14 (57.1) 6/14 (42.9) 2/14 (14.2)

Total 1728 387/1728 (22.3) 118/253 (46.6) 77/118 (65.3) 41/118 (34.7) 60/118 (50.8)
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Entamoeba is the most well studied due to the patho-
genic potential of certain species. In the phylogenetic 
trees generated in the present study, sequences were 
grouped into two groups for the Entamoeba genus, as in 
Stensvold et al. [9] and Jacob et al. [23]. However, some 
differences could be seen. Another limitation of the study 
is the fact that we obtained sequences of 542 bp, which 
corresponds to one third the size of the gene chosen for 
the analyses. This generated relatively low bootstrap val-
ues in some branches of the phylogenetic trees.

The most evident difference was that the uninucleated 
E. polecki species was grouped in the same group as the 
octonucleated E. coli, unlike Stensvold et  al. [9], where 
it was grouped with the uni- and tetranucleated species. 
Our result is similar to the study by Jacob et al. [23], in 
which E. polecki shared a common ancestor with the 
octonucleated E. coli. Another evident difference was 
E. moshkovskii, which shared a common ancestor with 
uni- and tetranucleated in our ML tree. In contrast, in 
the NJ tree, this species shared a common ancestor with 
the tetranucleated species E. ecuadoriensis, E. dispar, E. 
histolytica, E. nuttalli and E. bangladeshi, as in Stensvold 
et al. [9] and Jacob et al. [23]. Additionally, E. hartmanni 
shared a common ancestor with E. insolita, E. terrapinae 
and Entamoeba RL5 and RL6 in the ML tree. In the NJ 
tree this species shared a common ancestor with E. ter-
rapinae, as seen in Stensvold et  al. [9]. Other small dif-
ferences were seen when compared with Stensvold 
et  al. [9] and Jacob et  al. [23]. The differences observed 
between our study and previous studies can be explained 
by the fact that we did not use all the sequences avail-
able in GenBank, since we selected reference sequences 
without degenerate bases. Moreover, these results make 
us wonder whether the SSU rDNA locus or the “number 
of nuclei in the mature cyst” morphological character 
are suitable for the taxonomic classification of the Enta-
moeba genus. Apparently much still needs to be studied 
to understand the genetic complexity of members of this 
genus.

The main finding regarding tetranucleated cyst-produc-
ing Entamoeba species was the low proportion of E. his-
tolytica found in the obtained sequences. Most sequences 
were characterized as E. dispar or E. hartmanni, consid-
ered nonpathogenic species. It is speculated that E. dis-
par and E. hartmanni are responsible for most infections 
that were previously considered to be associated with E. 
histolytica [3, 24, 25]. In fact, molecular epidemiological 
studies show that E. dispar is the species most commonly 
found among the tetranucleated cysts [21, 26–29]. Our 
results revealed that E. dispar presented a wider geo-
graphic distribution, whereas E. histolytica was identified 
only in the Amazon biome. Our results corroborate other 
studies conducted in Brazil, which have suggested that E. 

histolytica is more common in northern and northeast-
ern Brazil and is less frequently detected in other regions 
[26, 30, 31]. However, we cannot rule out a sample bias 
and limitations in the PCR technique that could favor the 
amplification of one species over another.

In this study, we found only one haplotype for E. his-
tolytica, and it was distinguished from the haplotype 
previously described in North America, Africa and Asia 
(X65163, E. histolytica HM-1:IMSS strain) [32–34]. In 
an overview of the diversity of Entamoeba histolytica by 
Zermeño and colleagues [35], they argue that although 
many haplotypes are found in only a single country, there 
are no lineages within the networks that may be related 
to a particular geographic region or infection outcome. 
These positive subjects in the present study had no symp-
toms. We must consider that most E. histolytica infec-
tions can be asymptomatic and that only 10% of those 
infected have symptoms [36–38].

The intraspecific variability of E. hartmanni was as high 
as the interspecific variability of the Entamoeba genus. In 
addition, among the eight sequences obtained from E. 
hartmanni, seven different haplotypes were found. More-
over, and all sequences were obtained in the Amazon 
biome. Only one haplotype obtained has been previously 
described in humans and nonhuman primates (100% 
similarity to KX618191 and AF149907, respectively) [39, 
40]. Previous studies have suggested low variability for 
E. hartmanni based on restriction fragment length poly-
morphism and SSU rDNA sequencing [9, 41]. However, 
the real epidemiological significance of the high diversity 
found in the present study remains to be clarified.

The phylogenetic trees and MJ network revealed two 
main clusters for E. coli corresponding to the previously 
described subtypes ST1 and ST2 in Stensvold and col-
leagues [9]. In the present study, Entamoeba coli ST1 
had a wider geographic distribution, being identified in 
all studied biomes, with the presence of five new haplo-
types. Two previously described haplotypes were found, 
one isolated from humans in Nigeria (FR686364) [9] and 
the other from humans in the USA and nonhuman pri-
mates in Germany (AF149915 and FR686410, respec-
tively) [9, 39]. Entamoeba coli ST2 subtype was identified 
in the Caatinga and Amazon biomes, being the predomi-
nant subtype in the Amazon. Twenty sequences were 
obtained and 13 new haplotypes were described. Only 
one haplotype has been previously described, isolated 
from humans in England (AF149914) [41]. It is hypoth-
esized that the ST1 subtype is more common than ST2 
in humans [42], and ST2 was recently identified in wild 
nonhuman primates in Asia and Africa [43, 44]. It is 
intriguing to observe a large number of new E. coli ST2 
subtypes in humans living in the Amazon rainforest, the 
habitat of great diversity of neotropical primates.
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We observed that 65.3% of the samples had a posi-
tive result with both techniques used (microscopy and 
PCR). Moreover, despite a reasonable number of PCR-
positive samples (n = 118), we were only successful in 
sequencing and obtaining Entamoeba spp. SSU rDNA 
sequences in 50.8% of them. This makes us reflect on 
the limitations of the techniques used as well as of the 
fecal samples. Many factors can influence the success of 
the analysis, including low parasitic load in the sample 
and randomness in pipetting, unspecific PCR amplifica-
tions (multiple bands on the agarose gel), limitations in 
the PCR technique (primer binding, reaction), intrinsic 
limitations of the fecal samples (presence of microbiota 
and in different counts), and differences in the sensitiv-
ity of the techniques used. In addition, non-Entamoeba 
spp. sequences were obtained in this study, such as 
fungi or bacteria, which makes the analysis difficult and 
time-consuming.

The microscopy identified co-infections with octo- and 
tetranucleated cysts. In contrast, by direct nucleotide 
sequencing it was not possible to verify the presence of 
more than one species, and only a small amount of “back-
ground” was present in chromatograms. The species 
identified in the sequencing were related to the number 
of cysts observed under microscopy, in which more cysts 
represent more DNA available for PCR. The morphologi-
cal similarity between E. histolytica and E. dispar, and the 
unusual large cysts of E. hartmanni, can also lead to misi-
dentification [26], making microscopic analysis problem-
atic for the diagnosis of non-symptomatic amebiasis.

As mentioned above, the communities included in 
the present study are situated in four different biomes 
with very distinct climates. Human populations in the 
Amazon, Caatinga and Cerrado regions have a higher 
prevalence of intestinal parasites, a higher incidence of 
diarrheal diseases and a lower proportion of the popula-
tion with access to adequate sanitation and safe drinking 
water [45–48]. Although there are great differences in 
both the supply of drinking water and the water resource 
management strategies in these regions, in both there is a 
shortage of clean water for human consumption [47, 49].

In Brazil, intestinal parasitism control strategies target 
soil-transmitted helminths through mass albendazole 
administration. Moreover, the precarious conditions 
of sanitation and water management systems in some 
regions contributes to the current trend in the etiologi-
cal profile of intestinal parasitism, characterized by the 
permanence of protozoan infections, with a reduction 
in the prevalence of soil-transmitted helminths [50–52]. 
Even though intestinal infections with soil-transmitted 
helminths are a major problem, affecting mainly children 
worldwide, estimates from the Global Burden of Disease 
Study indicate that other agents, including intestinal 

protozoa, are responsible for more than 6 million disabil-
ity-adjusted life years (DALYs) [51].

Conclusion
Tetra- and octonucleated cyst-producing Entamoeba 
species are endemic in the studied communities, which 
represent low-income regions with nonexistent or 
insufficient sanitation systems. The pathogenic E. his-
tolytica was found in a low proportion and only in the 
Amazon biome. Additionally, other tetranucleated spe-
cies were commonly found in the studied regions. The 
distribution of Entamoeba species in Brazil is clini-
cally important information, since many E. histolytica-
positive parasitological examinations in fact represent 
infections with non-pathogenic species within the E. 
histolytica/E. dispar complex or E. hartmanni. Enta-
moeba coli subtypes present a geographically uneven 
distribution, with the ST2 subtype—commonly found 
in nonhuman primates—being predominant in the 
Amazon biome.
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