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Wolbachia: endosymbiont of onchocercid 
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Abstract 

Background: Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a 
spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and 
onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male 
killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional 
fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual 
metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host.

Methods: This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and 
evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-
reviewed scientic papers available in various authenticated scientific data bases were considered while writing the 
review.

Conclusions: The information presented provides an overview on Wolbachia biology and its use in the control and/
or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers 
the development of new approaches for the control of a variety of vector-borne diseases.
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Background
Endosymbiosis is an intimate form of symbiotic asso-
ciation in which one organism dwells within the body 
of another, forming a spectrum of relationships from 
parasitism to obligatory mutualism [1]. Many obligate 
mutual symbiotic associations are based on metabolic 
complementation and strengthen or increment the bio-
chemical versatility and pathways of one or both hosts 
[2, 3]. Wolbachia is a striking example of this mechanism 
in both onchocercid nematodes and arthropod vectors 
[4]. Though many endosymbionts have been observed 
in arthropod and nematode hosts, Wolbachia is the one 
which is most widely distributed and explored [4]. Like 
the mitochondria organelle, this obligate intracellular 

gram-negative bacterium is also transmitted through the 
host germ line to the next generation [5]. After the ini-
tial discovery in the reproductive organs of Culex pipiens 
mosquito by M. Hertig and S. B. Wolbach in 1924 [6], 
the description of this bacterium took another 12 more 
years [7]. In the late 1960s and early 1970s, ultrastruc-
tural studies on filarial nematodes revealed the presence 
of unusual intracellular bodies in the oocyte hypoder-
mis of these worms, which were interpreted as bacteria 
[8–10] and later identified as Wolbachia by Sironi and 
colleagues [11]. Currently, this endosymbiont has been 
reported in around 50% of terrestrial arthropod species 
(i.e. insects, mites, crustaceans, spiders, scorpions,  col-
lembolans) and  in several species of onchocercid nema-
todes [12, 13]. Similarly, this bacterium has also been 
identified in non-filarial plant nematodes, Radopho-
lus similis [14] and Pratylenchus penetrans of the order 
Tylenchida [15]. In onchocercid nematodes, Wolbachia 
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has a mutual association in which it is involved in embry-
ogenesis, moulting, growth and survival [16] of the filar-
iae, and it has been hypothesised that the worm provides 
essential aminoacids for bacterial growth [17]. However, 
in arthropods, the “parasitic side” of Wolbachia prevails, 
in that this bacterium manipulates the host reproduction 
to increase its own fitness and spread into the host popu-
lation [18, 19]. Reproductive manipulations exerted by 
Wolbachia on its hosts have extensively been investigated 
and include male killing, feminization, parthenogenesis 
and cytoplasmic incompatibility (CI) [4]. The effects of 
Wolbachia presence on its hosts (i.e. host biology, physi-
ology, immunity, ecology, evolution and reproduction) 
have been exploited for the development of promising 
endosymbiont-based strategies for the treatment of fila-
riasis and for the control of important vector-borne dis-
eases of medical and veterinary relevance [4]. This review 
details Wolbachia’s evolution, molecular identification, 
interaction with arthropods and nematodes and the 
development of endosymbiont-based treatment and con-
trol strategies.

Evolutionary history of Wolbachia
Wolbachia evolved and adapted to its intracellular life-
style in the context of an evolutionary change that 
included other obligatory intracellular organisms (such 
as the ancestors of Rickettsia, Ehrlichia, Anaplasma and 
Midichloria) and extended over a hundred million years, 
starting from ancient alphaproteobacteria [20–22]. Wol-
bachia has a small genome (0.8–1.7 Mbp) with large 
segments of mobile and repetitive DNA, which is uncom-
mon in vertically transmitted (generally from mother to 
offspring) organisms [4, 23]. Despite the erosive genomic 
processes due to host restriction and acquisition main-
tenance, these repetitive host DNA sequences are sup-
posed to play a major role in the evolution of Wolbachia 
[24]. Balance among vertical transmission, host switch-
ing, recombination insertion sequences and bacte-
riophage sequences helps in the adaptation and global 
distribution of Wolbachia [4, 22]. Based on their main 
genetic evolution in a large variety of hosts, Wolbachia 
have been classified in 17 supergroups, designated by the 
letters A to S [23, 25, 26]. Exceptions are represented by 
supergroup G, which was lately been withdrawn because 
of the high probability of being the result of a genetic 
recombination  event [27, 28], and supergroup R from 
cave spiders [29], which showed a strong association with 
Wolbachia strains of supergroup A, based on genetic dis-
tance measures and phylogenetic analyses [30]. Overall, 
Wolbachia of arthropods is categorised in supergroups 
A, B, E, H, I, K, that of nematodes in C, D, J [31] and 
supergroup L only in plant-parasitic nematodes [15]. 
Supergroup F is an exception which is common in many 

arthropod species such as termites, spiders, mites [32], 
bugs (i.e. Cimex lectularius and Montina sp.) [33] and in 
human filariae (i.e. Mansonella) [34–36], filariae of black 
bear, (Cercopithifilaria japonica) [12] and that of geckoes 
(Madathamugadia hiepei) [37]. Currently, a complete 
genome of Wolbachia from the supergroup F is avail-
able from the wCle strain of C. lectularius [2] and wMhie 
strain of M. hiepei [23].

In particular, supergroups A and B are the most rep-
resented among arthropods and it is estimated that the 
common ancestor of both would have diverged approxi-
mately 58–67 million years ago. Though estimation of 
the origin of Wolbachia is a controversial topic and a 
suitable outgroup for phylogenetic analysis of Wolbachia 
is unavailable, it has been suggested that arthropod and 
onchocercid nematode supergroups diverged around 
100 million years ago (i.e. 500 million years after their 
host) [38, 39]. It is important to note that these estima-
tions were based on small samplings. The presence of 
Wolbachia in phylogenetically distant hosts such as 
nematodes and arthropods suggests that these endosym-
bionts experienced some type of horizontal transmission 
during their ancient evolution. For example, a horizon-
tal transfer of Wolbachia could have occurred from one 
host phylum to the other; alternatively, one of the two 
phyla could have acquired Wolbachia from a third party 
[39]. Incongruence in phylogenies of Wolbachia and 
their arthropod hosts (e.g. the unnatural occurrence of 
identical Wolbachia strains in distantly related species) 
can also be explained by the horizontal transmission of 
these endosymbionts [38, 40, 41]. In addition, ecological 
events occurring in the transmission and global distribu-
tion of this bacterium in arthropods include the relation-
ship between and amongst hosts, such as in the case of 
parasitism, phoresis [42], predation and cannibalism [43], 
blood contact after injury [44], presence in parasitoids 
[45] or just sharing of common food substrates [46].

Unlike arthropods, phylogenetic congruence of nema-
todes with Wolbachia indicates an obligatory dependent 
relationship with the organism, followed by host-para-
site co-evolution and vertical transmission via infected 
females [34, 39]. Though the association between Wol-
bachia and nematodes has been hypothesised to have 
been acquired as a single event [34, 39], recent genome 
analyses suggest multiple events of acquisition of Wol-
bachia with local coevolutionary patterns in differ-
ent major lineages and wider presence of transposable 
elements in supergroup D (i.e. in Wolbachia from the 
Onchocerca genus) [13, 23]. Moreover, different pat-
terns of symbiosis among various filarial nematodes 
may be due to multiple acquisitions of the bacteria and/
or selective pressures imposed on it [23]. The strongest 
coevolution pattern has been observed in Onchocerca 
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spp. especially in Onchocerca lupi, Onchocerca gutturosa, 
Onchocerca lienalis, Onchocerca volvulus and Oncho-
cerca ochengi, strongly supported by global fit analyses 
[13]. Furthermore, the detection of Wolbachia-like gene 
transcript in Onchocerca fluxosa, which in turn is the 
only known Onchocerca species devoid of Wolbachia, 
suggests the ancestral presence of this symbiont in this 
nematode [47, 48]. Accordingly, the absence of Wol-
bachia in anuran onchocercid nematodes indicates that 
they would have diversified before the first bacterial inva-
sion in onchocercid lineage (i.e. around 110 million years 
ago) [25, 39, 49]. However, the presence of supergroup 
F in both insects and filariae of humans, black bear and 
geckoes makes understanding of the whole picture even 
more complicated.

Molecular detection and identification of Wolbachia
Though the genus Wolbachia has a relatively small 
genome (i.e. 0.8–1.7 Mbp) it encompasses large phylo-
genetic variations [23, 39]. Amongst target genes, 16S 
rRNA showed a nucleotide divergence from 0.2% to 
2.6% [50] but provided limited information for infer-
ring phylogenetic relationships [50]. Hence, the genetic 
characterisation using 16S rRNA is complemented 
by a set of  housekeeping genes (e.g. FtsZ,  groEL,  gltA 
and  coxA)  mainly for the phylogenetic analysis [31] 
(Table  1). Wolbachia surface protein (wsp) gene, 
ten times more variable than 16S rRNA and FtsZ, is 
employed to identify different groups and strains of 
Wolbachia [51, 52] but not for large-scale phylogenetic 
analysis since it is affected by recombination amongst 
supergroups [28]. Moreover, groE is also used for strain 
differentiation because of the faster evolution rate of 
non-coding regions that separate the coding heat shock 
protein (HSP) genes (i.e. groES and groEL) [53]. There-
fore, PCR coupled sequencing of a combination of genes 
should be employed to assess the group relationships in 
Wolbachia [54]. It has been estimated that multiple infec-
tions can be detected by techniques such as quantitative 
PCR with highly specific primers [55, 56], cloning and 
sequencing [57], and southern hybridization [58]. Simi-
larly, loop-mediated isothermal amplification (LAMP) 
is used in resource-limited laboratories for the simulta-
neous detection of more than one strain of Wolbachia 
[59]. A metagenomics-based approach can be employed 
to provide whole-genome sequence information for all 
associated endosymbionts of a nematode or an arthropod 
vector [60–63].

To date, eight complete genomes (i.e. wBm of Bru-
gia malayi, wBp of Brugia pahangi, wOo of Oncho-
cerca ochengi, wOv of Onchocerca volvulus, wDimm, 
Dirofilaria immitis, wCtub of Cruorifilaria tubero-
cauda, wDcau of Dipetalonema caudispina, wLsig of 

Litomosoides sigmodontis) and three draft genomes 
of Wolbachia from filarial nematodes have been pub-
lished (i.e. wLbra of Litomosoides brasiliensis, wWb of 
Wuchereria bancrofti and wMhie of Madathamugadia 
hiepei) [17, 23, 64–67]. Of the 36 complete genomes and 
55 draft genomes of Wolbachia available, 84% belong to 
supergroups A and B [23]. Advanced genome analyses on 
Wolbachia suggest that supergroups A and B were origi-
nated by genetic isolation events rather than convergent 
evolution [68]. As per genome analyses, the relation-
ship between onchocercid nematodes and Wolbachia 
may represent a “genetic addiction” rather than mutual-
ism [1]. Compared to arthropods, the filarial nematode 
genome has smaller size (i.e. 863,427 bp for wDcau versus 
1,267,782 bp for wMel from Drosophila melanogaster or 
1,801,626 bp for wFol from Folsomia candida), presence 
of fewer transposable elements as insertion sequence 
elements (ISs) and group II intron-associated genes, 
prophage-related genes and repeat-motif proteins as 
ankyrin domains [23]. Data analyses on intragenomic 
recombinations, transposable elements, chromosome 
rearrangements, mutational bias and gene loss or gain on 
different supergroups revealed that supergroup C strains 
have a very low number of genomic rearrangements, pau-
city of insertion sequence elements and strong GC asym-
metric distribution, which is considered to be due to the 
long-term obligate symbiotic relationship with their host 
[69]. Further addition of the genome of new Wolbachia 
strains from different filarial nematodes will help to do 
detailed analyses and to have a clear picture on the diver-
gent symbiotic mechanisms and the evolutionary pattern 
of this bacterium.

Wolbachia in onchocercid nematode vectors
First reported in Cx. pipiens [7], Wolbachia is a wide-
spread endosymbiont among arthropods with an esti-
mated prevalence ranging from 20 to around 75%, 
according to different studies [38, 70]. Indeed, arthro-
pods have been found to be infected with single (e.g. C. 
lectularius) or multiple Wolbachia variants (e.g. Drosoph-
ila simulans, Cx. pipiens) in the same species or even in 
the same insect individuals (i.e. superinfection) [71–74] 
(Table  2). Unlike onchocercid nematodes, arthropod-
Wolbachia association is more parasitic, in that the 
bacteria obtain fitness advantage by the reproductive 
manipulations of the host [16, 75–77]. Apart from these, 
the bacterium is involved in iron homeostasis of the 
host and confers immunity to viral/onchocercid nema-
tode infections, thereby reducing the vector capacity of 
their hosts [78–80]. This has been demonstrated in Aedes 
aegypti infected by Wolbachia popcorn strain (wMelPop) 
wherein the symbiosis conferred protection to the mos-
quitoes against onchocercid nematodes and Plasmodium 
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Table 1 Molecular approaches for the detection of Wolbachia in vectors and onchocercid nematodes

Primer name Gene targeted Type of PCR Product size References

99F, 99R 16S rRNA cPCR 895 [50, 164]

Wspecf, Wspecr 16S rRNA cPCR 438 [165]

16SWolbf, 16SWolbr 16S rRNA cPCR 1014 [34]

INTF1, INTR 16S rRNA cPCR 130 [166]

INTF2, INTR2 16S rRNA cPCR 136 [166]

553F_W, 1334R_W 16S rRNA cPCR 781 [54]

WolbF, Wspecr 16S rRNA cPCR [167]

63f, 1387R, 76f, 1012R 16S rRNA Nested PCR 852 [168]

WN16S-F, WN16S-R 16S rRNA qPCR [169]

W-Specf, W-Specr, 16S rRNA qPCR 438 [170]

W-Specf, W16S 102

WSPintF, WSPintR wsp cPCR 576 [34, 114, 168]

81F, 691R wsp cPCR 610 [51, 171]

136 F, 691R wsp (Group A) 556

308 F, 691R wsp (Subgroup Mel) 405

328 F, 691R wsp (Subgroup AlbA) 379

173F, 691R wsp (Subgroup Mel and AlbA) 541

181F, 691R wsp (Subgroup wPap) 506

165F, 691R wsp (Subgroup wAus) 506

81F, 531R wsp (Subgroup wPap and wAus) 460

81 F, 522R wsp (Group B) 442

183F, 691R wsp (Subgroup Pip) 501

wspF, wspR, grF, grR wsp qPCR [172]

wspTMF, wspTMR wsp qPCR [59]

WSP.F3, WSP.B3, WSP.FIP, WSP.BIP wsp LAMP assay [173]

FIP_wMel/wPop wsp (wMel/ wPop) LAMP assay [59]

BIP_wMel/wPop

F3_wMel/wPop

B3_wMel/wPop

LpF_wMel/wPop

LpB_wMel/wPop

ftsZ_F1, ftsZ_R1 FtsZ cPCR 524 [40]

FtsZUniF, FtsZUniR FtsZ cPCR [174]

ftsZfl, ftsZrl FtsZ cPCR 1043–1055 [38]

Wol1F, Wol1R, Wol7F, Wol7R FtsZ Nested PCR 147 [175]

MLST primers 16 s rRNA, gatB, FtsZ, hcpA, fbpA
coxA. wsp

MLST [40]

ftsZ 291, ftsZ 477 FtsZ qPCR [176]

WSP 420, WSP 583 wsp

Bm-wFtsZ-F, BmwFtsZ-R FtsZ qPCR [96]

groEL-F, groEL-R groEL cPCR [32]

WgroF1, WgroRev1 groEL cPCR 873 [35]

WgltAF1, WgltARev1 Citrate synthase (gltA) cPCR 627 [35]

FbpA_F1, FbpA_R1 FbpA cPCR 509 [40]

hcpA_F1, hcpA_R1 HcpA cPCR 516 [40]

coxA_F1, coxA_R1 coxA cPCR 487 [40]

COIintF, COIintR COI cPCR 689 [34]

Wseq01F, Wseq02R gatB cPCR 471 [31]
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gallinaceum parasites [79, 81]. The wide host range, tissue 
distribution and ability to perpetuate in insect popula-
tions render Wolbachia very attractive as a tool to reduce 
the vector potentiality of their host [82, 83] also thanks 
to its capability to determine reproductive manipula-
tions (e.g. CI, parthenogenesis, male killing, feminization 
and meiotic drive) [84, 85]. By these phenotypic altera-
tions, the symbiont gives more reproductive advantage 
to infected over uninfected individuals or genders [63]; in 
general, Wolbachia is more beneficial for the individuals 
of the female sex, by virtue of the matriline vertical trans-
mission [63]. In males, Wolbachia affects genes involved 
in sex differentiation and development by altering the 
DNA methylation whereas in females it might interfere 
with steroid hormone signalling [86]. In addition to this, 
Wolbachia wMelPop infection in Ae. aegypti mosquitoes 
produces hypomethylation/demethylation of genomic 
DNA, affecting 699 genes involved in apoptosis, defence 
response, phagocytosis, circadian rhythm, life span and 
locomotion behaviour [87–89]. The above changes may 
be capitalized as a mean for controlling vector-borne 
diseases [90] through life-shortening and increased loco-
motor activity and metabolism of mosquito vectors [90]. 
Overall, the above factors may indeed alter the mosquito-
pathogen relationship reducing the vectorial capacity 
of mosquitoes. In addition, the ability of Wolbachia to 
inhibit the replication of viral RNA can be used to sup-
press virus infection by transinfecting mosquitoes with 
proper Wolbachia strains [78, 91]. Therefore, though the 
exact mechanism of such inhibition is not known, Wol-
bachia can be used as a biocontrol agent to effectively 
control viral pathogens such as dengue, yellow fever and 
chikungunya viruses and other vector-borne pathogens 
such as filarial nematodes and the malaria parasite, P. gal-
linaceum [92–94].

Wolbachia in onchocercid nematodes
Wolbachia are obligatory endosymbionts required for 
the reproduction, development and long-term survival 
of onchocercid nematodes [95] and it has been hypoth-
esized that they get from them, in return, essential ami-
noacids [17]. This endosymbiont is present in gradually 
increasing density from L1 to the adult filarioid [16, 
96] of three subfamilies of Onchocercidae (i.e. Oncho-
cercinae, Dirofilariinae and Splendidofilariinae) and in 
16 of the 26 genera examined [12, 13, 49, 97] (Table 3). 
Indeed, most species in Litomosoides or Onchocerca gen-
era have been found infected with Wolbachia but only 
one in the genus Cercopithifilaria (i.e. Cercopithifilaria 
japonica) [49, 97, 98]. However, there is a huge diversity 
in the localisation of these bacteria in tissues of differ-
ent onchocercid nematodes and even between male and 
female individuals within the same species [97, 99]. In 

general, this bacterium is present in the female reproduc-
tive system and throughout embryonic development in 
the uterus of females (Fig. 1) being vertically transmitted 
to the progeny through the egg cytoplasm [49, 97, 100]. 
Other target tissues are the hypodemal lateral cords of 
the majority of onchocercid nematodes (e.g. Onchocerca, 
Brugia, Dirofilaria) and the intestinal cells of Mansonella 
(i.e. supergroup F) [12]. Nonetheless, the presence of 
Wolbachia may vary based on the species of onchocer-
cid nematodes, being absent/less dense in lateral cords of 
Loxodontofilaria caprini [101] and Onchocerca dewittei 
japonica [97, 99]. Therefore, though the distribution of 
this endosymbiont is mostly concentrated in lateral cords 
and reproductive organs of the host, it exhibits different 
tropism to tissues during embryogenesis [12, 102]. In 
supergroups C and D there are similar patterns of embry-
onic segregation of Wolbachia with vertically transmit-
ted bacteria reaching the lateral cords of the embryo by 
asymmetric mitotic segregation up to the ovaries [102, 
103]. Though many investigations have focussed on the 
effects exerted by Wolbachia on the life performances 
of onchocercids, the role of this endosymbiont is still 
unclear [75, 102]. Five biosynthetic pathways (e.g. heme, 
riboflavin, FAD, glutathione and nucleotide synthesis) 
are present only in Wolbachia but not in any other rick-
ettsiales or in onchocercid nematode hosts [17] as some 
involved genes (e.g. heme-biosynthesis genes) are absent 
in the onchocercid genome [64, 104]. In addition, the 
whole genome sequencing of Wolbachia from Brugia 
malayi (wbm) gave some clues regarding the role played 
by this bacterium in the filarial life cycle [17]. For exam-
ple, the presence of heme metabolism and/or  riboflavin 
genes in the wbm genome suggested a role of this bacte-
rium in iron metabolism of the onchocercid nematodes 
[17, 104] though the transport, degradation and regula-
tion of heme within filarial parasites remain a mystery 
for the scientific community. Therefore, the inhibition of 
nematode moulting following an antibiotic therapy tar-
geting Wolbachia has been linked to the lack of produc-
tion of ecdisone-like hormones because of the absence 
of heme, involved in the biochemical paths above [17, 
105]. Similarly, heme inhibitors interfered with the vital-
ity of onchocercid nematodes [106]. Though heme and 
nucleotide biosynthetic pathways are more conserved in 
all Wolbachia genomes, pathways like vitamin B are more 
variable in onchocercid nematodes (e.g. the hypothesis of 
Wolbachia providing vitamin B7 is clear in some insects 
such as bedbugs or grasshoppers but not demonstrated 
in filarial nematodes) [23]. In addition, the absence of 
Wolbachia and of any other biosynthesis pathways in 
the genome of Loa loa [107, 108] might suggest the pres-
ence of other alternative pathways for the essential nutri-
tional requirement for this onchocercid species, a still 
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Table 3 Onchocercid nematodes, their hosts and location, vectors and the main supergroup of Wolbachia detected

Onchocercids Host Location Vector Wolbachia 
supergroup

References

Onchocercinae [102]

 Acanthocheilonema dracun-
culoides

Canids Coelomic cavity and subcuta-
neous tissue

Hippobosca
Heterodoxus

NA [102]

 Acanthocheilonema recondi-
tum

Canids Subcutaneous tissue Ctenocephalides
Pulex
Heterodoxus

Absent [102]

 Acanthocheilonema viteae Rodents Subcutaneous tissue Ornithodoros Absent [102]

 Acanthocheilonema 
odendhali

Northern fur seal – – Absent [13]

 Brugia malayi Humans Lymphatic system, lymph 
nodes, testes

Mansonia
Anopheles
Aedes

D [102]

 Brugia pahangi Dogs, felids Lymphatic system, lymph 
nodes, testes

Anopheles
Aedes

D [102]

 Brugia timori Humans Lymphatic system, lymph 
nodes, testes

Anopheles
Aedes

D [102]

 Cercopithifilaria grassii Dogs Subcutaneous tissue Rhipicephalus spp. NA [102]

 Cercopithifilaria japonica Ursidae (Black bear) Oesophageal and tracheal 
connective tissue

– F [12]

 Cercopithifilaria crassa Sika deer Dermis Ixodid ticks Absent [12]

 Cercopithifilaria longa Sika deer Subcutaneous connective tis-
sues between muscles and 
skin of limbs and trunk

Ixodid ticks Absent [12]

 Cercopithifilaria minuta Japanese serow Skin Ixodid ticks Absent [12]

 Cercopithifilaria multicauda Japanese serow Skin Ixodid ticks Absent [12]

 Cercopithifilaria roussilhoni Brush–tailed porcupine Skin Ixodid ticks Absent [12]

 Cercopithifilaria shohoi Japanese serow Skin Ixodid ticks Absent [12]

 Cercopithifilaria tumidicer-
vicata

Japanese serow Skin Ixodid ticks Absent [12]

 Litomosa westi Rodents Abdominal and pleural 
cavities

Ornithonyssus spp. D [49]

 Litomosoides sigmodontis Rodents Coelomic cavity Ornithonyssus D [102]

 Litomosoides taylori Water nectomys Abdominal cavity Suspected to be mites or 
bat flies

D [12]

 Litomosoides braziliensis Bats Abdominal cavity Suspected to be mites or 
bat flies

D [13, 49, 207]

 Litomosoides solarii Bats Abdominal cavity Suspected to be mites or 
bat flies

D [13, 207]

 Litomosoides hamletti Bats Abdominal cavity Suspected to be mites or 
bat flies

D [49, 207]

 Litomosoides galizai Murids Coelomic cavity Bdellonyssus bacoti D [49]

 Litomosa chiropterorum Absent [12]

 Litomosa yutajensis Absent [12]

 Litomosoides chagasfilhoi Mongolian gerbils Abdominal cavity Ornithonyssus bacoti D [208]

 Loxodontofilaria caprini Serows Subcutaneous tissue mainly 
of limbs

Simulium japonicum
T. japonensis (suspected 

vector)

C [12, 209]

 Montanema martini Typical striped grass mouse Skin Ixodid ticks Absent [12]

 Mansonella ozzardi Humans Coelomic cavity Culicoides
Simulium

F [49, 210]

 Mansonella perstans Humans and monkeys Coelomic cavity Culicoides F [102, 210]

 Mansonella streptocerca Humans and monkeys Intradermal Culicoides grahamii NA [102, 210]

 Mansonella perforata Sika deer Dermis Culicoides spp. F [12, 210]

 M. (T.) atelensis amazonae Primates, Cebidae Subscapular region Culicoides spp. F [12, 210]
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Table 3 (continued)

Onchocercids Host Location Vector Wolbachia 
supergroup

References

 Onchocerca cervicalis Equids Nuchal ligament Culicoides C [102]

 Onchocerca gutturosa/ 
Onchocerca lienalis

Bovids Nuchal ligament, connec-
tive tissue, gastro splenic 
ligament

Simulium arakawae Simulium 
daisense Simulium kyush-
uense

Culicoides

C [12, 209]

 Onchocerca lupi Canids – Unknown C [102]

 Onchocerca ochengi Bovids Intradermal Simulium C [102]

 Onchocerca volvulus Humans Subcutaneous tissue Simulium C [102]

 Onchocerca armillata Bovids
occasionally
camel

Thoracic aorta Midges (Culicoides),
Blackflies (Simulium)

C [12]

 Onchocerca borneensis n. sp. Suids Footpads of the hind limbs C [12]

 Onchocerca dewittei 
japonica

Suids Nodular fibrous structures in 
the footpads of fore- and 
hind limbs

Simulium bidentatum C [12, 207, 209]

Onchocerca caprini Bovids Skin Simulium sp. C [12]

 Onchocerca suzukii Bovids Subcutaneous tissue of the 
body, mainly in the thoracic 
area and pelvic limbs

Simulium japonicum
Prosimulium sp. (Suspected 

vector)

C [12, 209]

 Onchocerca cervipedis Cervids Subcutaneous tissues of the 
legs

Prosimulium impostor Simu-
lium decorum Simulium 
venustum

C [211]

 Onchocerca boehmi Equids Arteries and veins of the 
limbs

Not known C [212]

 Onchocerca skrjabini Cervids, bovids Subcutaneous tissues of 
muzzle, hocks and to a 
lesser extend in brisket and 
shoulder

Simulium arakawae, Simulium 
bidentatum, Simulium oita-
num (Putative vector)

C [12, 209]

 Onchocerca eberhardi Cervids Carpal ligament Simulium arakawae, Simulium 
bidentatum, Simulium oita-
num (Putative vector)

C [12, 209]

 Onchocerca gibsoni Bovines Subcutaneous and intermus-
cular nodules

Culicoides spp. C [34]

 Onchocerca fasciata Camels Subcutaneous tissue and 
nuchal ligament

Unknown – [213]

 Onchocerca jakutensis Red deer, humans Tissues of the outer thigh and 
the caudal part of the back; 
eye, neck and face nodules

– [214]

 Wuchereria bancrofti Humans Lymphatic system, lymph 
nodes, testes

Culex
Anopheles
Aedes

D [102]

 Dipetalonema gracile Capuchin monkey Abdominal cavity Culicoides spp. J [13, 207, 215, 
216]

 Dipetalonema robini New world monkey Peritoneal cavity Culicoides spp. J [13, 207, 216]

 Dipetalonema caudispina New world monkey Peritoneal cavity Culicoides spp. J [13, 207, 216]

 Dipetalonema graciformis New world monkey Peritoneal cavity Culicoides spp. J [216, 217]

 Malayfilaria sofiani Tree shrews Tissues surrounding the 
lymph nodes of the neck

Not known D [207]

 Cruorifilaria tuberocauda Capybara Kidney Not known J [13]

 Yatesia hydrochoerus Capybara Skeletal muscle Amblyomma sp? J [13]

Breinlia (Breinlia) jitta-
palapongi

Tanezumi rat Peritoneal cavity – Absent [13]

Dirofìlariinae

 Dirofilaria immitis Canids, felids Right ventricle pulmonary 
artery

Aedes C [102]
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open question that needs to be addressed by the scientific 
community along with the screening of new drug targets 
for filarial control. 

Wolbachia as a modulator of host inflammation 
and immunity
Filariasis has an extremely complex immunopathology 
with adult parasites surviving in immune competent 
patients for many years [49]. Many filarial nematodes 
harbour Wolbachia at all stages of their life cycle [49] 
except a few species such as L. loa, Acanthocheilonema 
viteae, O. flexuosa and Setaria equina [106, 109]. One 
of the main concerns in the treatment of filarial worms 
is related to the host inflammatory response provoked 
by the death of adult or larval worms within the para-
sitized tissues [77]. Under the above circumstances, the 
use of doxycycline targeting Wolbachia causes a soft kill-
ing of onchocercid nematodes with a slow death of adult 
parasites (over 12–24  months), preceded by a block of 
embryogenesis and larval development with clearing 
of microfilariae from blood or skin, thus preventing the 
pathology [110–112]. However, Wolbachia also plays a 
major role in the pathogenesis of both acute and chronic 

Table 3 (continued)

Onchocercids Host Location Vector Wolbachia 
supergroup

References

 Dirofilaria repens Canids, felids Subcutaneous tissue Culex
Aedes

C [102]

 Loa loa Humans Subcutaneous tissue Chrysops Absent [102]

 Foleyella candezei Rainbow agama Subcutaneous tissue Absent [12]

 Pelecitus fulicaeatrae Black-necked grebe Ankle region Lice Absent [13]

Setariinae

 Setaria equina Horses Coelomic cavity Aedes Absent [102]

 Setaria tundra Roedeer Peritoneal cavity Aedes sp., Anopheles sp. Absent [13]

 Setaria digitata cattle Peritoneal cavity Aedes, Culex, Anopheles, 
Hyrcanus, Armigeres

Absent [12]

Splendidofilariinae

 Cardiofilaria pavlovskyi Eurasian golden oriole Body and pericardial cavity – NA [13]

 Madathamugadia hiepei Turner’s thick-toed gecko – Phlebotomus sp.? F [13]

 Aproctella sp. 1 Rufous-bellied Thrush
Green-winged saltator

– – Absent [12]

Icosiellinae

 Icosiella neglecta Marsh frog, Edible frog Muscle, subcutaneous tissue – Absent [13]

Oswaldofilariinae

 Oswaldofilaria petersi Crocodilurus Mesentery, intestine and 
thigh muscles

– Absent [13]

 Piratuba scaffi Lizard jungle runner Skin Absent [12]

Waltonellinae

 Ochoterenella phyllomedusa Toads – Culicine mosquitoes Absent [13]

 Ochoterenella royi Cane toad – – Absent [12]

 Ochoterenella sp. 1 Giant leaf frog – – Absent [12]

Fig. 1 Wolbachia in an embryo of the nematode Dirofilaria immitis 
(transmission electron microscopy observation). W: Wolbachia 
bacteria; n: nucleus; scale bar: 0.6 µm (Photograph of Luciano Sacchi 
and Claudio Bandi, Modified from Bergey’s Manual of Systematic 
Bacteriology, volume 2: The Proteobacteria) [221]
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filariasis, which may cause severe systemic adverse reac-
tions to chemotherapy as well as ocular inflammation by 
activating pro-inflammatory and immunomodulatory 
mechanisms in the host in cases of O. volvulus infection 
[113] (Fig. 2). Hence, Wolbachia has multiple roles in fila-
riasis (i.e. activation of proinflammatory pathogenesis, 
immunomodulation of the host and survival of the para-
site) starting from the entry of the parasite to the estab-
lishment of the infection [102].

Wolbachia stimulates a proinflammatory immune 
response to onchocercid nematodes by interacting with 
the host monocytes, macrophages, dendritic cells and 
neutrophils [77]. Indeed, Wolbachia may elicit a host 
immune response by activating the innate and adap-
tive responses in human and murine models of fila-
riasis infection [102]. Generally, in bacterial infections, 
the host innate immune system recognises pathogen-
associated molecular patterns (PAMP) associated with 
bacteria which are presented by pattern recognition 
receptors (PRP) including the Toll-like receptors (TLR) 
located on the surface of antigen-presenting cells [77] 
(Fig. 2). Though lipopolysaccharides (LPS) act as a major 
PAMP in most bacterial infections, the absence of genes 
required for LPS biosynthesis in the Wolbachia genomes 
suggests that the Wolbachia surface protein (WSP) is a 
predominant PAMP involved in the immunopathology of 

filarial diseases [106, 114, 115]. Recently, further evidence 
on the immune-modulating property of WSP showed 
that the Asaia endosymbiotic bacterium engineered 
for the expression of this protein induces classical mac-
rophage activation, associated with the killing of Leish-
mania parasites [116].

In addition to WSP, other PAMPs of Wolbachia include 
HSP 60 and groEL, and all these molecules mainly elicit 
TLR 2 or TLR 6 recognition and signalling [77]. In par-
ticular, WSP produces inflammation and regulatory 
marker expression (i.e. T lymphocyte antigen 4) while 
HSP 60 acts on monocytes and produces cytokines and 
TNFα, which induce an adaptive immune response 
against onchocercid nematodes [102, 113, 117]. Hence, in 
O. volvulus pathology, TLR 2 activates macrophages and 
local stromal cells contributing to the neutrophil-medi-
ated corneal inflammation and permanent destruction of 
the cornea [118, 119]. In chronically ill patients, repeated 
invasion of larvae and their death produce inflammatory 
cell influx, eventually causing permanent tissue dam-
age by neutrophil degranulation and the production of 
cytotoxic products such as nitric oxide (NO), myeloper-
oxidase and oxygen radicals [119]. It is believed that, in 
bancroftian patients, Wolbachia with its TLR2 signalling 
triggers  vascular endothelial growth factor A and  angi-
opoietin-1 production, which produces the dilatation of 

Fig. 2 Role of Wolbachia in onchocecid nematode infections. Wolbachia induced changes in the host immune system such as immunomodulation 
for the survival of nematodes and various steps in the development of the immunopathology in filarial diseases are summarized
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scrotal lymph vessels [120] (Fig. 2). This is supported by 
the results obtained after the administration of doxycy-
cline [121]. Absence of such immunological response by 
the extracts of the worm A. viteae, which have no Wol-
bachia endosymbiont, supports the above findings [113, 
117].

In addition to the contribution in immunopathology, 
Wolbachia plays a defensive mutualistic role in filarial 
biology (e.g. O. ochengi) by triggering the recruitment 
of more neutrophils, which will help to prevent the 
degranulation of eosinophils needed for the eradication 
of filarial worms [122]. A similar reaction is also observed 
in human D. immitis infection wherein WSP prevent the 
neutrophil apoptosis [123]. Moreover, further in vitro 
studies on blood cells from patients with O. volvulus sug-
gested that chronic Wolbachia stimulation may cause 
the downregulation of pro-inflammatory mediators by 
increasing the production of interleukin 10 (IL-10) and 
thus help in establishing chronic infection [124]. In addi-
tion, it is suggested that together with filarial antigens, 
Wolbachia may induce generation of NO, which aids in 
the peripheral tolerance through apoptosis of antigen-
specific T lymphocytes [125]. This manipulation of the 
host immune system helps to increase the longevity of 
onchocercid nematodes [126, 127] (Fig.  2). Moreover, 
a stronger immune reaction in response to the release 
of L3 larvae than to the dead worm indicates the pre-
dominant role of these bacteria at the development of 
the early stage of the worm [77]. Wolbachia with its TLR 
2-dependent signalling helps the filarial L3 larva estab-
lishment by surpassing chemokine (c–c motif ) ligand 17 
(CCL 17)-mediated immune response of the host [128].

Exploiting Wolbachia for treatment
Current filariasis treatment control and Mass Drug 
Administration (MDA) programmes are focussed on the 
use of microfilaricides such as albendazole combined 
with either ivermectin or diethylcarbamazine [129]. 
Though this treatment regime helped to reduce the num-
ber of human cases of filariases, the long duration of 
treatment (e.g. 17  years for onchocerciasis and 5  years 
for lymphatic filariasis), the development of resistance 
to ivermectin in endemic areas as well as adverse reac-
tions to ivermectin treatment in certain epidemiological 
conditions (e.g. onchocerciasis-loasis co-endemic areas) 
hampered the global elimination of the diseases [110, 
130]. Hence, chronic debilitating pathological alterations 
and the economic burdens in endemic countries due to 
long-term treatment and control programmes high-
lighted the need for an alternative effective short-term 
potential drug target for filariasis.

Based on the unique obligatory symbiotic relation-
ship Wolbachia has established with these onchocercid 

nematodes (e.g. embryogenesis and moulting) and 
the role of these bacteria in the immunopathology of 
filarial diseases, a major mission of the anti-Wolbachia 
(A∙WOL) consortium was to exploit the Wolbachia-
filarial biology for controlling human infection [131]. 
Studies suggested that anti-Wolbachia therapy has both 
macrofilaricidal (i.e. death of adult parasites and devel-
opmental retardation) and microfilaricidal embryotoxic 
activity. Indeed, antibacterial agents such as doxycycline 
were found to be effective in clearing microfilarial stages 
from the blood and skin of patients, therefore preventing 
filarial pathology and reducing the transmission [131]. 
Moreover, the slow death of adult parasites over a period 
of 12–24 months in patients treated with doxycycline is 
safe to use in geographical regions were onchocerciasis 
and loiasis occurred in sympatry [110–112]. However, 
the mechanism of action of doxycycline in the treatment 
of filariases was not well understood until transcriptomic 
and proteomic analysis unveiled that the responses of 
Wolbachia to doxycycline cause impairment of bacterial 
metabolism [132]. Meta-analytical modelling suggests 
that a 4-week doxycycline course suffices to eliminate 
Wolbachia with low chances of developing drug resist-
ance when compared to other antibiotics like penicillin 
or fluoroquinolones [133, 134]. However, the limited use 
of this drug in pregnancy, lactating mothers and children 
motivated the scientific community to search for other 
anti-Wolbachia drugs [127, 131]. As a result, more than 
2 million compounds have been tested in insect cell lines 
and A∙WOL was formed with the objective to identify 
new anti-Wolbachia drugs with a short course of therapy, 
which could be safe in contraindicated groups [135, 136]. 
Mass screening of all registered antibacterials revealed 
four drugs as superior to doxycycline with minocycline 
as the most effective drug of choice [137]. Recent experi-
mental trials claim that the use of Tylosin A, a mac-
rofilaricide, is superior to tetracycline antibiotics (e.g. 
doxycycline and minocycline) and will help to reduce the 
duration of treatment from 3–4 to 1–2 weeks [131].

Targeting Wolbachia for vector control
Vector control methods mainly focus on the physi-
cal removal of their breeding sites in the environment 
or on- and off-host application of insecticides target-
ing immature or adult stages [138]. A combination of 
factors such as human population growth, globaliza-
tion, rapid rise in population-dense towns, expansion of 
the geographical range of vectors and development of 
insecticide resistance affected the control of vectors and 
associated pathogens [139, 140]. Hence, the search for 
an alternative vector control approach may target either 
reducing the vector population or modifying the vector 
to make it refractory to pathogen transmission [138]. 
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For example, the abundance of Wolbachia among vec-
tors and its high rate of maternal transmission conjoined 
with CI have spurred the interest of researchers in new 
target strategies for vector control. It was discovered that 
Wolbachia can protect its natural host Drosophila mela-
nogaster from pathogenic viruses, such as Drosophila 
C virus [138, 141]. Since then, many Wolbachia strains 
have been found to block the transmission of a range 
of medically important viruses and parasites [138, 142]. 
Thus, it was proposed that the use of large numbers of 
Wolbachia-infected males to sterilize local uninfected 
females through CI (incompatible insect technique, IIT) 
coupled with a pathogen-blocking Wolbachia strain 
could be effectively gradually replace the local permissive 
natural vectors with refractory insects [143]. Therefore, 
a non-profit research consortium, namely the “World 
Mosquito Program” (WMP), formerly known as the 
“Eliminate Dengue Program”, was instituted to eliminate 
mosquito-borne viral diseases like dengue, Zika and chi-
kungunya [141, 144]. In this context, it has been shown 
that the intensity of Wolbachia infection is directly cor-
related with the strength of pathogen blocking and the 
tissue damage caused by the cellular load of highly rep-
licative strains of Wolbachia (e.g. wMelPop) produces 

pathogen blocking in Ae. aegypti [145]. Other possible 
mechanisms are host immune priming by the preacti-
vation of the immune response and gene regulation by 
the induction of Vago1 protein, which is involved in the 
innate immune pathways of Culex quinquefasciatus and 
Ae. aegypti. This mechanism could favour vectors to 
reduce West Nile and dengue virus replication [146, 147]. 
Though vectors like Ae. aegypti are not naturally infected 
with the virus inhibiting Wolbachia, these non-native 
strains of Wolbachia were introduced into the vectors 
of medical and veterinary importance by transfection 
[148] (Fig.  3). Other methods such as transient somatic 
infection, infections in cell lines, ex  vivo  organ culture, 
outcrossing and introgression  can also be used for the 
successful introduction of Wolbachia in non-native vec-
tors [147] (Table 4). Current research on control mainly 
focuses on limiting the susceptibility to infection rather 
than using this symbiont to reduce the life span of vec-
tors [149]. Indeed, the fitness cost of wMelPop strain 
prompted the researchers to adopt another strain of 
Wolbachia, wMel which does not reduce the fitness 
of mosquito hosts [149, 150]. Approximately 300,000 
wMel-infected Ae. aegypti mosquitoes were released in 
north Queensland over a period of 10 weeks [149]. The 

Aedes aegypti MOSQUITOES 
MOSQUITO POPULATION REPLACEMENT
(establishment of Wolbachia in mosquito population)

MOSQUITO POPULATION REDUCTION OR SUPPRESSION
(Wolbachia for an Incompatible insect technique, male sterilization)

Wolb+ female X Wolb+ male or WT male

CI provides a reproductive advantage

Wolbachia establishes in the wild mosquito population

Resistance to arboviruses
such as dengue, Zika and 
chikungunya

Immune priming, competition for metabolites,
alteration of the expression of host miRNAs

Wolb+ male X WT female or Wolb+ female (incompatible strain)

CI incompatible matings
and embryonic death

Sex sorting
before release
of Wolb+ males

Mosquito population reduction or suppression

Limited or no effect on male mating competitiveness and 
survival

Release of 
Wolb+ males
and females
mosquitoes

Reduction of the incidence of vector-borne diseases 

Fig. 3 Exploiting Wolbachia for vector control. Left panel: mosquito population replacement approach, in which Wolbachia-infected female 
and male mosquitoes are released; through CI, this strategy allows the spread of Wolbachia in the natural population. The presence of 
Wolbachia provides a fitness advantages (determined by CI) and can reduce the arbovirus transmission. Right panel: mosquito population 
reduction or suppression strategy. This approach involves the release of Wolbachia-infected males into an area; when these mosquitoes mate with 
wild Wolbachia-negative females (or female mosquitoes harbouring an incompatible strain of Wolbachia), a strong reduction in the rate of egg 
hatching is observed (CI incompatible matings). Thus, repeated releases of Wolbachia-infected males result in reduction or suppression of mosquito 
populations. CI cytoplasmic incompatibility, WT wild-type mosquitoes, Wolb + Wolbachia-infected mosquitoes
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success of this strategy in north Queensland (i.e. a high 
infection frequency up to 80%–90%) was replicated in 12 
countries, including Brazil, Indonesia, Vietnam, and four 
countries of the south-western Pacific region [141]. These 
studies have shown that the wMel strain of Wolbachia 
can quickly spread to near fixation in the wild mosquito 
population and become stable for a long time after the 
initial release [138]. Apart from these, in West Africa, 
stable Wolbachia infections were recently detected in 
natural Anopheles populations and these infections 
appear to be negatively correlated to Plasmodium prev-
alence, which opens up the possibility of utilising these 
endosymbionts for the control of malaria transmis-
sion [143]. The introduction of Wolbachia infections 
in Culicoides sonorensis cell lines and the upregulation of 
immune genes in the same vectors suggested the utility of 
using Wolbachia  as a bio-control agent in the transmis-
sion of  C. sonorensis  vectored pathogens of veterinary 
importance (e.g. African horse sickness virus, Schmal-
lenberg virus, bluetongue virus, epizootic hemorrhagic 
disease virus) [151]. Like any other modern technologies, 
Wolbachia-based vector control also has some potential 
vulnerabilities such as (i) loss of attenuation of Wolbachia 
infection in the mosquito, (ii) emergence of virus strains 
that are resistant to Wolbachia-mediated blocking, (iii) 
increasing virulence and disease pathogenesis in humans, 
(iv) enhancement of the arbovirus infection in trans-
fected mosquitoes and (v) development of mutations in 
viruses over time that render them less susceptible or 
resistant to Wolbachia [141]. Apart from these the cur-
rent method of control requires continual release of large 
numbers of males to suppress the mosquito population 
and the migration of mosquitoes from the untreated sur-
roundings will hinder the long-term effectiveness of this 
method. Since only modified males are released into the 
environment, adoption of an effective sex sorting system 
is required [138]. Nonetheless, none of these modifying 
technologies has yet been approved by the WHO’s Vec-
tor Control Advisory Group [138]. In addition, it is highly 
advisable to avoid adverse effects such as the enhance-
ment of pathogen development in coinfections (Table 4) 
by analysing the molecular mechanisms of Wolbachia-
pathogen interactions before doing the field trials. 

Conclusions and future perspectives
Though Wolbachia is a relatively well-studied endosym-
biont [4], there are still lacunae in the knowledge about its 
exact distribution, evolution, type of symbiosis and Wol-
bachia-mediated antiparasitic mechanisms. It has been 
hypothesised that onchocercid nematodes may depend 
on Wolbachia for their heme metabolism [17]. For exam-
ple, no new biosynthesis pathways for heme metabo-
lism are observed in L. loa, which lacks Wolbachia [17], 

therefore suggesting alternative pathways or the presence 
of other symbionts for the essential nutritional require-
ment of these worms. While Wolbachia is already well 
studied, many other endosymbionts have received less 
attention, such as some Spiroplasma, Cardinium, Arse-
nophonus and Flavobacetrium species [152] and have 
not yet been investigated in detail. So, the metagenom-
ics approach could help to assess the associated endos-
ymbionts in Wolbachia free onchocercid nematodes. 
In addition, the use fluorescence in situ hybridization is 
advisable to assess the natural infections by Wolbachia 
[153]. Since Wolbachia dominant proteins expressed in 
each life stage of onchocercid nematodes show a gradual 
increase from L1 to adult [16, 96], proteomic approaches 
(e.g. mass spectrometry, chromatography) could be use-
ful to assess their variation in expression in each stage in 
the vector and the definitive host for their survival and 
multiplication. This may eventually lead to exploring the 
type of symbiosis at each stage of the parasite life cycle, 
also providing insights into the Wolbachia-mediated 
antiparasite mechanisms and potential new drug targets 
for onchocercid nematodes of medical and veterinary 
significance. Despite doxycycline being adopted to treat 
filarial diseases, potential difficulties (e.g. drug adher-
ence, toxicity, resistance, financial cost, contraindications 
in pregnant women and children) limit its use in the pub-
lic health MDA programmes [127]. Promising in vitro 
drug trials with new antibiotics (e.g. berberine, rapamy-
cin, globomycin, succinyl acetone) [106, 154–156] and 
the effectiveness of non-antimicrobial compounds such 
as anti-oxidants and anti-histamines open a new window 
onto filarial treatment [127]. Further clinical trials using 
these drugs may provide an innovative strategy for anti-
Wolbachia treatment, eventually reducing the duration of 
treatment.

Overall, the prevalence of Wolbachia differs signifi-
cantly among different climatic regions and geographic 
locations [157]. For example, the intensity of Wolbachia 
infections in natural Ae. albopictus populations was low 
in regions with only imported dengue cases suggesting 
a positive correlation with the presence of Wolbachia in 
vectors and dengue infection [157]. Based on the above, 
it would be necessary to have a cluster-randomized 
design, involving either long- or short-term vector-
release trials in limited locations or in more sites, respec-
tively, to optimize the impact of this control strategy in 
each geographical or climatic setting [158]. Nonetheless, 
Wolbachia-based vector control strategies to control 
arboviral infections targeting Aedes aegypti are being 
compromised in many endemic countries because of the 
co-localisation of the secondary vector Aedes albopictus 
[159]. Hence, it is important to rely also on fluorescence 
in  situ hybridisation when reporting natural Wolbachia 
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infections and not only on PCR. Furthermore, use of 
multiple strains of Wolbachia for vector transfection and 
integration of CI-carrying phage elements into strains 
that are devoid of them (e.g. wAu) [159] could provide 
more fitness benefits for the transfected vector. Under 
the above circumstances, transfected triple-strain infec-
tion of Wolbachia (e.g. wMel and wPip and wAu) into a 
Malaysian Ae. albopictus line produced self-compatibil-
ity, moderate fitness cost and complete resistance to Zika 
and dengue infections [160]. Apart from these, more field 
trials using wAlbB strains will also help to overcome the 
inability of wMelPop strains to establish in wild mosquito 
populations or the wMel strains to survive at high tem-
peratures in the field [161]. This could be considered a 
successful strategy to reduce the incidence of dengue in 
an endemic area of Malaysia after the release of wAlbB-
infected Ae. aegypti [161]. Similarly, use of other endo-
symbionts along with Wolbachia will help to accelerate 
the control of D. immitis through the use of genetically 
engineered Asaia bacteria for the expression of WSP 
from their Wolbachia endosymbionts [80]. However, the 
untoward effects of Wolbachia such as irreversible bio-
logical effects and reversal outcome on disease transmis-
sion [162] should be properly addressed before clinical 
trials. Successful introduction of Wolbachia infections 
in Anopheles gambiae, Anopheles stephensi and C. sono-
rensis cell lines may give a breakthrough in the control 
of malaria, African horse sickness, Schmallenberg, blue-
tongue and epizootic hemorrhagic disease. The genome 
sequencing of the Wolbachia strain, wIrr, of Haematobia 
irritans irritans suggests its unique features, including 
the horizontal acquisition of additional transcription-
ally active CI loci, which may be exploited for the bio-
control and potential insecticide resistance of horn flies 
[163]. Despite all the challenges, studies on Wolbachia 
and their use in the control and/or treatment of vectors, 
onchocercid nematodes and viral diseases of medical 
and veterinary importance offer new approaches which 
undoubtedly open new avenues for the control of a vari-
ety of vector-borne diseases.
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