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Abstract 

Background: Panstrongylus megistus is the most important vector of Chagas disease in Brazil. Studies show that the 
principal factor hindering the control of triatomines is reinfestation of houses previously treated with insecticides. 
Studies at the microgeographic level are therefore necessary to better understand these events. However, an efficient 
molecular marker is not yet available for carrying out such analyses in this species. The aim of the present study was to 
identify and characterize microsatellite loci for future population genetic studies of P. megistus.

Methods:  This study work consisted of five stages: (i) sequencing of genomic DNA; (ii) assembly and selection of 
contigs containing microsatellites; (iii) validation of amplification and evaluation of polymorphic loci; (iv) standardiza-
tion of the polymorphic loci; and (v) verification of cross-amplification with other triatomine species.

Results: Sequencing of males and females generated 7,908,463 contigs with a total length of 2,043,422,613 bp. A 
total of 2,043,690 regions with microsatellites in 1,441,091 contigs were obtained, with mononucleotide repeats being 
the most abundant class. From a panel of 96 loci it was possible to visualize polymorphisms in 64.55% of the loci. Of 
the 20 loci genotyped, the number of alleles varied from two to nine with an average of 4.9. Cross-amplification with 
other species of triatomines was observed in 13 of the loci.

Conclusions: Due to the high number of alleles encountered, polymorphism and the capacity to amplify from geo-
graphically distant populations, the microsatellites described here show promise for utilization in population genetic 
studies of P. megistus.
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Background
Triatomines are hematophagous insect vectors of Tryp-
anosoma cruzi (Chagas, 1909), the etiological agent of 
Chagas disease, which is considered the principal para-
sitic disease of Latin America in terms of economic 
impact and public health [1–3].

Among the autochthonous triatomines of Brazil, Pan-
strongylus megistus (Burmeister, 1835) is considered the 
vector of greatest epidemiological importance of Chagas 
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disease due to its high capacity to invade and colonize 
domestic buildings, high levels of infection with T. cruzi, 
eclectic blood-feeding and a wide geographical distri-
bution in Brazil, ranging from the state of Maranhão to 
the state of Rio Grande do Sul [4–7]. In recent years, the 
presence of P. megistus has also been reported in the Bra-
zialn states of Acre and Rondônia [8].

It has become apparent that the principal factor hinder-
ing the control of triatomines is reinfestation of houses 
previously treated with insecticides, possibly due to 
insects that survive spraying (residual foci) or triatomines 
from sylvatic foci [9]. Analysis of this problem requires 
an investigation at the microgeographic level. Microsat-
ellite molecular markers have been used with success to 
evaluate the gene flow of triatomine populations between 
natural and artificial environments (intradomestic and 
peridomestic) [10–22]. It has been reported that popu-
lations of T. infestans originating from three Bolivian 
Andean locations did not show any difference in prefer-
ence for insects in the artificial environment and those 
in the natural environment at the same location, suggest-
ing that the source of infestation in the dwellings is wild 
insects [15]. De Rosas et  al. [12] demonstrated that the 
level of genetic structure of Argentine T. infestans popu-
lations is approximately 400 m, indicating the possibility 
of passive dispersion within that distance. To reduce the 
odds of reinfestation, these authors suggested that insec-
ticide treatment should occur on a larger radius around 
the infested area. In northern Argentina, an evaluation of 
the genetic structure of T. infestans populations revealed 
putative sources of reinfestation and its dynamics [22]. 
These studies illustrate that microsatellites can be useful 
for understanding the factors that favor the infestation/
reinfestation of domiciles.

Given the absence of tools capable of capturing at a 
fine-scale the process of (re)colonization of P. megistus 
in the artificial environment, the aim of this work was to 
isolate and characterize microsatellite loci from P. megis-
tus, using Illumina HiSeq genome sequencing.

Methods
This work was perfomed in five stages: (i) genome 
sequencing of P. megistus; (ii) assembly and selection of 
contigs with microsatellites; (iii) validation of the ampli-
fication and evaluation of the polymorphisms in the loci; 
(iv) standardization of the polymorphic loci; and (v) veri-
fication of cross-amplification with other triatomines 
species.

Sequencing, identification of regions with microsatellites 
and development of the primers
Two pools of five P. megistus were used, one of female 
individuals and another of males, from a colony derived 

from the municipality of Santana do Riacho, Minas Ger-
ais, Brazil (19°10′8″S,  43°42′50″W) maintained in the 
insectary of the Laboratório de Referência em Triatomí-
neos e Epidemiologia da Doença de Chagas were selected 
for sequencing. DNA was extracted from the repro-
ductive organs of the insects using the Genomic DNA 
Extraction and Purification Kit® (Promega, Madison, WI, 
USA) following the protocol described by the manufac-
turer. The libraries were constructed using the TruSeq 
DNA PCR Free 350 bp kit (Macrogen Inc., Seoul, South 
Korea) according to the manufacturer’s instructions, and 
the sequencing of each pool was performed separately 
using the Illumina HiSeq X platform (Illumina, Inc., San 
Diego, CA, USA). The raw sequence reads were evaluated 
in terms of read quality with PRINSEQ [23]. Data filter-
ing and trimming (adaptor removal and Phred quality 
score cut-off ≥ 25) were performed with Trimmomatic 
[24]. Contigs were assembled de novo with a kmer size of 
77 using SOAPdenovo2 [25]. Microsatellite regions were 
identified with MISA software [26] with the following 
parameters: minimum of ten repeats of 1 base, six repeats 
of 2 bases, five repeats of 3 bases, five repeats of 4 bases, 
five repeats of 5 bases and five repeats with 6 bases each. 
Microsatellites were selected based on: (i) minimum of 
six repeats of perfect, di- or trinucleotides; and (ii) iden-
tified in contigs with a minimum size of 2 kb. Addition-
ally, Primer3 [27, 28] was used in order to identify primer 
annealing sites flanking the repeat regions. Only inter-
genic regions with a predicted amplicon size of between 
150 and 400 bp were selected for further analysis.

Standardization of amplification and evaluation 
of polymorphism in microsatellite regions
Amplification and polymorphism of the loci selected 
were evaluated in six specimens of P. megistus: (i) two 
from a colony derived from the municipality of Juquiá, 
São Paulo, Brazil (24°19′15″S, 47°38′6″W); (ii) two from 
a colony formed from insects captured in diverse locali-
ties in the state of Minas Gerais, Brazil; and (iii) two oth-
ers from the same colony used for genome sequencing, 
which came from Santana do Riacho.

The DNA was extracted from two legs of each insect 
following an adapted protocol of the Wizard® Genomic 
DNA Purification Kit (Promega) [29]. The DNA was 
quantified using a NanoDrop One Microvolume UV–Vis 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA) and stored at − 20 ºC until used.

In order to standardize and optimize the specificity 
of the PCR amplification, different dilutions of enzymes 
and cofactors, as well different annealing temperatures 
(range: 54 °C to 65 °C), were tested. The PCRs were per-
formed in a final volume of 10  µl containing the Mas-
ter Mix GoTaq Green (Promega), 10  nmol of forward 
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primer, 10 nmol of the reverse primer and approximately 
10  ng of template DNA. The reactions were performed 
on a Veriti thermocycler (Applied Biosystems, Foster 
City, CA, USA) under the following conditions: an ini-
tial denaturation at 95 °C, 4 min; followed by 95 °C/30 s, 
54 °C to 65 °C/30 s, 72 °C/30 s for 35 cycles; and a final 
extension at 72  °C/5  min. The amplicons were run on 
8% polyacrylamide gels stained with silver nitrate. The 
approximate size of the fragments was determined using 
the molecular marker ΦX 174 DNA HaeIII (Promega).

Characterization of polymorphic microsatellite loci
Among the evaluated loci that were found to be polymor-
phic under the conditions described in the previous sec-
tion, 20 were selected for standardization (Table 1) based 
on an amplicon size of between 100 and 300  bp and 
annealing temperature, for use in future multiplex PCRs.

Fifteen specimens of P. megistus captured in the 
municipality of Jaboticatubas, Minas Gerais, Brazil 
(19°30′50″S,  43°44′42″W) by Belisário et  al. [30] were 
used. These samples were divided into two groups in 
order to evaluate intra-populational variability: nine 
insects from the locality Fazenda Santo Antônio (group 
I); and one insect each from the following localities: Bar-
reiro do Papagaio, Fazenda Espada, Capão Grande II, 
Fazenda Borges, Guarazinho, and Fazenda Boiça (group 
II). The second group also included the insects from San-
tana do Riacho and Juquiá described in section Standard-
ization of amplification and evaluation of polymorphism 
in microsatellite regions.

Four other species of triatomines were used to evalu-
ate cross-amplification: (i) one specimen of Panstrongy-
lus diasi Pinto & Lent 1946 from the insect collection 
of the Instituto René Rachou Fiocruz Minas/Belo Hori-
zonte, Brazil; (ii) one specimen of Panstrongylus lignarius 
(Walker, 1873); (iii) one specimen of Triatoma tibiamac-
ulata (Pinto, 1926); and (iv) one specimen of Triatoma 
sordida (Stal 1859). These last three insects were derived 
from the colonies of the Laboratório de Referência em 
Triatomíneos e Epidemiologia da Doença de Chagas of 
the Instituto René Rachou, Fiocruz Minas.

The DNA was extracted from two legs from each indi-
vidual as described in section Standardization of amplifi-
cation and evaluation of polymorphism in microsatellite 
regions. The PCRs were performed in a total final volume 
of 10 µl containing 5× Colorless GoTaq® Flexi (Promega), 
3  mM  MgCl2, 10  nmol of the fluorescently-labeled for-
ward primer, 10 nmol of the reverse primer and approxi-
mately 10  ng of template DNA. The reactions were 
performed in a Veriti® 96-well thermocycler (Applied 
Biosystems) using the following cycling conditions: 
an initial denaturation at 95 °C, 4 min; then 95  °C/30 s, 
65  °C/ 30  s, 72  °C/30  s for 35 cycles; 95  °C/30  s, 53  °C/ 

30 s, 65 °C/30 s, 72 °C/30 s for 3 cycles; and a final exten-
sion of 72  °C for 5  min. The products were diluted in 
the ratio of 1:10 in UltraPure Distilled Water (Invitro-
gen, Carlsbad, CA, USA) and genotyped on an ABI 3730 
Sequencer (Life Technologies, Carlsbad, CA, USA) using 
the size standard GeneScan Liz 500 of the sequencing 

Table 1 Primer sequence and repeat motif of the genotyped 
microsatellite loci

Locus Primer Sequence 5’–3’ Repeat motif

Pm002 F: CAC ACA GAG GCG ATT CGG TA (TA)8

R: GTC TGC TGC CGC AAT TTC TC

Pm008 F: AAA ACC ACA GGA AGC TCG AA (CA)6

R: GTC TTC AGC TCC GGT CAT GC

Pm015 F: TGT ACC CTA TAT AAC GCG CCA (AG)7

R: ACA TCT AAG CCC TTA GTG CGA 

Pm018 F: TGA ACA AAG CTA CCT GGA AAAGC (AT)7

R: ACA AGG ATC CTG GGA AAG CG

Pm027 F: TGT GGA TAC TTA GGG CAT AGCA (TA)15

R: ACG ATG TGT GAA AAT TAG AGC AAC A

Pm030 F: ATC CCA TGC GTC CCA ATA GC (AT)7

R: TCC GAG AAA AAG TCG TTA TCCA 

Pm044 F: ATC TTC GGA ATC CCT GAC GC (TG)6

R: AGT TTG AGA ACT TCC TGC GGT 

Pm048 F: GCT GGC CAG AAG TCC CTT TA (AC)8

R: ACC AAG TCT GAC CAC TTC TTTCT 

Pm049 F: TCC GAT CAC CAA ATG TGC GA (TG)6

R: CAG CCA CTT AGT GAA CCC CC

Pm051 F: CCT TTG GAT AGC GCA GGG TT (AAT)5

R: TCA AAG GCA CCC GTT GAA GT

Pm054 F: TCG GCA ACA GTA CTC AAC GA (AAT)8

R: TCC TTT ATG AGT AAA CGG CGTGA 

Pm055 F: TGA ATG TGG AGC GAA TGT GA (ATT)5

R: AGC ATC TCC TCT GAC GGT CT

Pm058 F: AGT ATC GTC CCT GCA GCC TA (TAT)6

R: ACA ACG GCA GAA TTA ACT TCCA 

Pm063 F: TGG GTT TTC GTA GTA TCT TTC CCA (TTA)8

R: ACC AGA ATT ATG ACA GTA GAG CGT 

Pm066 F: ACA CGA CTT TCT CTT ACT CCTGT (GTG)5

R: GTG AGC TCT ACT GCG TCA CA

Pm071 F: TGT GGA CTG GTC TTG GGA AA (TAC)5

R: GGG GGT GGG AAT AAA AGC CT

Pm076 F: TGC GAG ATT GAA TTT GCG AGA (ATA)6

R: TGC TCT CTT AGG GCC TGT CT

Pm079 F: TGT CCG AGC TCT CCC AGA AT (GAA)5

R: TAC CTC AGC CCA GGA AGG TT

Pm081 F: CCC ACA CAC ACA CAC CCA TA (ATT)6

R: ACT CCG CTT TCT AGT GTG AGC 

Pm083 F: TTT CGC CTC TGC CCA AGA AT (AAT)8

R: AGA GAA ATG GGC ACA CCT GG
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platform of Sequenciamento de DNA por Eletroforese 
Capilar of the Instituto René Rachou. The chromato-
grams were analyzed using the software Geneious (ver. 
10.1.3) [31]. The number of alleles with observed het-
erozygosity (OH) and expected heterozygosity (EH) 
(Arlequin ver. 3.5.2.2) [32] and the presence of null alleles 
(MICRO-CHEKER ver. 2.2.3) [33] were evaluated.

Results
Sequencing of the P. megistus genome yielded 
463,151,518 reads (90.41% > Q30) for the female pool and 
338,531,204 reads (89.54% > Q30) for the male pool. The 
GC-content was 34.53 and 35.06%, respectively. The de 
novo assembly was made using only reads with a quality 
> 25, generating a total of 7,908,463 contigs with a total 
length of 2,043,422,613  bp. The N50 (sequence length 
of the shortest contig at 50% of the total genome length) 
of the assembly was 1034 and the final GC-content was 
33.14%. We identified a total of 2,043,690 microsatellite 
regions located in 1,441,091 contigs with mononucleo-
tide repeats being the most abundant (1,054,968, corre-
sponding to 51.62%) and pentanucleotide repeats present 
at a lower quantity (1337, corresponding to 0.06%). In 
accordance with the parameters described in the Meth-
ods section, 79 different microsatellite regions were 
selected for further analysis.

Among the 96 primer pairs selected for PCR ampli-
fication, 79 resulted in amplicons visualized on poly-
acrylamide gels after standardization. The annealing 
temperature after standardization varied from 60 °C to 67 
°C (Additional file 1: Table S1). It was possible to visual-
ize the presence of polymorphism on the gel for 64.55% 
(51) of the loci. Among these 51 loci, 20 markers were 
selected for characterization (Table 1). It was not possible 
to standardize the amplification of 17 primer pairs due 
either to low specificity or the absence of amplicons.

In the samples of P. megistus, the number of alleles per 
locus varied from two (Pm051, Pm071 and Pm079) to 
nine (Pm049), with a mean of 4.9 (Table 2). Among the 
20 loci genotyped, two (Pm051 in group II and Pm058 
in group I) were monomorphic and for one (Pm054) it 
was not possible to visualize peaks on the chromatogram 
(Table 3).

The OH of group I varied from 0.00000 (Pm002) to 
0.55556 (Pm049) (mean 0.29630), while the EH var-
ied from 0.20915 (Pm071) to 0.77778 (Pm083) (mean 
0.57807). In group II, the OH varied from 0.00000 
(Pm002) to 0.60000 (Pm049) (mean 0.24504), while the 
EH varied from 0.10000 (Pm071) to 0.88421 (Pm049) 
(mean 0.61446) (Table 3).

Of the 20 loci analyzed, group I had null alleles at seven 
loci (Pm002, Pm008, Pm018, Pm048, Pm051, Pm076 and 

Table 2 Allele number and size range per loci for each triatominae species used in the study

AN Allele number, SR size range

Locus Panstrongylus megistus Panstrongylus lignarius Panstrongylus diasi Triatoma tibiamaculata Triatoma sordida

AN SR AN SR AN SR AN SR AN SR

Pm002 8 122–138 0 – 0 – 0 – 0 –

Pm008 3 268–276 1 168 0 – 0 – 0 –

Pm015 7 274–286 0 – 0 – 0 – 0 –

Pm018 4 204–210 1 192 0 – 1 194 1 194

Pm027 8 170–192 0 – 1 188 2 166–178 1 114

Pm030 6 196–218 1 178 1 88 1 174 1 84

Pm044 6 218–248 1 86 1 86 0 – 0 –

Pm048 7 246–268 0 – 0 – 0 – 0 –

Pm049 9 268–294 0 – 0 – 2 155–181 1 80

Pm051 2 247–250 0 – 0 – 0 – 0 –

Pm055 3 193–199 0 – 0 – 0 – 0 –

Pm058 3 270–276 1 82 0 – 1 114 1 170

Pm063 5 269–284 0 – 0 – 2 234–246 0 –

Pm066 3 162–174 2 151– 162 0 – 0 – 1 176

Pm071 2 162–165 0 – 0 – 0 – 0 –

Pm076 3 234–240 0 – 1 234 0 – 0 –

Pm079 2 275–278 1 180 0 – 1 74 1 74

Pm081 5 169–181 0 – 0 – 1 210 0 –

Pm083 8 237–267 0 – 0 – 1 75 1 81

Mean 4.847 0.421 0.210 0.631 0.421
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Pm079) and group II had null alleles at five loci (Pm002, 
Pm027, Pm048, Pm079 and Pm083).

Regarding cross-amplification, 13 loci were ampli-
fied from other species. The Pm030 marker was ampli-
fied from all the samples tested. However, the number of 
alleles was lower than that in P. megistus, varying from 
one to four, with a mean of 1.5 (Table  2). OH and EH 
were not calculated because there was only one specimen 
for each of the species evaluated.

Discussion
This study is novel in two aspects: in the development of 
primers to microsatellites of P. megistus and in the meth-
odology used. Unlike previously published studies on the 
identification of microsatellite markers in triatomines, in 
which the methodology most commonly used is enriched 
libraries and the subsequent use of probes for the selec-
tion of microsatellite regions [34–40], the present study is 
the first to use next-generation sequencing. This method-
ology was chosen due to the limited information available 

on the genome of P. megistus, the principal species trans-
mitting T. cruzi in Brazil.

For the design of the initial primers, we chose to syn-
thesize only primers to regions flanking dinucleotide and 
trinucleotide repeats because these latter arrangements 
have higher mutation rates compared to other microsat-
ellite classes [41]. Therefore, they will be more informa-
tive in future population genetic studies.

To make the PCR reactions more specific, we tested 
different annealing temperatures. The optimal tempera-
tures utilized were those observed prior to the absence 
of bands in the polyacrylamide gel, as well as prior to 
the dilution of enzymes and cofactors. Modification of 
such determinants can alter the success of PCRs [42]. 
Even after these attempts, it was not possible to stand-
ardize the PCR for 17.7% of the 96 loci selected due to 
the absence of fragments or the presence of nonspecific 
fragments. In these cases, the primer may have been 
designed to a non-conserved region or have more than 
one binding site.

Two loci (Pm051 in group II and Pm058 in group 
I) exhibited monomorphic patterns and in another 

Table 3 Number of genetic copies, allele number, observed heterozygosity and expected for each Panstrongylus megistus group

GC Genetic copies, OH observed heterozygosity, EH expected heterozygosity

*Significant value at  P < 0.05
a Group I: nine insects from Fazenda Santo Antônio; Group II: one insect from each of the following locations: Barreiro do Papagaio, Fazenda Espada, Capão Grande II, 
Fazenda Borges, Guarazinho and Fazenda Boiça (all localities in the municipality of Jaboticatubas, MG); and two insects from the municipality of Santana do Riacho, 
MG and municipality of Juquiá, SP

Locus Group  Ia Group  IIb

GC AN OH EH GC AN OH EH

Pm002 18 4 0.11111 0.68627 20 7 0.10000 0.85789

Pm008 18 2 0.00000 0.52288 20 3 0.00000 0.67368

Pm015 18 4 0.44444* 0.72549* 20 7 0.50000 0.82105

Pm018 18 4 0.33333 0.75817 20 4 0.40000* 0.60000*

Pm027 18 4 0.55556* 0.69935* 14 7 0.28571 0.87912

Pm030 18 3 0.22222 0.52288 20 6 0.40000 0.75789

Pm044 18 4 0.33333 0.66013 20 5 0.40000 0.72632

Pm048 18 6 0.33333 0.73856 20 5 0.20000 0.78947

Pm049 18 6 0.55556* 0.74510* 20 7 0.60000* 0.88421*

Pm051 18 2 0.00000 0.47059 20 This locus is monomorphic

Pm055 18 3 0.44444* 0.58170* 20 2 0.00000 0.50526

Pm058 16 This locus is monomorphic 20 3 0.20000* 0.35263

Pm063 18 2 0.33333* 0.52941* 20 5 0.50000 0.74211

Pm066 18 3 0.44444* 0.38562* 20 2 0.00000* 0.18947*

Pm071 18 2 0.22222 0.20915* 20 2 0.10000* 0.10000*

Pm076 18 2 0.00000 0.47059 16 3 0.12500 0.49167

Pm079 18 2 0.00000 0.36601 20 2 0.00000 0.44211

Pm081 18 5 0.44444* 0.55556* 20 3 0.40000 0.46842

Pm083 18 5 0.55556* 0.77778* 20 6 0.20000 0.77895

Mean 18.000 3.500 0.29630 0.57807 19.444 4.389 0.24504 0.61446

s.d 0.000 1.383 0.20166 0.15924 1.653 1.944 0.19651 0.23607
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locus (Pm054) it was not possible to visualize peaks 
in the chromatogram. However, working with a larger 
sample number can increase the chances of observ-
ing heterozygous and polymorphic individuals [43]. 
Accordingly, these three loci will be evaluated in a 
larger sample set in a future study to verify the absence 
of polymorphism, since it was possible to visualize 
amplicons from these loci in polyacrylamide gels.

The quantity of alleles encountered in the 20 loci 
tested differed from that that encountered in other 
studies on triatomines: in T. dimidiata, the mean allele 
number (AN) was reported to be 16, varying from six 
to 27 alleles at eight loci [35]; in T. infestans, the mean 
AN was 9.7, varying from five to 17 alleles at 13 loci 
[36]; in Rhodnius pallescens, the mean observed AN 
was nine alleles, varying from two to 20 at ten loci ana-
lyzed [34]; in T. sordida, the mean AN was 7.4, varying 
from one to 12 at ten loci [44]; in T. pseudomaculata, 
the mean AN was 6.6, varying from two to 15 alleles 
at seven loci [39]; and for T. brasiliensis, the mean 
observed AN was five at seven standardized loci, rang-
ing from one to 13 alleles per locus [40]. This differ-
ence can be explained by the sample size in each study, 
ranging from 34 [35] to 171 [44] samples, while we 
used 19 samples of P. megistus.

The presence of four  loci in P. diasi and eight in  P. 
lignarius was expected due to the conservation of 
some genomic regions in phylogenetically related spe-
cies. This has also been reported in other studies [35, 
36, 38–40, 44]. However, the present work is the first 
to report amplification in species from different gen-
era (T. sordida and T. tibiamaculata).

The values observed for OH and EH may be indica-
tive of the presence of excessive homozygotes in the 
groups tested, population structure or the presence 
of null alleles [45]. The analysis of null alleles dem-
onstrated low occurrence in both groups (35 and 25% 
in groups I and I, respectively). The presence of null 
alleles can occur due to mutations in the flanking 
sequences of the microsatellite regions, thus prevent-
ing binding of the primers. The regions not amplified 
result in apparently homozygous samples when pre-
sent in a heterozygous state [46, 47].

In the last 40  years, microsatellites have been the 
most used molecular marker to access polymorphisms 
of a wide variety of organisms. One of the difficul-
ties in applying this methodology is the need for prior 
knowledge of the genome. Currently, this problem can 
be overcome by using the genotyping-by-sequencing 
(GBS) as a marker. However, GBS requires a greater 
amount of DNA, throughput and the cost is higher 
[48].

Conclusions
Due to the high polymorphism and number of alleles 
encountered in each locus, as well as the capacity to 
amplify from geographically distant populations, we con-
clude that the markers developed in this study show prom-
ise for population genetic studies of P. megistus. Thus, we 
hope to help to elucidate the reinfestation processes in the 
artificial environment by this vector.
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