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Abstract 

Background:  The Culicoides obsoletus species complex (henceforth ‘Obsoletus complex’) is implicated in the trans‑
mission of several arboviruses that can cause severe disease in livestock, such as bluetongue, African horse sickness, 
epizootic hemorrhagic disease and Schmallenberg disease. Thus, this study aimed to increase our knowledge of the 
composition and genetic diversity of the Obsoletus complex by partial sequencing of the cytochrome c oxidase I 
(cox1) gene in poorly studied areas of Spain.

Methods:  A study of C. obsoletus populations was carried out using a single-tube multiplex polymerase chain reac‑
tion (PCR) assay that was designed to differentiate the Obsoletus complex sibling species Culicoides obsoletus and 
Culicoides scoticus, based on the partial amplification of the cox1 gene, as well as cox1 georeferenced sequences from 
Spain available at GenBank. We sampled 117 insects of the Obsoletus complex from six locations and used a total of 
238 sequences of C. obsoletus  (ss) individuals (sampled here, and from GenBank) from 14 sites in mainland Spain, the 
Balearic Islands and the Canary Islands for genetic diversity and phylogenetic analyses.

Results:  We identified 90 C. obsoletus (ss), 19 Culicoides scoticus and five Culicoides montanus midges from the six col‑
lection sites sampled, and found that the genetic diversity of C. obsoletus  (ss) were higher in mainland Spain than in 
the Canary Islands. The multiplex PCR had limitations in terms of specificity, and no cryptic species within the Obsole‑
tus complex were identified.

Conclusions:  Within the Obsoletus complex, C. obsoletus (ss) was the predominant species in the analyzed sites 
of mainland Spain. Information about the species composition of the Obsoletus complex could be of relevance for 
future epidemiological studies when specific aspects of the vector competence and capacity of each species have 
been identified. Our results indicate that the intraspecific divergence is higher in C. obsoletus (ss) northern popula‑
tions, and demonstrate the isolation of C. obsoletus (ss) populations of the Canary Islands.

Keywords:  Obsoletus complex, Cytochrome c oxidase I gene, Culicoides obsoletus, Culicoides scoticus, Culicoides 
montanus, Bluetongue virus, Single-tube multiplex polymerase chain reaction
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Background
Although some species of the genus Culicoides (Diptera: 
Ceratopogonidae) have been confirmed as biological vec-
tors of numerous arboviruses of veterinary importance, 
the number of vector species is a very small proportion 
of the diversity of Culicoides species [1, 2]. Three of the 

Open Access

Parasites & Vectors

*Correspondence:  ceciagui@ucm.es
1 Animal Health Department, Faculty of Veterinary Medicine, VISAVET 
Health Surveillance Centre, Complutense University of Madrid, Madrid, 
Spain
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-021-04841-z&domain=pdf


Page 2 of 13Aguilar‑Vega et al. Parasites Vectors          (2021) 14:351 

arboviruses of the genus Orbivirus (family Reoviri-
dae)—bluetongue virus (BTV), African horse sickness 
virus (AHSV) and epizootic hemorrhagic disease virus 
(EHDV) [3]—can have an impact on livestock welfare and 
cause significant economic losses, and are therefore listed 
as notifiable diseases by the World Organization for Ani-
mal Health [4]. BTV and EHDV affect mainly ruminants, 
with severe clinical disease observed in sheep and deer, 
respectively, whilst AHSV infects equids and can cause 
significant mortality in horses. BTV has been reported 
in every habitable continent, and since 1998, numer-
ous BTV serotypes have been circulating in Europe [5]. 
Outbreaks of five BTV serotypes have been reported in 
Spain since 1956: BTV-10 (1956), BTV-2 (2000), BTV-4 
(2003–2005; 2010–2020), BTV-1 (2007–2017; 2020) and 
BTV-8 (2008–2010; 2020) [6]. AHSV is endemic in sub-
Saharan Africa, but outbreaks have occurred in northern 
African countries, the Middle East, southwest Asia, and 
southern regions of Europe [7]. In Spain, two epizoot-
ics, with different serotypes, occurred in 1966 (AHSV-9) 
and 1987–1989 (AHSV-4) [7]. EHDV has been reported 
in North and South America, Australia, Africa and Asia 
[8]. Despite not being reported in the European Union, 
EHDV outbreaks have been declared in Mediterranean 
Basin countries [9]. This proximity suggests a risk of 
introduction of EHDV into the EU, as has occurred with 
AHSV [10] and BTV [10, 11].

Culicoides imicola, a member of the subgenus Avari-
tia, is deemed the major BTV, AHSV and EHDV vector 
in Africa, the Middle East, southeast Asia and southern 
Europe [5, 12]. C. imicola is highly abundant in central 
and southern regions of mainland Spain [13, 14]. Carpen-
ter et  al. [15] showed the vector competence of several 
Palearctic species of Culicoides prior to the introduc-
tion of BTV-8 into northern Europe. After the BTV-8 
epizootic in northern Europe, several species of different 
subgenera were implicated as potential competent BTV 
vectors in the field: Culicoides chiopterus [16], Culicoides 
dewulfi, and the Culicoides obsoletus species complex 
(henceforth ‘Obsoletus complex’) of the subgenus Ava-
ritia [17]; and the Culicoides pulicaris species complex 
(henceforth ‘Pulicaris complex’) [17] of the subgenus 
Culicoides. In areas of  northern European, the Obsoletus 
complex is considered of great importance in BTV trans-
mission due to its predominance and prevalence in ento-
mological surveys [18], and its vector competence [15, 
19, 20]. The Obsoletus complex is widespread in Spain, 
although it is most abundant in northern regions of the 
country [13, 14]. Moreover, C. obsoletus breeds in diverse 
habitats with high organic content, including livestock 
manure [21–23], and it can breed in indoor locations 
[24], which implies a great risk of BTV transmission to 
livestock.

Females of the species that belong to the Obsoletus 
complex (C. obsoletus and C. scoticus and cryptic species/
clades within the complex) are difficult to distinguish 
morphologically [25, 26]. Thus, many studies aimed at 
assessing oral susceptibility to BTV and EHDV in these 
sibling species have been performed at the species com-
plex level [15, 20, 27]. Other studies have studied vector 
competence at species level within the complex, but with 
a low number of insects [19, 28]. Those studies proved 
the susceptibility of the Obsoletus complex to different 
BTV serotypes [15, 19, 20, 28], and one EHDV serotype 
[27]. To our knowledge, no study has been carried out on 
the oral susceptibility of the Obsoletus complex to AHSV, 
but one study achieved the isolation of AHSV from pools 
consisting mainly of the Obsoletus and Pulicaris com-
plexes during the 1987–1989 Spanish epizootic [29]. 
However, sibling species within the complex may have 
different vector competence and capacities [30].

The mitochondrial DNA (mtDNA) cytochrome c oxi-
dase I (cox1) gene is widely used for the molecular iden-
tification of species and to study their genetic diversity 
[31], and is also frequently used to study the diversity 
of the Obsoletus complex [2, 32–37]. Few studies have 
yielded Obsoletus complex sequences of  cox1  in Spain 
[32–34], although a recent study investigated the genetic 
diversity of the Obsoletus complex at a large scale using 
insects from 20 different countries, including Spain 
[35]. The majority of available  Spanish  cox1 Obsoletus 
complex sequences have come from Catalonia and the 
Balearic Islands [33, 35], southeastern areas of Spain 
[35] and the Canary Islands [32]. The importance of the 
Obsoletus complex as a biological vector of pathogens 
that cause severe diseases in livestock [1] justifies the aim 
of this study to expand our knowledge of the composi-
tion and genetic diversity of the Obsoletus complex by 
using the partial sequencing of the cox1 gene in poorly 
studied areas of Spain, as well as to compare our results 
with georeferenced sequences from Spain that have been 
deposited in GenBank [38]. Moreover, we developed a 
multiplex polymerase chain reaction (PCR) to facilitate 
the differentiation of C. obsoletus from C. scoticus in the 
region.

Methods
Specimen collection and identification
The 117 insects that were analyzed in the current study 
originate from mainland Spain (they were provided by 
the Spanish Bluetongue National Surveillance Program), 
and from a trap that we placed in the Canary Islands 
(Table  1). Figure  1 shows the location of the collection 
sites used in this study and those of the georeferenced 
sequences retrieved from GenBank (Additional file  1: 
Table S1) [38]. United States Centers for Disease Control 
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and Prevention ultraviolet light traps were located in all 
six collection sites at 1.7- to 2-m height from dusk until 
dawn close to animal holdings with more than ten sus-
ceptible hosts [39]. Insects were preserved in 70% ethanol 
prior to identification, and we analyzed females identified 
as belonging to the Obsoletus complex using different 
morphological identification keys [40, 41].

DNA extraction and molecular identification
DNA extraction was performed using the High Pure 
PCR Template Preparation Kit (Roche Diagnostics, Man-
nheim, Germany) following the manufacturer’s instruc-
tions. Specimens had previously been removed from 
ethanol, dried on absorbent paper, and then homoge-
nized in 100 μl of binding buffer.

Table 1  Location of the collection sites of the tested midges of the Culicoides obsoletus species complex (Obsoletus complex)

For the geographical location of the study sites, see Fig. 1

ID Identifier
a Coordinates are in decimal degrees and correspond to the centroid of the municipality

ID Province Municipality Coordinatesa Date of collection No. of midges of 
the Obsoletus 
complex

No. of 
Culicoides 
obsoletus

No. of 
Culicoides 
scoticus

No. of 
Culicoides 
montanus

No. of 
unidentified 
Culicoides

CS Castellón Xert 40.53º, 0.13º 20 August 2009 25 22 1 2 0

AS Asturias Tineo 43.34º, − 6.48º 13 July 2017 14 10 4 0 0

AV Ávila Candeleda 40.18º, − 5.28º 16 August 2017 18 18 0 0 0

C La Coruña Mabegondo 43.21º, − 8.29º 6 September 2009 26 22 1 3 0

SE Seville Lora del Río 37.67º, − 5.51º 22 May 2007 8 5 0 0 3

GC1 Las Palmas Valleseco 28.04º, − 15.58º 26 September 
2018

26 13 13 0 0

Fig. 1  Location of the collection sites of the midges of the Obsoletus complex used in this study (black dots) and of the georeferenced sequences 
retrieved from GenBank (black triangles). Elevation of the study area is shown at 15-arc second resolution (GMTED2010 image courtesy of the US 
Geological Survey [42]). Locations are coded based on the province’s location (see Table 1): Barcelona (B), Mallorca (IB), Córdoba (CO), Granada (GR), 
Almería (AL), Tenerife (TF), Gran Canaria (GC2, GC3). Spanish administrative boundaries were provided by the Instituto Geográfico Nacional (ign.es) 
(BDDAE CC-BY 4.0)
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For the partial amplification of the mtDNA cox1 
region, we designed two pairs of primers using Prim-
er3Plus v.2.4.2. software [43]. For C. obsoletus (ObL), 
forward (5′-GGR​GTA​TGA​GCC​GGA​ATA​AT-3′) and 
reverse (5′-ATT​TCG​RTCDGTT​AAR​AGYA-3′) prim-
ers were designed with a product size of ~ 576 base pairs 
(bp). For C. scoticus (ScN), we designed forward (5′-TGC​
TCC​CYC​CTT​CAA​TCA​CT-3′) and reverse (5′-ATG​CCG​
GTA​GAT​CGC​ATA​TT-3′) primers to amplify a shorter 
sequence (~ 217 bp) of the cox1 region. We checked the 
sensitivity and specificity of the primer pairs from Euro-
pean C. obsoletus and C. scoticus sequences available in 
GenBank [38] (https://​www.​ncbi.​nlm.​nih.​gov/​genba​nk/) 
(Fig. 2). PCR amplification was performed in a 25-μl final 
volume using the following reagents per reaction: 2 μl of 
Nuclease-free water, 15  μl of Platinum Green Hot Start 
PCR 2X Master Mix (Invitrogen, Lithuania), 1.5  μl of 
20 μM forward primers (ObL and ScN), 1.5 μl of 20 μM 
reverse primers and 2 μl of genomic DNA. The amplifi-
cation program was as follows: an initial denaturation 
step at 94 ºC for 5  min, 40 cycles of denaturation at 94 
ºC for 1 min, annealing for 1 min and extension at 72 ºC 
for 1 min, and a final extension step at 72 ºC for 7 min. 
We optimized the annealing temperature to enhance the 

specificity to evaluate different annealing temperatures 
from 54 to 60 ºC in increments of 2 ºC. PCR products 
were stored at 4 ºC until the amplification of the PCR 
products was confirmed using electrophoresis on 2% aga-
rose 1x TAE gel that contained SYBR Safe DNA Gel Stain 
(Invitrogen, USA), with a 100-bp DNA molecular weight 
marker (Takara). PCR products were purified using 
QIAquick PCR Purification kit (Qiagen, Germany) in 
the absence of primer dimer formation. Alternatively, gel 
bands were purified using QIAquick Gel Extraction kit 
(Qiagen) and forward strands were externally sequenced 
by Sanger sequencing using the ObL forward primer. We 
assigned the Culicoides species level using BLASTN+ 
2.10.1 nucleotide [44].

Molecular analysis and phylogenetic tree
For the molecular analyses and intraspecific sequence 
polymorphism of C. obsoletus (ss), we included cox1 geo-
referenced sequences from Spain of C. obsoletus, which 
are available from the GenBank database (https://​www.​
ncbi.​nlm.​nih.​gov/​genba​nk/). DNA polymorphism and 
haplotype diversity were obtained using DnaSP v.6.12. 
[45]. A median-joining network for the identified haplo-
types was built using Network software v.10.2.0.0 [46], to 

Fig. 2  Culicoides obsoletus (ObL) and Culicoides scoticus (ScN) primer location in aligned C. obsoletus and C. scoticus sequences. Only the part of the 
alignment corresponding with the primer location is shown. Alignment was performed using Clustal Omega software (https://​www.​ebi.​ac.​uk/​
Tools/​msa/​clust​alo/)

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
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show the relationships between them. Pairwise genetic 
differentiation was assessed using the fixation index (FST) 
calculated in DnaSP [45]. FST-values can range between 0 
and 1, where 0 shows no differentiation, and 1 no genetic 
diversity shared between populations [47].

Some cryptic taxa in the Obsoletus complex have been 
previously identified [35, 48–50]: C. obsoletus O1 [C. 
obsoletus  (ss); MT170705], C. obsoletus O2 (MT173130 
and MT172091) and C. obsoletus O3 or clade dark 
(MT170541 and MT171736). We included representa-
tive sequences of each for the construction of our phy-
logenetic tree, as well as of C. montanus (MT172763), C. 
scoticus (MT170272) and the closely related C. scoticus 
clade 2 (MT171305 and MT172198) that is considered 
to be an intraspecific variant of C. scoticus [35]. We also 
included Culicoides dewulfi (KT186808 and KJ162977), 
Culicoides chiopterus (KJ162976 and MW205937), Culi-
coides imicola (KX641487 and KJ162982) and Culicoides 
pulicaris (MW207302) sequences.

All phylogenetic analyses were performed in MEGA X 
[51]. Sequences were aligned using the MUSCLE algo-
rithm [52], and the suitability of the alignment was evalu-
ated through the average evolutionary divergence for all 
nucleotide sequence pairs (p-distance). To generate a 
reliable phylogenetic tree, we set the threshold value for 
the p-distance at < 0.8 [53, 54]. We inferred a maximum 
likelihood (ML) phylogenetic tree with the general time 
reversible model [55] with a gamma distribution and 
invariant sites, and using 2000 bootstrap replications for 
reliability. Tree branches with bootstrap values inferior to 
50% were collapsed to form a consensus tree [56].

Results
cox1 multiplex PCR optimization
We evaluated four annealing temperatures in our mul-
tiplex cox1 PCR: 54, 56, 58 and 60 ºC. The annealing 
temperature which improved the specificity was 60 ºC 
(Fig.  3). For every other temperature, non-specific PCR 
bands were obtained for C. scoticus samples. Hence, the 
optimal annealing temperature for maximal specificity 
was 60 ºC. However, for poor-quality samples, we found 
that it might be advisable to decrease the annealing tem-
perature in order to increase sensitivity.

For C. scoticus from the Canary Islands site, ObL prim-
ers amplified a ~ 576-bp band with an annealing tempera-
ture of 54 ºC. These bands were purified and sequenced 
using the ObL forward primer. Thus, sequences of C. 
scoticus from that location were obtained and included 
in further analyses. The amplification of some C. scoticus 
sequences with an annealing temperature of 54 ºC made 
it necessary to increase the temperature to 60 ºC to be 
able to correctly differentiate the species and prevent 
non-specific PCR bands.

Obsoletus complex sequence diversity for sampled sites
Of the 117 Obsoletus complex individuals studied here, 
90 were identified as C. obsoletus (76.92%), 19 as C. scoti-
cus (16.24%) and five as C. montanus (4.27%); three could 
not be identified (2.56%). The proportion of each spe-
cies differs greatly in the six sites chosen for the study 
(Table  1). In SE and AV, all identified insects were C. 
obsoletus, while in GC1 half of the individuals were C. 
scoticus. In AS, CS and C, we identified a total of six C. 
scoticus individuals. C. montanus was identified in CS 
and C.

We obtained a total of 90 sequences for C. obsole-
tus, 13 for C. scoticus of the Canary Island location, 
and five for C. montanus. All 108 sequences had a 
length   of 514  bp. We found 19 haplotypes for C. obso-
letus (Ob01-Ob19), three for C. scoticus (Sc01-Sc03) and 
one for C. montanus. Sequences from each haplotype 
were deposited in GenBank under the following acces-
sion numbers: C. obsoletus (MW602810-MW602828), 
C. scoticus (MW602829-MW602831), and C. monta-
nus (MW602832). The most prevalent C. obsoletus hap-
lotype was Ob13, which was present at all six sampling 
sites (Fig.  4), and represented 42.22% (38/90) of all C. 
obsoletus sequences. The Ob13 haplotype was predomi-
nant at GC1 (12/13–92.31%), SE (4/5–80%) and CS 
(11/22–42.22%). Ob10 was found at the four northern 
locations, while Ob02 and Ob03 were found in C and 
AS, Ob05 in AV and CS, and Ob07 and Ob11 in AV and 
C. Ob08 was only found at C, Ob012 at AV, and Ob04 
at AS, but at a relatively high proportion: 5/22 (22.72%), 
4/18 (22.22%) and 3/10 (30%), respectively, at each site. 

Fig. 3  Validation of the optimized cytochrome c oxidase I (cox1) 
multiplex polymerase chain reaction assay with an annealing 
temperature of 60 ºC. Lane L 100-base pair (bp) ladder, lanes  1 and 3 
C. scoticus individuals from GC1, lanes 2 and 4 C. obsoletus individuals 
from GC1, lane C- negative control of the PCR. The multiplex PCR 
included forward and reverse ObL and ScN primers. For other 
abbreviations, see Figs. 1 and  2
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The rest of the haplotypes were only found at one site in 
low numbers. For the C. scoticus population in the GC1 
population, 11/13 individuals belonged to haplotype 

Sc03; in contrast, Sc01 and Sc02 haplotypes were are only 
represented by one individual.

We found that the interspecific nucleotide divergence 
was greater than the intraspecific diversity, as previously 
demonstrated [2, 35]. The total nucleotide diversity for 
all of the sequences was 0.0307 ± 0.0053, while for the C. 
obsoletus (ss) sequences it was 0.0045 ± 0.0004, and for 
C. scoticus 0.0006 ± 0.0003. Table  2 shows the sequence 
polymorphism of C. obsoletus (ss) populations obtained 
in the present study and from georeferenced sequences 
retrieved from GenBank.

C. obsoletus sequence diversity compared with external 
Spanish sequences
We obtained 148 C. obsoletus (ss) georeferenced 
sequences from Spain from GenBank (Additional file  1: 
Table  S1), and aligned them with our sequences, which 
gave a total of 238 sequences. The final length of the 
alignment was 457 bp, and we identified 23 C. obsoletus 
(ss) haplotypes. Of 148 external sequences, 141 corre-
sponded to one of the haplotypes identified in this study. 
We maintained the numbering of the identified haplo-
types and added consecutive numbers for the new haplo-
types identified from the GenBank sequences (Ob20–25). 
Due to the similarities of the sequences obtained in this 
study (Additional file  2: Table  S2) and their shortening, 
three pairs of haplotypes had the same sequence in the 
457-bp alignment: haplotypes Ob03 and Ob10 (Ob03–
Ob10), Ob09 and Ob15 (Ob09–Ob15), as well as Sc01 

Fig. 4  Distribution of the 19 different C. obsoletus haplotypes 
identified in this study. Differences in size of the pie charts represent 
the number of individuals sampled per site. Spanish administrative 
boundaries were provided by the Instituto Geográfico Nacional (ign.
es) (BDDAE CC-BY 4.0). For abbreviations, see Fig. 1

Table 2  Intraspecific polymorphisms of the sequences of C. obsoletus (ss) populations evaluated in this study and of georeferenced 
sequences retrieved from GenBank

The analysis was performed using a 457-bp alignment

h Number of haplotypes, Hd haplotype (gene) diversity, S number of variable sites, π nucleotide diversity (per site)
a Identifies the geographical location (see Fig. 1)

IDa Number of sequences GC content h Hd (SD) S π (SD)

AL (Genbank) 6 0.339 2 0.600 (0.129) 2 0.00263 (0.00056)

AS (this study) 10 0.340 4 0.822 (0.072) 3 0.00297 (0.00049)

AV (this study) 18 0.338 8 0.895 (0.038) 7 0.00455 (0.00064)

B (Genbank) 30 0.339 11 0.851 (0.046) 10 0.00442 (0.00048)

C (this study) 22 0.339 8 0.823 (0.050) 10 0.00465 (0.00082)

CO (Genbank) 13 0.339 4 0.731 (0.079) 5 0.00424 (0.00072)

CS (this study) 22 0.339 6 0.723 (0.085) 8 0.00492 (0.00071)

GC1 (this study) 13 0.339 2 0.154 (0.126) 1 0.00034 (0.00028)

GC2 (Genbank) 37 0.339 2 0.054 (0.050) 1 0.00012 (0.00011)

GC3 (Genbank) 11 0.339 2 0.182 (0.144) 1 0.00040 (0.00031)

GR (Genbank) 16 0.339 4 0.617 (0.096) 5 0.00315 (0.00068)

IB (Genbank) 26 0.339 4 0.625 (0.054) 5 0.00324 (0.00051)

SE (this study) 5 0.339 2 0.400 (0.237) 3 0.00263 (0.00156)

TF (Genbank) 9 0.339 1 – 0 –

Total 238 0.339 23 0.690 (0.028) 22 0.00372 (0.00022)
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and Sc03 (Sc01–Sc03). Figure  5 shows haplotype rela-
tionships determined using a median-joining network. 
Ob13 was the most frequent haplotype, comprising 
51.26% (122/238) of the sequences, and was present at all 
collection sites. Ob03–Ob10, Ob09–Ob15 and Ob05 also 
occurred at a relatively high frequency, i.e. in ten or more 
insects. Eleven haplotypes were from only one individual: 
six of those identified in our samples and five from Gen-
Bank georeferenced sequences.

We found more C. obsoletus (ss) haplotypes and genetic 
diversity at B, C, AV, CO and CS (Table 2). However, SE, 
AL and the Canary Islands (GC1-3 and TF) populations 
had significantly lower intraspecific diversity, although 
few sequences were included for SE and AL. A pro-
nounced level of genetic differentiation was observed 
between each Canary Island population, mainland Spain 
and IB populations in this study with FST values > 0.25, 
as well as between SE and AS, AV, B and GR (Table 3). 
Negative FST values can be a result of a small sample size 
in relation to a high number of haplotypes in the popula-
tion, and should be considered as indicating no genetic 
differences [57]. Thus, no divergence was found among 
the Canary Island sites, or with SE, or between some 
populations on mainland Spain.

Phylogenetic analysis
The alignment was suitable for the generation of reliable 
phylogenetic trees, with an average of 0.09 nucleotide 
substitutions per site when taking into consideration all 
sequence pairs. The ML phylogenetic tree (Fig. 6) showed 
that the sequences analyzed here have a small evolution-
ary distance; this was also supported by the low nucleo-
tide diversity (Additional file  2: Table  S2). The tree also 
corroborates the absence of cryptic species in the area of 
study.

Discussion
In the present study, a single-tube multiplex PCR assay 
based on the partial amplification of the mtDNA cox1 
gene was developed. Previous studies have also devel-
oped single-tube multiplex PCR assays for the cox1 gene 
for the Obsoletus complex [37, 58, 59]. However, the 
amplicon size for C. obsoletus used in these assays was 
inadequate for our posterior sequence diversity and phy-
logeographic analyses. Our PCR allows the differentia-
tion of C. obsoletus from C. scoticus within the Obsoletus 
complex, without the need for sequencing derived from 
the use of generic primer pairs such as LCO/HCO [60], 
C1-J-1718/C1-N-2191 [61, 62], and Lep [63], although 
ObL primers showed a lack of specificity for the ampli-
fication of C. montanus, which we discuss below. We 
found some cross-reactivity with the ObL primers and C. 

Fig. 5  Median-joining network showing the relationship of the 23 haplotypes of 457-bp in length. Node size represents the number of sequences 
that comprise each haplotype. Each geographical location is color coded to show its haplotype frequencies. Perpendicular lines indicate nucleotide 
changes. For abbreviations, see Fig. 1
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scoticus samples at low annealing temperatures, although 
we designed the primers so as to avoid this. This cross-
reactivity was overcome by using an annealing tempera-
ture of 60 ºC (Fig.  3). Other authors have pointed out 
similar difficulties concerning the specificity of specifi-
cally designed primers for Culicoides species [48]. We 
did not evaluate whether our primers could amplify other 
Culicoides species outside the Obsoletus complex, thus 
previous morphological identification cannot be substi-
tuted by our molecular approach. Moreover, morpho-
logical identification of all the midges as belonging to 
the Obsoletus complex coincided with their molecular 
identification. The correct morphological identification is 
key to accurately estimate the large-scale distribution of 
Culicoides species and complex when molecular identifi-
cation is not achievable.

Primers designed for C. obsoletus (ObL) also amplified 
one haplotype of C. montanus. The existence of other 
cross-reactions cannot be ruled out for other Obsole-
tus complex species haplotypes that were not identi-
fied in this study for Spain, or for other geographical 
regions. To overcome the limitations regarding speci-
ficity that were encountered for C. montanus and some 
haplotypes of C. scoticus at low annealing temperatures 
of the applied primers, a multi-marker approach includ-
ing other mitochondrial (cox2 and cytb) and nuclear loci 
(ITS1 and ITS2) should be considered for future stud-
ies in which the main goal is to correctly differentiate 
between C. obsoletus (ss), C. scoticus, C. montanus and 
all cryptic species within C. obsoletus [64]. To our knowl-
edge, no PCR for the cox1 gene that has been designed 
enables discrimination of C. montanus within the Obso-
letus complex/group [37, 48, 58, 59]. Due to the low 

genetic distance between C. obsoletus (ss) and C. mon-
tanus (Fig. 6; Additional file 2: Table S2) [35], it is highly 
unlikely that specifically generated primers created for C. 
obsoletus (ss) do not also amplify C. montanus, especially 
if the latter species has not been taken into account in the 
primer design, as our results show. Some authors have 
been able to correctly differentiate C. montanus from 
C. obsoletus using the ITS1 [67] and ITS2 markers [66, 
68], although other studies faced similar specificity limi-
tations to ours when identifying C. montanus in a PCR 
designed specifically for C. obsoletus that used the ITS2 
marker [69].

The prevalence of C. montanus is generally low in 
entomological surveys, with the exception of some stud-
ies carried out in Morocco [35]. Therefore, its role as an 
arbovirus vector has not yet been defined. In addition, 
the taxonomic status of C. montanus in western Palearc-
tic regions has been questioned by some authors due to 
the low genetic distance found between it and C. obsole-
tus (ss) when using different molecular markers [35, 65, 
66].

We found higher genetic diversity in mainland Spain 
than in the Canary Islands (Table  2). The low genetic 
diversity, inexistent genetic differentiation among the 
structure of C. obsoletus (ss) in all Canary Islands popula-
tions, and strong divergence with the other sampling sites 
(Tables  2, 3) are probably a consequence of their isola-
tion, which implies inbreeding and low gene flow outside 
the islands [70]. On the other hand, for site IB there was 
no to low differentiation with mainland Spain, except for 
site B with which there was moderate divergence, as it 
had three of the most prevalent haplotypes in this study: 
Ob03–Ob10, Ob05 and Ob13 (Fig.  5). Its closeness to 

Table 3  Genetic differentiation based on pairwise FST values

a For geographical location, see  Fig. 1

IDa AL AS AV B C CO CS GC1 GC2 GC3 GR IB SE TF

AL

AS − 0.065

AV 0.106 0.174

B 0.181 0.223 0.076

C − 0.045 0.033 0.083 0.145

CO − 0.045 0.045 − 0.004 0.08 − 0.008

CS 0.015 0.106 0.059 0.091 0.025 − 0.031

GC1 0.371 0.452 0.515 0.555 0.317 0.383 0.28

GC2 0.389 0.465 0.526 0.566 0.325 0.394 0.289 0

GC3 0.367 0.447 0.511 0.552 0.314 0.379 0.278 0 0

GR − 0.057 0.027 0.033 0.103 0.01 − 0.045 0.041 0.513 0.53 0.509

IB − 0.089 0.02 0.095 0.183 − 0.005 − 0.031 0.014 0.356 0.371 0.352 − 0.003

SE 0.2 0.274 0.359 0.388 0.198 0.234 0.15 0 0 0 0.34 0.201

TF 0.4 0.479 0.532 0.573 0.332 0.401 0.294 0 0 0 0.539 0.379 0
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mainland Spain may facilitate gene flow between midge 
populations of the two. Haplotype and nucleotide diver-
sity in the south of mainland Spain is lower than in north-
ern areas of Spain. These differences can be attributed to 
sample size; however, the abundance of the Obsoletus 

complex is higher in northern and mountainous areas of 
Spain [14], and genetic diversity is partially influenced by 
population size [70]. In addition to differences in popu-
lation size, orographic barriers such as altitude (Fig.  1), 
might limit genetic flow between some of the mainland 

Fig. 6  Inferred phylogenetic tree for the partial mitochondrial DNA cox1 gene using the maximum likelihood method, the general time reversible 
model with a gamma distribution and invariant sites and 2000 bootstrap replications. Reference sequences retrieved from GenBank (https://​www.​
ncbi.​nlm.​nih.​gov/​genba​nk/) include accession number, species and country information. Haplotypes identified in this study (Ob01–Ob19) are 
highlighted in bold and by a black circle, while Spanish haplotype sequences identified from retrieved GenBank sequences (Ob20–Ob25) are marked 
by a gray triangle and include the accession number

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
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populations in this study, although the limited sample 
size of some collection sites prevents us from drawing a 
firm conclusion (Table 3).

We found similar overall proportions of each species 
to those reported in recently published work [35]. In 
Mignotte et  al. [35], of the 179 sequences analyzed for 
samples from Spain, 128 (71.51%) were from C. obsoletus, 
two from (1.12%) C. montanus, 28 (15.64%) from C. scoti-
cus and 21 (11.73%) from C. scoticus clade 2, although in 
a site in Catalonia, only C. scoticus midges were  identi-
fied. Moreover, there are dissimilar ratios for the Canary 
Islands between our study and that of Mignotte et  al.  
[35], since we identified a 1:1 ratio for C. obsoletus (ss) 
and C. scoticus, while in the latter study, C. scoticus was 
not found. The peculiar orographic characteristics of the 
Canary Islands justify strengthening our knowledge of 
the Obsoletus complex composition there, in collection 
sites that are more homogeneously distributed. We did 
not find C. scoticus clade 2, although we did not obtain 
a large sequence for any of the six C. scoticus midges 
from mainland Spain. Moreover, we did not find evidence 
of any cryptic species at any of the sampled sites, as in 
studies carried out in nearby countries, such as Morocco 
[35, 71]. Both C. obsoletus O2 and C. obsoletus clade dark 
or O3 have been described from Switzerland, Sweden, 
Denmark, Finland, Latvia, Norway, France and Italy at 
latitudes above 45º [35, 48, 50]. The former has also been 
described from Poland [35], and C. obsoletus clade dark 
or O3 from the Netherlands [49]. In the United Kingdom, 
evidence of Obsoletus complex cryptic taxa has also been 
found [36]. Cryptic species may have significant epidemi-
ological differences in terms of vector competence, host 
preferences and breeding sites, although there is as yet 
no evidence for this [30]. Our results, along with those 
of previous work carried out on Spanish populations of 
the  Obsoletus complex [33–35], show that C. obsoletus 
cryptic species O2 and clade dark might be absent from 
Spain, present in very low numbers, or present in unsam-
pled locations. The potential absence of cryptic taxa from 
the Obsoletus complex in Spain may be of relevance to 
future epidemiological studies, as species-specific vec-
tor competence within the complex could be examined 
by using a greater number of insects [19, 28]. Neverthe-
less, more C. obsoletus sequences should also be acquired 
to definitively exclude the presence of cryptic species in 
areas with a high abundance of the Obsoletus complex, 
namely, northern locations [13, 14], which also show 
more genetic diversity (Table 2).

According to the entomological survey which has been 
conducted by the Spanish Bluetongue National Surveil-
lance Program since 2004, the Obsoletus complex is the 
most abundant in northern areas of mainland Spain and 
the C. imicola complex is generally absent or found in 

low numbers [14]. Therefore, it is thought that the Obso-
letus complex plays a key role in the transmission of BTV 
there, given that it is a competent vector of the virus [15, 
19, 20]. The persistence of BTV in northern Spain was 
empirically proven by the circulation of BTV-1 from 
2007 to 2009 and BTV-8 in 2008 and 2020 [72]. However, 
the exact contribution of the Obsoletus complex to BTV 
transmission in central and southern areas of mainland 
Spain, where C. imicola is the main vector of BTV, has 
not yet been well defined [13, 73].

Conclusions
Our study reveals that C. obsoletus (ss) is the predomi-
nant species within the Obsoletus complex in mainland 
Spain. This information may be of relevance for future 
epidemiological studies when more robust information is 
available on specific aspects of the vector capacity (vec-
tor competence, adult longevity, biting rate [1]) of each 
of the sibling species of this complex. Our results show 
that intraspecific divergence is higher in C. obsoletus (ss) 
northern populations, and highlight the isolation of C. 
obsoletus (ss) populations in the Canary Islands. No cryp-
tic species within C. obsoletus were identified.
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