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METHODOLOGY

A multiplex PCR assay for six Aedini species, 
including Aedes albopictus
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Abstract 

Background:  Mosquitoes, as vectors of various human pathogens, are significant drivers of serious human illness. In 
particular, those species in the Aedini tribe, which typically transmit dengue virus, Chikungunya fever virus, and Zika 
virus, are increasing their range because of climate change and international commerce. In order to evaluate the risk 
of disease transmission, accurate mosquito species identification and monitoring are needed. The goal of this work 
was to develop a rapid and simple molecular diagnostic method for six morphologically similar Aedini species (Aedes 
flavopictus, Aedes albopictus, Ochlerotatus koreicus, Ochlerotatus japonicus, Ochlerotatus togoi and Ochlerotatus hatorii) 
in Korea.

Methods:  A total of 109 samples were assayed in this study. The internal transcribed spacer 2 (ITS2) regions from all 
six species were amplified, sequenced and analyzed using Mega 6. Following the identification of regions  that were 
consistently different in terms of  sequence between all six species, multiplex primers were designed to amplify these 
regions to generate species-specific fragments distinguishable by their size.

Results:  Uniquely sized fragments were generated in Ae. flavopictus (495 bp), Ae. albopictus (438 bp), Oc. koreicus 
(361 bp), Oc. togoi (283 bp), Oc. hatorii (220 bp) and Oc. japonicus (160 bp). Pairwise distance analysis showed that 
the difference was 35.0 ± 1.5% between Aedes spp. and Ochlerotatus spp., 17.4 ± 0.2% between Ae. albopictus and Ae. 
flavopictus and 11.1 ± 0.3% between Oc. koreicus and Oc. japonicus.

Conclusions:  In this study, a multiplex PCR assay for six species of the Aedini tribe was developed. This assay is more 
accurate than morphological identification and will be useful for monitoring and controlling these vector mosquitoes.
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Background
Mosquitoes are vectors of numerous animal and human 
pathogens, and the threat of mosquito-borne diseases is 
increasing in parallel with the expansion of the ranges 
of these mosquito vectors. The expansion of mosquito 
is driven by climate change and increased introductions 
into novel territory facilitated by international travel 
and commerce [1, 2]. More than 250 million people are 

exposed to mosquito-borne dengue viruses, and more 
than 400,000 people die from malaria each year [3].

Among the Aedini tribe, Aedes spp. and Ochlerotatus 
spp. are known to transmit dengue virus, Chikungunya 
virus and yellow fever virus, and have been recently 
shown to be the main vector of Zika virus [4, 5]). The 
main species that serve as vectors for these diseases 
are Aedes aegypti and Aedes albopictus. Notably, the 
range of Ae. albopictus, which is a potential vector for 
dengue and Zika virus, has been expanding worldwide 
since the beginning of the twentieth century as climate 
change and international transport accelerate. It is 
currently identified as a major invasive species [6, 7]. 
Aedes albopictus is more heat- and stress-tolerant and 
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is more widely distributed in Asia than Ae. aegypti [8]. 
In addition, this species can carry 22 more strains of 
arboviruses than Ae. aegypti and is likely to be a major 
vector in areas where Ae. aegypti is absent [9–11].

In Korea, 12 species of mosquitoes, including Ae. 
albopictus, are known to transmit vector-borne dis-
eases [12]. Every mosquito-borne disease is managed 
by the Korea Disease Control and Prevention Agency 
(KDCA) as ‘a legal infectious disease’ necessitating 
extra surveillance because of the possibility of being 
introduced from abroad and exacerbated by climate 
change [13]. Although there have been no reported 
cases of these viruses as indigenous to Korea, a mos-
quito infected with dengue virus was found near the 
airport in Incheon, Korea in 2019, suggesting that the 
spread of vector-borne diseases due to introductions 
and climate change is a real threat [14].

Six species of the Aedini tribe (Ae. albopictus, Aedes 
flavopictus, Ochlerotatus japonicus, Ochlerotatus 
koreicus, Ochlerotatus togoi and Ochlerotatus hatorii) 
found in Korea are difficult to identify and distinguish 
morphologically. Aedes flavopictus, a potential vec-
tor of the dengue virus, was thought to be restricted 
to Korea and Japan but has recently been found in 
Europe [15, 16]. Ochlerotatus japonicus has recently 
spread to North America and Europe and is known to 
transmit West Nile virus, Chikungunya virus and den-
gue virus [17–19]. Ochlerotatus koreicus is a common 
species that lives in urban areas, and it is a vector of 
Japanese encephalitis and Chikungunya virus [20, 21]. 
Ochlerotatus togoi, which is the main vector of lym-
phatic filariasis, lives in coastal areas of East Asia and 
also exists along the coast of North America and South 
America [22–24]. Ochlerotatus hatorii is known to 
be distributed in Korea and Japan [25]. Although the 
latter species is morphologically similar to the other 
five species, it has rarely been studied ecologically or 
biologically.

Successful mitigation of these mosquito-borne dis-
eases requires regular monitoring of the range and 
population density of their mosquito vectors. This 
monitoring requires rapid and accurate methods to 
identify mosquito species. However, morphological 
identification is difficult, especially if the scales or 
legs which are used in identification are lost or miss-
ing from the specimens  [25, 26]. Consequently, the 
development of a rapid and accurate identification 
method would be extremely useful. In this study, we 
describe the development of a new molecular diag-
nostic method for these six mosquito species using the 
internal transcribed spacer 2 (ITS2) of the ribosomal 
RNA (rRNA) region.

Methods
Mosquito sample collection and information
From August to September 2019, adults and larval mos-
quitoes were collected from mosquito habitats in five 
regions of Korea (Chiak mountain, Yongmun mountain, 
Daedeok mountain, Bibong mountain and Bomokpo 
port) (Fig.  1). Aedes. flavopictus adults (n = 20) were 
collected using BG-sentinel™ (BGS) traps (Biogents, 
Regensburg, Germany) containing lactic acid and dry 
ice and then morphologically identified [25, 26]. Larvae 
of the other five species were collected from water pools 
around streams and reared to adults in the insectary. 
Reared adults were identified using known taxonomy 
keys [25, 26]. Information on the mosquito species and 
number of specimens collected according to collection 
site is provided in Table 1.

Sequence determination of the ITS2 region of the six 
Aedini species
DNA was extracted from each specimen using the Accu-
Prep® DNA Extraction Kit  (K3032; Bioneer Corp., Dae-
jeon, South Korea). Universal primers (forward primer: 
5′-AGG ACA CAT GAA CAC CCA CA-3′)/reverse 
primer: 5′-CTC GCA GCT ACT CAG GGA AT-3′) were 
designed from sequences registered in GenBank with the 
following accession numbers: Ae. flavopictus—AF353524; 
Ae. albopictus—MN062758; Oc. koreicus—KF471622; 
Oc. togoi—EU980394; and Oc. japonicus—KF471614. 
The sequence of the ITS2 region of Oc. hatorii was not 
available when this study was conducted, and so the 
sequence of the phylogenetically close Oc. togoi was used 
instead [27]. Although four samples for each species were 
sequenced, one sequence per species was deposited in 
GenBank due to the absence of within-species variation. 
The analyzed sequence data were deposited in GenBank 
under the following accession numbers: MT992619 (Ae. 
albopictus), MW040082 (Ae. flavopictus), MW046043 
(Oc. koreicus), MW046046 (Oc. japonicus), MW046045 
(Oc. hatorii) and MW046044 (Oc. togoi).

Each individual reaction mixture (total volume 25  μl) 
contained 0.4 μM of each primer, 1× PCR buffer, 0.2 mM 
of each dNTP, 1.0  mM MgCl2 and 0.5 U of Taq DNA 
polymerase (R001AM; TaKaRa Bio Inc., Kusatsu, Shiga, 
Japan), with 1.0  μl of the genomic DNA extracted from 
an individual specimen. Amplification was conducted on 
a Thermal Cycler Dice system (TP350; TaKaRa) as fol-
lows: 94 ℃, 5 min; then 94 ℃/30 s, 55 ℃,30 s, 72 ℃/30 
s for 35 cycles; with a final extension at 72 ℃ for 10 min. 
PCR products were visualized in 1.5% (wt/vol) agarose 
gels stained with ethidium bromide (VWR Life Science, 
Radnor, PA, USA), and then sequenced in both directions 
by Macrogen Inc. (Seoul, Korea). Sequences were aligned 
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Fig. 1  Collection sites of the six Aedini species in Korea. The numbers in red circles indicate the following collection  locations: 1 Chiak mountain, 2 
Yongmun mountain, 3 Daedeok mountain, 4 Bibong mountain, 5 Bomokpo port. The background map image was obtained from Google Earth Pro 
version 7.3.3.7786 (Accessed 7 Dec 2020)
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and analyzed using the Basic Local Alignment Search 
Tool (BLAST) and Bioedit v7.2.6.1 [28, 29].

Multiplex PCR assay for the six Aedini species
Six multiplex primer sets consisting of the aforemen-
tioned universal forward primer paired with species-spe-
cific reverse primers from the ITS2 region were designed 
(Fig.  2). The multiplex PCR was conducted in a 25-μl 
reaction volume with 0.4 μM of each primer (Table 2), 1× 
PCR buffer, 0.2 mM of each dNTP, 1.0 mM MgCl2, 0.5 U 
of Taq DNA polymerase (R001AM; TaKaRa Bio Inc.) and 
1.0  μl of genomic DNA of an individual specimen. The 
PCR cycling conditions were: 94 ℃, 5 min; then 94 ℃/30 
s, 56 ℃/30 s, 72 ℃/30 s for 35 cycles; with a final exten-
sion step at 72 ℃ for 5  min. The products were visual-
ized in 2.0% (wt/vol) agarose gels with ethidium bromide 
(VWR Life Science) and sequenced as described above.

Phylogenetic analysis of the six Aedini species
The phylogenetic analysis was performed using the 
neighbor-joining method under the Kimura 2-parameter 
model. MEGA software version 6 [30] was used to verify 
phylogenetic relationships and compare these with the 
results of morphological identification. Bootstrapping 
based on the ITS2 sequence data was conducted with 
1000 replicates, and genetic diversity between the species 
was compared using pairwise distances.

Results and discussion
Comparison of ITS2 sequence and multiplex PCR results
In total, 109 samples of DNA extracted from individual 
mosquitoes were used for the study (20 Ae. flavopictus 
samples, 24 Ae. albopictus samples, 5 Oc. japonicus sam-
ples, 20 Oc. koreicus samples, 20 Oc. hatorii samples and 
20 Oc. togoi samples).

The lengths of the sequenced fragments of the ITS2 
regions of the six Aedini species were 580 bp (Ae. fla-
vopictus), 576 bp (Ae. albopictus), 450  bp (Oc. koreicus), 
451 bp (Oc. togoi), 406 bp (Oc. hatorii) and 456 bp  (Oc. 

japonicus). The sequence of each fragment was aligned 
(using BLAST) with the existing sequence registered in 
GenBank (Ae. Albopictus: accession MN062758 Palestine, 
MF623839, KU497619 China; Ae. flavopictus: AF353524, 
AF353551, AF353553 Japan; Oc. koreicus: MK765859 
Hungary, JF430391, KF471630 Belgium; Oc. japonicus: 
KF471619 Austria, FJ641870 Belgium, GU121103 USA; 
Oc. togoi: EU980394 Korea) and used to check the bind-
ing sites for the universal and specific reverse primers.

A gel showing the results of the multiplex analysis of 
DNA from each species is shown in Fig. 3 (Ae. flavopictus 
[495  bp], Ae. albopictus [438  bp], Oc. korecus [361  bp], 
Oc. togoi [283  bp], Oc. hatorii [220  bp], Oc. japonicus 
[160 bp]). The results of molecular analysis were consist-
ent with those of the morphological study.

Results of the phylogenetic analysis using MEGA 6
The ITS2 results of the six Aedini species sequenced 
in this study (accessions MT992619, MW040082, 
MW046043, MW046046, MW046045, MW046044) 
and other ITS2 sequences deposited in GenBank from 
other species in the Aedini tribe (accessions KF471630, 
MK765859, JF430391, FJ641870, KF471619, GU121103, 
EU980394, MN062758, KU497619, MF623839, 
AF353524, AF353553, and AF353551) were analyzed to 
determine phylogenetic relatedness between the six spe-
cies as well as within the six species (Fig. 4).

Aedes albopictus and Ae. flavopictus, which are mor-
phologically similar, were more closely related with 
each other than with the other Aedini species, as were 
Oc. koreicus and Oc. japonicus. The phylogenetic tree 
was clearly divided into Aedes spp. and Ochlerotatus 
spp. while Oc. hatorii and Oc. togoi were only distantly 
related to the other Ochlerotatus spp. A pairwise analy-
sis of genetic distances using the Kimura 2-parameter 
calculation and the interspecies ITS2 region showed a 
35.0 ± 1.5% difference between Aedes spp. and Ochlerota-
tus spp., a 17.4 ± 0.2% difference between Ae. albopictus 
and Ae. flavopictus and a 11.1 ± 0.3% difference between 

Table 1  Mosquito species and number of specimens collected in each collection site in Korea

Specimens (n) Species Collection sites Total  (n)

Chiak mountain Yongmun 
mountain

Daedeok 
mountain

Bibong 
mountain

Bomokpo port

Collected adults Aedes flavopictus 20 20

Reared adults Aedes albopictus 5 7 12 24

Ochlerotatus koreicus 4 4 12 20

Ochlerotatus japonicus 2 2 1 5

Ochlerotatus togoi 20 20

Ochlerotatus hatorii 20 20
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Oc. koreicus and Oc. japonicus. The analysis of intra-
species variation showed: Ae. albopictus 0.44 ± 0.2%, 
Ae. flavopictus 0.41 ± 0.3%, Oc. koreicus 1.11 ± 0.7%, Oc. 

japonicus 0.84 ± 0.4% and Oc. togoi 0.67% (Additional 
file 1: Table S1). In addition, the results showed little vari-
ation between countries within the species. This is the 

Fig. 2  Position of the universal and specific reverse primers within the internal transcribed spacer 2 (ITS2) region. U Universal forward primer. 
Uppercase letters in bold (A–F) indicate Ochlerotatus japonicus (A),  Ochlerotatus hatorii (B), Ochlerotatus togoi (C),  Aedes albopictus (D),  Aedes 
flavopictus (E),  Ochlerotatus koreicus (F)

Table 2  Universal forward primer sequences and specific reverse primer sequences for the six species of mosquitoes assayed in this 
study

Species Forward primer (5′→3′) Reverse primer (5′→3′) Product 
length 
(bp)

Aedes flavopictus AGG​ACA​CAT​GAA​CAC​CCA​CA TGA​GGC​CTA​CTG​ACT​TGA​CTTG​ 495

Aedes albopictus GGA​GCA​CAC​TGA​GAG​TTC​CA 438

Ochlerotatus koreicus GCC​TAC​TGA​TTG​ACG​GGG​TA 361

Ochlerotatus togoi AGG​CGG​TGG​AGT​GTA​TGG​ 283

Ochlerotatus hatorii CAA​TGT​TTT​ACC​GCT​GTT​TGC​ 220

Ochlerotatus japonicus TAT​ACT​ACG​CTG​CCG​AGA​GG 160
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first report of the results of a  phylogenetic analysis of 
the six species. Although the species are morphologically 
indistinguishable, the phylogenetic relationship between 
six species of Aedini tribe as well as between the genera 
was confirmed by this analysis. There was no discordance 
between morphological identification and the results 

of the molecular and phylogenetic analysis for the six 
Aedini species.

Application of multiplex PCR molecular diagnostic method
All of the six Aedini species included in this study 
are very similar morphologically and are identified 

Fig. 3  Example of the results of the multiplex PCR assay for six Aedini species. Lanes:  M 100-bp molecular marker, 1 Aedes flavopictus (495 bp), 2 
Aedes albopictus (438 bp), 3 Ochlerotatus koreicus (361 bp); 4 Ochlerotatus togoi (283 bp), 5 Ochlerotatus hatorii (220 bp), 6 Ochlerotatus japonicus 
(160 bp)

Fig. 4  Neighbor-joining phylogenetic tree (Kimura 2-parameter genetic distance calculating method) using ITS2 sequences of six species
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morphologically by fine differences in the leg, scales, 
scutum and scutellum [25, 26]. However, the very tedi-
ousness of the identification process based on accu-
rate determination of morphological characters and 
the very real possibility that legs and scales may be lost 
during collection or storage results in a substantial mis-
identification rate. The multiplex PCR assay using the 
ITS2 region which we developed can reduce this mis-
identification rate and is simple—requiring only PCR 
followed by electrophoresis.

The ITS2 region is located in between the 5.8S and 
28S subunits which are conservative with little  within-
species variation. It is a non-coding region and shows 
a rapid divergence between species. Also, it is easy to 
design primers at the conservative regions (5.8S and 
28S) and multiple copies with fragments of < 1 kb are 
present, which is favorable for amplification [31, 32]. 
Given these advantages, the ITS2 region has been used 
to identify closely related or morphologically indistin-
guishable species [33, 34]. A multiplex PCR assay for 
Anopheles spp., which transmit malaria, has also been 
developed and is being used to monitor certain vector 
species of Anopheles spp. [35–38].

The multiplex PCR assay we developed for Aedini 
species enables a simple and accurate identification 
and monitoring of species of mosquitoes that carry fla-
viviruses such as dengue virus, yellow fever virus and 
Zika virus. Five of the species analyzed here, the excep-
tion being Oc. hatorii, which is not known to transmit 
disease, have the ability to transmit pathogens and are 
currently increasing their respective distribution range. 
Aedes albopictus, which is an endemic species in Asia, 
has spread into other countries due to the increased 
trading of waste tires globally [39, 40]. It has also spread 
to Africa, the Americas and Europe, thereby increasing 
the probability of infection in these regions [41–43]. 
Aedes flavopictus, which is also an endemic species in 
East Asia, was first reported in Europe in 2019 [16], and 
Oc. japonicus was reported first in North America in 
the late 1990s [44, 45] and in Europe in 2002 [46, 47]. 
Ochlerotatus koreicus was recently reported in Bel-
guim in 2008 and in Italy in 2011 [48, 49], and is con-
sidered to be a major invasive species together with Ae. 
albopictus in Europe [50]. Ochlerotatus togoi, which is 
endemic species in East Asia and Southeast Asia, was 
first detected in North America in 1980 [51, 52]. The 
multiplex PCR assay described here would be a useful 
tool for monitoring these mosquito vectors in Korea 
as well as in countries where they were already spread 
or have the possibility to invade. The data provided by 
consistent and accurate monitoring of mosquito popu-
lations through this method can potentially be used to 

guide national public health measures, such as quar-
antine, and thus help prevent the spread of mosquito-
borne diseases.

Conclusions
In this study, a multiplex PCR assay was developed to 
identify six Aedini species which can transmit vari-
ous diseases in Korea. This assay provides a simple and 
accurate molecular identification tool for these six spe-
cies, which are difficult to identify morphologically. 
These species are expected to spread globally due to 
climate change and increasing international trade. This 
tool will, therefore, be useful for control of the vectors 
for several infectious diseases.
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