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Abstract 

The impacts and limitations of personal protection measures against exposure to vectors of malaria and other 
mosquito-borne pathogens depend on behavioural interactions between humans and mosquitoes. Therefore, 
understanding where and when they overlap in time and space is critical. Commonly used approaches for calculat-
ing behaviour-adjusted estimates of human exposure distribution deliberately use soft classification of where and 
when people spend their time, to yield nuanced and representative distributions of mean exposure to mosquito 
bites across entire human populations or population groups. However, these weighted averages rely on aggregating 
individual-level data to obtain mean human population distributions across the relevant behavioural classes for each 
time increment, so they cannot be used to test for variation between individuals. Also, these summary outcomes 
are quite complex functions of the disaggregated data, so they do not match the standard binomial or count dis-
tributions to which routine off-the-shelf statistical tools may be confidently applied. Fortunately, the proportions of 
exposure to mosquito bites that occur while indoors or asleep can also be estimated in a simple binomial fashion, 
based on hard classification of human location over a given time increment, as being either completely indoors or 
completely outdoors. This simplified binomial approach allows convenient analysis with standard off-the-shelf logistic 
regression tools, to statistically assess variations between individual humans, human population subsets or vector 
species. Such simplified binomial estimates of behavioural interactions between humans and mosquitoes should be 
more widely used for estimating confidence intervals around means of these indicators, comparing different vector 
populations and human population groups, and assessing the influence of individual behaviour on exposure pat-
terns and infection risk. Also, standard sample size estimation techniques may be readily used to estimate necessary 
minimum experimental scales and data collection targets for field studies recording these indicators as key outcomes. 
Sample size calculations for field studies should allow for natural geographic variation and seasonality, taking advan-
tage of rolling cross-sectional designs to survey and re-survey large numbers of separate study locations in a logisti-
cally feasible manner.
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Background
Assessments of malaria control measures that target 
human-biting adult mosquitoes require clear under-
standing of how effectively they protect individual end 
users and how gaps in personal protection arise [1–4]. 
Improved understanding of behavioural interactions 
between humans and mosquitoes, especially where 
and when they overlap in time and space, is critical to 
estimating the impact of personal protection measures 
such as insecticide-treated nets (ITNs) and identifica-
tion of where and when supplementary vector control 
tools are needed [1–4]. Similar issues are relevant to 
personal protection against a variety of other vector-
borne pathogens, especially arboviruses such as den-
gue, Zika and chikungunya carried by mosquito species 
like Aedes aegypti that often bite people while they are 
active outdoors [5].

While methods for weighting estimates of human 
exposure to bites from Anopheles mosquitoes according 
to where people spend their time have been available for 
decades [6], they remain underutilized [1–4, 7]. Crude 
indoor and outdoor biting rates are still commonly mis-
interpreted as being indicative of human-vector con-
tact patterns, without any adjustment for the influence 
of human behaviour or the personal protection effects 
of ITNs [1–4, 7]. Fortunately, these deficits in current 
common practice may be readily addressed by relatively 
straightforward adjustments to data collection and 
analysis practice [4, 7]. More accurate representations 
of exposure patterns can be achieved by supplement-
ing mosquito biting activity data with complementary 
surveys of a small set of human behavioural variables 
that capture the following over the course of the night: 
(i) the distribution of human populations indoors and 
outdoors, (ii) whether they are awake or asleep and (iii) 
if and when they use an ITN [4, 7]. Important exam-
ples of useful indicators that can be calculated with 
such behaviour-weighted approaches include the pro-
portion of vector bites occurring indoors for an unpro-
tected individual ( πI ) and the proportion of vector bites 
occurring while asleep for an unprotected individual 
( πS ), as well as derived terms like the proportion of all 
vector bites directly prevented by ITN use or the pro-
portion occurring indoors despite ITN use [4, 7]. If 
surveyed, estimated and interpreted consistently, these 
indicators can greatly improve understanding of how 
malaria transmission persists despite high coverage 
of prevention measures such as ITNs, how exposure 

patterns may change as supplementary vector control 
tools are introduced, and the potential impacts of these 
new tools [1–4, 7].

The most widely used approaches for calculating 
behaviour-adjusted estimates of human exposure distri-
bution deliberately use probabilistic or soft classification 
to allow for the considerable variability between individ-
ual people in terms of where and how they spend their 
time [4, 7]. The probabilities that any given individual 
will be indoors or outdoors during a given time incre-
ment is estimated as the proportion recorded as doing 
so through questionnaire or observational surveys of the 
human population [4, 7]. These probabilities are then 
used to weight entomological measurements of human 
exposure to mosquito bites  occurring indoors and out-
doors, yielding nuanced and representative distributions 
of mean exposure to  biting mosquitoes across entire 
human populations or population groups [4]. However, 
these weighted averages rely on aggregating individual-
level data to obtain mean human population distribu-
tions across the relevant behavioural classes for each time 
increment. These summary outcomes are therefore quite 
complex functions of the disaggregated data, so they do 
not match the standard binomial or count distributions 
to which routine off-the-shelf statistical tools may be 
confidently applied. Consequently, testing for variation 
between individuals, much of which may be associated 
with epidemiologically important covariates such as age, 
sex, occupation and housing [7–14], requires advanced 
Bayesian techniques that are beyond the reach of most 
field entomologists and epidemiologists.

Fortunately, the proportions of exposure to mosquito 
bites that occur indoors or while asleep can also be esti-
mated in a more simplified binomial fashion, based on 
hard classification of human location at a given time 
increment, as being either completely indoors or com-
pletely outdoors [15]. Such clear-cut assignment of 
humans to either location compartment then allows 
each mosquito caught attacking a person to be sim-
plistically and unambiguously assigned to one of three 
categories, on the basis that it was either: (i) caught at 
a time and place when most people may practically pro-
tect themselves by using an ITN, (ii) caught at a time 
and place when people cannot practically use an ITN 
or (iii) caught at a time and place assumed to be irrel-
evant to normal exposure patterns because the majority 
of people are elsewhere (Fig.  1). This simplification is 
obviously cruder and less precise because it disregards 
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many valid observations of mosquito-human interac-
tions that occur in the evenings and mornings, when 
some people are asleep indoors while others are awake 
outdoors.

However, it does offer the advantage of allowing con-
venient analysis with standard logistic regression meth-
ods, to statistically estimate confidence intervals around 
means, compare vector species and human population 
groups and assess the influence of individual behaviour 
on exposure patterns and malaria risk [16–21] (Addi-
tional file  1: Poster S1). Also, because such hard clas-
sification techniques allow these key indicators to be 
calculated in simple binomial form, standard sample 
size estimation techniques may be readily used to esti-
mate necessary minimum experimental scales and data 
collection targets required for field studies. While crude 
hard classification understandably appears to provide 
less precise estimates, no consistent trend toward under- 
or overestimation was obvious in a multi-country study 
encompassing ten different mosquito populations from 
across Africa [9]. Furthermore, hard and soft classifica-
tion approaches have different advantages and disad-
vantages, so both may be included for complementary 
purposes in a given report [9].

Here, we present a brief explanation and discussion 
of relatively simple methodological options for applying 
such hard classification techniques to address common 
objectives in epidemiological entomology [22, 23]. We 
place particular emphasis on relatively simple approaches 
and tools that are accessible to numerate entomologists 

familiar with widely available, off-the-shelf analytical 
tools.

Simplified binomial estimation of human exposure 
distributions based on hard classification 
of where and when mosquitoes are caught
Simplified binomial estimation of the proportion of 
exposure of unprotected individuals to mosquito bites 
that occurs indoors requires hard classification of human 
behaviours (Box 1), assuming the night is split into dis-
tinct periods, during which all exposure is assumed to 
occur either entirely indoors or entirely outdoors (Fig. 1). 
Here, we rely on examples relevant to malaria transmis-
sion by predominantly nocturnal vectors, so we use the 
term night to inclusively denote all times at which such 
Anopheles mosquitoes are active, even if that includes 
daylight hours before dusk and after dawn. For more 
diurnal vectors of other pathogens such as dengue, chi-
kungunya and Zika, the term day may be more appro-
priate and can include all 24  h of the daily cycle [15] 
whenever relevant.

The calculations described in Box  1 have already fea-
tured in several published applications [15–21] that read-
ers may draw on as illustrative examples when adapting 
these techniques to their own needs. In the first of these 
examples [15], it was demonstrated that most human 
exposure to Anopheles funestus and An. quadriannulatus 
in southeastern Zambia occurred indoors in the absence 
of a protective ITN ( πI ,u ≥ 0.97), because these mos-
quito species are most active at times of the night when 
humans are indoors ( PFL,I ≥ 0.90). Note, however, that if 
one only accounts for the behaviour of the mosquitoes, as 
observed attacking participants in human landing catches 
who artificially spend equal amounts of time indoors and 
outdoors for the purpose of such experiments, these two 
mosquito populations had no apparent preference for 
feeding indoors ( PI ≈ 0.5) [15]. Subsequent pooled anal-
ysis of similar data from distinct sites scattered across 
Africa revealed similar patterns [16], confirming that the 
most important vectors on the continent are not innately 
endophagic in the strict sense but rather highly noctur-
nal. Therefore, it was concluded that high proportions of 
human exposure to malaria transmission have histori-
cally occurred indoors because that is where most people 
sleep at night [1, 3, 23, 25]. Further applications of such 
simplified binary formats for behavioural interaction 
indicators include demonstrating statistically significant 
changes in human exposure distributions following scale 
up of ITNs [17, 18, 21].

Beyond comparing vector species and human popula-
tion groups, these simplified binary behavioural inter-
action indicators (Box  1) can also be used to assess the 

Fig. 1  A schematic illustration of how the proportions of human 
exposure to mosquitoes occurring indoors may be estimated as 
a simple binomial indicator based on hard classification of where 
human individuals and populations spend their time [16–21]
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influence of variable, often idiosyncratic individual 
behaviours on exposure patterns and malaria risk [16–
21]. Whenever possible, human behaviour data should 
therefore be collected in a disaggregated format that is 
linkable to individual human study participants, so that 
the epidemiological importance of differences between 
individuals and population subgroups can be formally 
assessed [4] with statistical contrasts using standard 
logistic regression models and off-the-shelf software [19, 
20]. For ease of application to readers own data sets, a 
Microsoft Excel® template for calculating individual-
level estimates of πI and πS is provided and populated 
with a sample of anonymized data from previous large-
scale cross-sectional surveys [20] for illustrative purposes 
(Additional file  2: Dataset S1). The additional insight 
that may be obtained from disaggregated data with such 
individual-level calculations is exemplified by compar-
ing the in-depth epidemiological analyses reported along 
with the original version of this template [20] with the 
much broader, population-wide mean overview obtained 
through the preceding entomological report [26].

Box 1 Mathematical description of how simplified 
binomial estimates of human exposure distributions 
may be calculated based on hard classification 
of where and when mosquitoes are caught
First, one must divide the night, or entire 24-h day if 
needs be, into hour-long survey time intervals (t = 0, 
1, 2, 3…23). These hour-long intervals are then con-
ceptually grouped into three distinct periods, during 
which all exposure is assumed to occur either entirely 
indoors or entirely outdoors (Fig.  1). Note, however, 
that even previous surveys of where and when people 
spent their time in the same context may not neces-
sarily remain fully representative going forward, so 
it may be unwise to assume population-wide mean 
cut-off points that separate these three distinct peri-
ods a priori. Also note that one of the most impor-
tant applications of this approach is to enable analysis 
of the behavioural variations between individuals in 
a population, so it is essential to collect both human 
and mosquito behaviour data in fully disaggregated 
form at time intervals of ≤ 1 h in duration. Once the 
data have been collected in appropriately disaggre-
gated hour-by-hour format, the middle period of the 
night when all exposure is assumed to occur while 
asleep indoors (Fig.  1) is defined as beginning at the 
first ( F , I ) and ending at the last ( L, I ) of the sur-
veyed hour-long time (t) intervals when either (i) a 
human individual reported being indoors ( It = 1 ) or 
(ii) the majority of a human population were indoors 
( It > 0.5 ), because they reported that they had already 
entered their houses for the night and had not yet left 

for the day ( F , I ≤ t ≤ L, I ). The remaining periods 
of the night, before ( t < F , I ) and after ( t > L, I ) this 
interval, correspond to periods when either (i) an indi-
vidual or (ii) most people in a population are outdoors 
( It < 0.5 ). Correspondingly, the proportion of human 
exposure for unprotected (u) non-users of ITNs that 
occurs indoors ( πI ,u ) may be approximately calculated 
by dividing the number of mosquitoes caught indoors 
during the period that most people are indoors ( NI ) 
by itself plus the number of mosquitoes caught out-
doors ( No ) outside of that period [15, 17, 18]:

The equivalent binomial calculations may also be 
made for the proportion of exposure to mosquito 
bites of unprotected individuals which occurs while 
asleep ( πS,u ), using the first ( F , S ) and last ( L, S ) hour-
long intervals when either (i) an individual ( St = 1 ) or 
(11) most people in a population were asleep ( St > 0.5

):

To more clearly interpret the πI ,u and πS,u estimates 
obtained [16], the two following underlying determi-
nants of these outcomes may also be calculated [15, 
17, 18]. The propensity of vectors to feed indoors is 
reflected in the proportion of mosquitoes captured 
indoors ( PI):

The propensity of vectors to feed at times when 
people are indoors is reflected in the proportion of all 
mosquitoes caught that were captured during hours 
when the majority of people were indoors ( PFL,I):

Similar calculations can be made for the propen-
sity of vectors to feed at times when people are asleep 
( PFL,S ), which may paint a more nuanced and accu-
rate picture of the underlying behavioural drivers of 
human exposure distribution in some contexts [20, 
24]:
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All these indicators of propensity of vectors to feed 
indoors ( PI ) and during the night time hours predom-
inantly spent indoors ( PFL,I , referred to as nocturnality 
[17] or nocturnal biting [18] in previous publications) 
or asleep ( PFL,S ) may be formally tested for vector 
preference ( PI,PFL,I orPFL  = 0.5 ) in terms of the sig-
nificance of the differences of these estimates from the 
null hypothesis ( Pi,PFL,I orPFL = 0.5).

Simplified sample size calculations for studies 
surveying the proportions of human 
exposure to malaria vectors occurring indoors 
or while asleep
Because these hard classification techniques allow the 
proportions of human biting exposure occurring indoors 
( πI ,u ) and while asleep ( πS,u ) to be calculated in simple 
binomial form, it is also possible to apply standard sam-
ple size estimation techniques [27] to plan necessary 
minimum experimental scales and data collection targets 
for field studies (Fig. 2). To enable sample size estimation 
with the most intuitive and readily accessible statistical 
tools, here an example is provided (Box  2) that adapts 
well-established simple deterministic statistical models, 
originally formulated for cluster-randomized trials with 
disease infection prevalence as the primary binomial out-
come [27]. Of course, more advanced, simulation-based 
stochastic approaches may also be applied to sample 
size calculations for surveying these same binary indi-
cators [28], and these more intricate techniques may be 

(5)PFL,S =

L,S
∑

t=F ,S

[NI ,t + NO,t ]/

23
∑

t=0

[NI ,t + NO,t ]

more rigorous and appropriate for teams with sufficient 
analytical capacity. However, relevant analytical capacity 
remains underdeveloped for malaria generally, and ento-
mology in particular, in endemic tropical countries [3]. 
Therefore, the simple but widely accepted deterministic 
models [27] and calculation tools (Additional file 3: Data-
set S2) used in Box  2 may represent an accessible and 
practical alternative for teams at an earlier stage of ana-
lytical capacity development.

Note that while many investigators may not need to 
implement surveys across such extensive scales, they 
should nevertheless allow for the fact that some natural 
variation of πI,u and πS,u is likely to occur among different 
sub-villages, villages or other geographic subunits/popu-
lation clusters far enough apart to be considered inde-
pendent units of observation. Furthermore, such natural 
spatial variation may be further exaggerated by natu-
ral seasonality, which may also be of interest in its own 
right. Therefore, sample size calculations should always 
allow for clustering and covariance within clusters, as 
in the example provided in Box 2. Note that it may not 
be logistically feasible to survey all different study loca-
tions simultaneously, especially on scales of entire dis-
tricts or countries. Rolling cross-sectional designs that 
survey clusters sequentially (e.g. [14, 31]), rather than at 
the same time, may therefore be necessary to survey and 
resurvey the large numbers of distinct locations some-
times required to achieve sufficient power (Fig. 2).

Box 2 An example of a sample size calculation 
for a nationally representative survey of the proportion 
of human exposure to malaria vectors occurring 
indoors in the United Republic of Tanzania
A nationally representative survey of key mosquito 
and human behaviours is underway in Tanzania, for 
which one of the two key primary outcomes is the 
proportion of human exposure occurring indoors 
in the absence of an ITN (πI,u). For practical logis-
tics reasons, this very large-scale study has a rolling 
cross-sectional design, enabling each of the village-
scale independent units of observation (referred to 
as clusters in epidemiological terminology [27]) to 
be feasibly surveyed in a sequential manner once per 
year. This is an observational study, so the groups of 
clusters being contrasted will be eco-epidemiological 
strata rather than the interventions groups allocated 
in an equivalent experimentally controlled trial. For 
example, one a priori hypothesis of this particular 
study is that high humidity may enable mosquitoes 
to feed earlier in the evening and later in the morning 
without becoming desiccated, leading to lower values 
of πI,u and attenuated impacts of ITNs. The simplest 

Fig. 2  The predicted relationship between the number of 
mosquitoes caught per cluster and the number of village-scale 
population clusters required to achieve 80% power if all other 
assumed parameters are exactly as described in Box 2. Note that 
in the field of epidemiology, the simple term cluster usually refers a 
geographically distinct, but often demographically defined, unit of 
observation that may be considered independent in the statistical 
sense [27]
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sample size calculation that may be carried out there-
fore assumes that all the surveyed clusters will be 
ranked post hoc based on humidity measurements 
and then split into two quantiles, namely the most 
humid half of the surveyed clusters versus the least 
humid half. Based on the following assumed input 
parameters, and using Eq.  4 from Hayes and Ben-
nett’s widely cited article [27], the minimum number 
of village-scale survey clusters (c) required to achieve 
80% power for contrasts between two such groups was 
estimated to be 16, assuming a minimum of 100 mos-
quitoes are caught in each village-scale cluster (Fig. 2, 
Additional file  3: Dataset S2) at times and places 
when most humans are exposed (Fig. 1). The calcula-
tions underpinning Fig.  2 and detailed in Additional 
file  3: Dataset S2 are explained as follows. For the 
outcome of interest, namely the proportion of human 
exposure occurring indoors (πI,u), the following con-
trast between two previously surveyed settings was 
assumed to be representative of the level of variation 
that could be epidemiologically relevant, because per-
sistent residual malaria transmission depends more 
directly on the relative size of gaps in de facto protec-
tive coverage (1-Cp, where Cp = πI,u C [29]) than upon 
protective coverage per se (Cp) [24]): One rural Tan-
zanian setting where 90% of exposure to Anopheles 
gambiae was estimated to occur indoors and another 
where 73% of exposure to the same species occurred 
indoors in an urban setting [26], so πI,u,1 = 0.90 and 
πI,u,2 = 0.73, respectively. While this may sound like a 
relatively minor difference, when looked at in terms 
of a potential gap in protective coverage (1-Cp) [24], 
it represents almost a tripling of the fraction of expo-
sure occurring outdoors, from 10 to 27%. Based on 
experience and results from limited studies in Tan-
zania, plus those reported from several rural settings 
across Africa [16], only a modest coefficient of varia-
tion between clusters (k) of 0.20 was assumed. Addi-
tionally, a worst case scenario was assumed in terms 
of mosquito abundance and capture success, with 
the number of mosquitoes in each cluster (gener-
ally a village or sub-village in most epidemiological 
or entomological studies, and specifically the former 
in this particular study) collected at times and places 
when human exposure may occur (Fig. 1) assumed to 
be relatively low (n = 100 mosquitoes per cluster). As 
illustrated in Fig. 2 and explained as follows, a total of 
16 clusters per stratum are expected to yield sufficient 
power to test for between-stratum differences in πI,u 
of the magnitude described above, even if far less than 
100 mosquitoes are caught in some of the surveyed 
clusters.

Even with a tenfold increase beyond the within-
cluster sample size target for this study,  up to 1000 
mosquitoes per village is expected to yield very little 
improvement in overall power (Fig. 2) because doing 
so does not increase true replication in the strict sense 
[27, 30]. This is because individual mosquitoes caught 
within a surveyed cluster merely represent binary 
observations on multiple samples from within that 
same cluster, rather than truly independent obser-
vations from distinct cluster-level replicates per se. 
Mosquitoes sampled from the same population in the 
same village, experiencing the same environmental 
conditions at the time when it is surveyed, are obvi-
ously expected to behave more similarly to each other 
than to mosquitoes of the same species collected from 
another village in a different part of the country, where 
the environmental conditions may be very different, 
especially if it is visited at a different time of the year. 
Unless such intra-cluster correlation between sam-
pled observations is allowed for, pseudoreplication 
renders invalid any subsequent analyses that errone-
ously treat them as independent observations [27, 
30]. The deterministic predictive models of Hayes 
and Bennett therefore conservatively account for the 
expected similarities between observed individuals 
in each cluster in the simplest fashion possible, with 
a single within-cluster variance parameter [27]. Based 
on the envisaged protocol, the number of mosquitoes 
expected per surveyed cluster should therefore be 
considered as a single aggregate total for parameter-
izing n in Additional file  3: Dataset S2, regardless of 
how many houses are to be sampled or how many 
nights they are sampled over. For binary outcomes 
with binomial distributions, remarkably small samples 
can yield quite precise estimates of the mean for any 
given unit of observation, so even as few as 100 mos-
quitoes per cluster may be expected to achieve essen-
tially the maximum possible power, thus minimizing 
cluster replication requirements (Fig.  2). Recogniz-
ing that excessive within-cluster sampling, to capture 
hundreds or even thousands of mosquitoes per vil-
lage, adds negligible power to appropriate statistical 
tests (Fig. 2) also has encouraging implications for the 
robustness of the study design to seasonal or location-
specific scarcities of mosquitoes: Even if < 100 mos-
quitoes are caught in each cluster, this is expected to 
have only a modest effect on the power of the study, so 
long as at least ten are caught (Fig. 2) in the times and 
places that matter (Fig. 1). Thus, even if this study falls 
short of this a priori target of 100 mosquitoes in some 
of the villages surveyed, this is not a major cause for 
concern or for alteration of the study protocol.
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Conclusions
Simplified binomial estimates of the proportions of 
exposure to mosquito bites that occur indoors or while 
asleep, based on hard classification of human location 
at a given time, allow convenient statistical analysis 
to estimate confidence intervals around means, com-
pare vector species and human population groups, and 
assess the influence of individual behaviour on expo-
sure patterns and malaria risk. Also, because such hard 
classification techniques allow these key indicators to 
be calculated in simple binomial form, standard sample 
size estimation techniques may be readily used to plan 
a priori the necessary experimental scales and data col-
lection targets required for field studies. Sample size 
calculations for field studies should allow for natural 
geographic variation and seasonality, taking advantage 
of rolling cross-sectional designs to survey and re-
survey’s large numbers of separate study locations in a 
logistically feasible manner.

Abbreviation
ITNs: Insecticide-treated nets.
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simple binomial hard classification of where and when biting mosquitoes 
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human population groups or calculate suitable sample sizes for large-
scale field surveys.

Additional file 2: Dataset S1. An Excel® spreadsheet template for calcu-
lating individual-level estimates for the proportion of exposure of bites by 
Anopheles gambiae (s.l.) that would occur indoors or while asleep in the 
absence of any protective interventions, such as window screens or bed 
nets, in the Tanzanian city of Dar es Salaam [20], as illustrated in Additional 
file 1: Poster S1. This example is populated with an anonymized sample of 
questionnaire data describing the times residents reported having gone 
indoors for the evening, gone to sleep for the night, woke up in the morn-
ing and left the house in the morning, as well as published patterns of 
vector biting activity as measured by human landing catch in parts of Dar 
es Salaam with vector densities that were high enough to measure [20].

Additional file 3: Dataset S2. An example of a sample size calculation for 
a nationally representative survey of the proportion of human exposure 
to malaria vectors occurring indoors in the United Republic of Tanzania, 
using an Excel® spreadsheet template to apply Eq. 4 of the classic paper 
by Hayes and Bennett [27], as explained in Box 2 and illustrated in Fig. 2 
and Additional file 1: Poster S1.
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