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Abstract 

Background:  Riverine species of tsetse (Glossina) transmit Trypanosoma brucei gambiense, which causes Gambian 
human African trypanosomiasis (gHAT), a neglected tropical disease. Uganda aims to eliminate gHAT as a public 
health problem through detection and treatment of human cases and vector control. The latter is being achieved 
through the deployment of ‘Tiny Targets’, insecticide-impregnated panels of material which attract and kill tsetse. We 
analysed the spatial and temporal distribution of cases of gHAT in Uganda during the period 2010–2019 to assess 
whether Tiny Targets have had an impact on disease incidence.

Methods:  To quantify the deployment of Tiny Targets, we mapped the rivers and their associated watersheds in the 
intervention area. We then categorised each of these on a scale of 0–3 according to whether Tiny Targets were absent 
(0), present only in neighbouring watersheds (1), present in the watersheds but not all neighbours (2), or present in 
the watershed and all neighbours (3). We overlaid all cases that were diagnosed between 2000 and 2020 and assessed 
whether the probability of finding cases in a watershed changed following the deployment of targets. We also esti-
mated the number of cases averted through tsetse control.

Results:  We found that following the deployment of Tiny Targets in a watershed, there were fewer cases of HAT, with 
a sampled error probability of 0.007. We estimate that during the intervention period 2012–2019 we should have 
expected 48 cases (95% confidence intervals = 40–57) compared to the 36 cases observed. The results are robust to a 
range of sensitivity analyses.

Conclusions:  Tiny Targets have reduced the incidence of gHAT by 25% in north-western Uganda.
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Background
Human African trypanosomiasis (HAT) is a fatal 
neglected tropical disease that occurs in rural areas of 
sub-Saharan Africa. The disease exists in two forms, 
Gambian HAT (gHAT), caused by Trypanosoma brucei 
gambiense, and Rhodesian HAT (rHAT), caused by T. 

b. rhodesiense; both forms are transmitted by tsetse flies 
(Glossina spp.). The Gambian form of the disease is found 
in West and Central Africa and is transmitted by river-
ine species of tsetse; it causes a chronic infection and is 
responsible for greater than 95% of HAT cases reported 
annually [1]. The Rhodesian form is an acute infection 
which occurs in East and Southern Africa where it is 
transmitted by savanna species of tsetse. Uganda is the 
only country in the world with both forms of the disease; 

Open Access

Parasites & Vectors

*Correspondence:  prbessell@gmail.com
1 Independent Consultant, Pencaitland, Scotland, UK
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7901-969X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-021-04889-x&domain=pdf


Page 2 of 13Bessell et al. Parasites Vectors          (2021) 14:410 

however, there is no known geographical overlap of dis-
ease transmission.

The first half of the twentieth century saw devastating 
epidemics of HAT including one epidemic in Uganda 
which is estimated to have killed more than 200,000 peo-
ple [2]. Large-scale screening and treatment campaigns 
successfully brought the numbers of cases down so that 
by the mid-1960s the disease was close to elimination. 
This low endemicity led to a shift in priorities, and as a 
consequence there was a resurgence of the disease [3]. 
By 1998 the global number of reported gHAT cases was 
greater than 37,000, but estimates suggest that 300,000 
cases were either missed or misdiagnosed and therefore 
were not treated [3]. Renewed efforts to control the dis-
ease saw the number of cases decline again, and by 2009 
fewer than 10,000 cases were reported annually [1, 4]. 
The disease is targeted for elimination of transmission by 
2030 [5].

The mainstay of gHAT control has historically been 
mass screening and treatment of populations with lit-
tle involvement of vector control, as the available meth-
ods were considered to not be cost-effective and were 
logistically challenging to implement. However, as the 
prevalence of HAT decreases, the cost-effectiveness of 
mass active screening for HAT decreases exponentially 
[6]. This can be addressed through passive screening [7] 
and through vector control with Tiny Targets, a novel, 
cost-effective technology comprising insecticide-treated 
panels of material which attract and kill riverine tsetse 
[8–11]. Tiny Targets have been shown to reduce tsetse fly 
densities by more than 80% in Chad [12, 13], Côte d’Ivoire 
[14], the Democratic Republic of the Congo (DRC) [15] 
and Uganda [9], but by a lower amount in Guinea, where 
the deployment methodology is different [16]. In Guinea 
and Chad, the use of Tiny Targets to reduce transmission 
has been shown to reduce the incidence of gHAT cases 
[12, 17]. In the DRC, which is the country that contrib-
utes the greatest number of cases, modelling studies have 
demonstrated that in some foci of the DRC, relying on 
screening and treatment alone will not be sufficient to 
achieve elimination goals on time, but that the addition 
of vector control will accelerate progress [18].

In Uganda, the historical gHAT foci are in the West 
Nile region in the north-west of the country, where the 
disease is transmitted by Glossina fuscipes fuscipes. In 
2011, Tiny Targets were introduced in two districts as 
a trial to assess the feasibility and effectiveness of using 
the technology at scale [9]. The success of the trial led to 
the scaling up into full tsetse control in 2014 to contrib-
ute to the gHAT elimination effort in Uganda, with Tiny 
Targets deployed in five districts. Tsetse control efforts 
subsequently expanded in 2017 from five to seven dis-
tricts covering around 3900 km2 [19]. As a consequence 

of these measures, tsetse densities across the region have 
been reduced by more than 90% [9]. Here we quantify 
the impact of vector control on the spatial and temporal 
distribution of cases and infer the impact on disease inci-
dence [9].

Methods
Study area
The study was conducted in the gHAT endemic area of 
north-west Uganda in the districts of Adjumani, Amuru, 
Arua, Koboko, Maracha, Moyo and Yumbe [7] (Fig. 1).

Geographical data processing
In Uganda, Tiny Targets are deployed along the larger 
permanent rivers and streams. However, to define an 
intervention area, it is necessary to define an area around 
the watersheds that is controlled, and so to do this we 
identified the watersheds that had been controlled. 
To identify watersheds, we used NASA Shuttle Radar 
Topography Mission (SRTM) digital elevation model 
(DEM) imagery, produced at a spatial resolution of 1 
arcsecond (~ 30 m × 30 m) [20], to extract HydroSHEDS 
[21] in ESRI ArcGIS (v10.5). The HyrdoSHEDS method 
identifies rivers and streams and orders them according 
to their number of tributaries (Fig. 1), so an order 1 river 
has no tributaries, order 2 has one or more order 1 tribu-
taries, etc.

Watersheds are defined as the area of land that drains 
into a single water body. To define watersheds, we 
extracted all order 4 or greater rivers (rivers with two or 
more third-order tributaries [22]), and from these identi-
fied pour points at the intersections of rivers. Pour points 
define the end point of the watershed. The pour points 
were used to define watersheds using the methodology 
described by ESRI ArcGIS (support article 000012346). 
The resulting watersheds for the area are shown in Fig. 2 
(mean area 9.8km2, range 1.02–57.4 km2). The resulting 
number of watersheds that are defined exceeds the num-
ber of rivers that were controlled using Tiny Targets, as 
the defined watersheds include some non-permanent 
streams, or simply drainage features that do not have 
any sort of flowing water. Consequently, the density of 
watersheds is typically greater than the density of rivers 
defined by Tiny Target deployments.

Tiny Target deployment
We used Tiny Target deployment data in Uganda between 
December 2011 and 2019, conducted at approximately 
6-month intervals, giving a total of 15 deployments. For 
each deployment, the locations of targets were recorded 
using global positioning systems. For the first two 
deployments (2011–2012), Tiny Targets were deployed in 
five separate 7 × 7 km blocks [9]. Thereafter (2013–2019), 
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deployments were along continuous stretches of river. 
The coverage of each deployment was overlain onto the 
watershed polygons to identify polygons where targets 
were present. For the first two deployments (2011–2012), 
watershed polygons were regarded as treated if they had 
at least 500 m of river that was deployed in the watershed 
area. Thereafter, a polygon was considered controlled if 
targets were deployed on at least two occasions during 
2011 to 2019, with control being deemed to have started 
at the earliest deployment. For nearly all (98%) deployed 
areas, once an area was deployed, it was deployed in all 
subsequent years. If deployment was between January 
and June, then deployment was deemed to have started 
that year. If deployment first occurred in the second half 
of the year, control was deemed to have started at the 
beginning of the next year. The rationale behind this is 
that the reduction in tsetse numbers following deploy-
ment of Tiny Targets is gradual and takes several months 
to reach reductions of up to 90%. Thus, for each year 
between 2012 (the deployment in 2011 was in the second 
half of the year, so defined as 2012) and 2019 we are able 

to identify where a watershed had a deployment in that 
year (Fig.  3). As our definition of watersheds includes 
polygons that are smaller than the deployed rivers, we 
identified watersheds that did not contain a deployment 
but were surrounded entirely by polygons containing 
deployments. Such polygons were marked as controlled 
for the purpose of analysis, as it could be assumed that 
there was no permanent drainage feature there or it 
would be controlled by local dispersal of tsetse [22].

To allow for the mobility of tsetse and humans, we clas-
sified each watershed polygon in each year on a scale 
of 0 to 3 according to the presence/absence of targets 
in neighbouring polygons (Table  1, Additional file  1: 
Figures S1–S8).

HAT case data
HAT case data were obtained from the WHO HAT Atlas 
for the period 2000–2011 [23] and from the Ugandan 
Ministry of Health through the Trypa-NO! Programme 
for the years 2012–2020. Data from the WHO HAT Atlas 
provided point geolocations for 4165 cases between 2000 

Fig. 1  Map showing the study area (in yellow) and the rivers as extracted by HydroSHEDS created from the NASA SRTM1 DEM using ESRI ArcGIS 
10.5
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and 2011, but 30 cases were excluded because they could 
not be georeferenced. The Ugandan Ministry of Health 
supplied data on a further 56 cases from 2012–2020. 
Data from 2012–2020 were geolocated by mapping the 
villages and cross-checking publicly available data sets, 
principally OpenStreetMap, Google Maps and GeoN-
ames [19]. Where these were not able to provide a loca-
tion for a village, the case was mapped to the school (the 
school being an identifiable place reflective of the centre 
of population) of the patient’s parish. Four of the cases 
that were reported since 2016 were identified as being 
refugees from South Sudan; it is estimated that > 650,000 
refugees from South Sudan have settled in northern 
Uganda since 2016 (https://​data2.​unhcr.​org/​en/​situa​
tions/​south​sudan/​locat​ion/​1925). South Sudan is a gHAT 
focus [24]; the provenance of infection of these cases can-
not be determined with certainty, and so the cases were 
excluded from further analysis. A further case of a Ugan-
dan who was resident in South Sudan was also excluded. 
This gives a total of 4186 georeferenced cases between 
2000 and 2020.

Data analysis
If Tiny Targets reduce the incidence of gHAT, then the 
incidence of cases will be lower in areas where Tiny Tar-
gets were continuously deployed. Accordingly, we pro-
posed the following hypothesis:

Null hypotheses (H0) = The number of cases in a 
polygon was not significantly affected by the deploy-
ment of targets in the polygon and/or its neighbour-
ing polygons.
Alternative hypothesis (H1) = Following the deploy-
ment of Tiny Targets in a polygon and/or its neigh-
bours, the relative number of cases within that area 
declined.

For each year with vector control, we define two popu-
lations of cases by overlaying the case locations onto the 
deployment polygons:

1.	 Cases are gHAT cases in the north-west Uganda 
focus that were reported following the start of the 

Fig. 2  Watersheds for the study area in red; each of the polygons represents a single watershed derived from HydroSHEDS created from the NASA 
SRTM1 DEM using ESRI ArcGIS 10.5

https://data2.unhcr.org/en/situations/southsudan/location/1925
https://data2.unhcr.org/en/situations/southsudan/location/1925
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Tiny Target intervention (taken as 2012, as the inter-
vention commenced in December 2011) and bro-
ken down by the year in which we assume that they 
were infected. The date of infection we infer from the 
reporting date. For stage 1 cases, we conservatively 
assume that the infection date is the same as the 
reporting date. For stage 2 cases, we assume that the 
case was infected 263 days before the reporting date, 

this being the lower limit of the duration of stage 1 in 
passive screening from Checchi et al. [25].

2.	 Case–controls are all gHAT cases that were infected 
between 2000 and 2020.

Using these categories, we conduct two analyses: one 
on the impact of the deployments, and the second on the 
number of cases prevented.

Deployment impact analysis
For each year from the period 2012–2020, the cases and 
matched case–controls are overlain onto the vector con-
trol deployment zones for that year, and we determine 
the vector control zone class score (Table 1) for the loca-
tion of each case and each case–control. Thus, starting 
with 2012, we take the cases with a putative infection 
date in that year and extract the deployment scores for 
those cases. As the comparison controls, we extract the 
deployment scores for all cases between 2000 and 2020 
and randomly sample a number of controls equal to the 
number of cases for that year.

Fig. 3  Map of watersheds deployed for four key intervention points. The black outlines represent the island watersheds that were filled in

Table 1  Table to describe the deployment zone score 
classification system based on the deployment status of the 
watershed and its neighbours

Classification 
score

Watershed Neighbouring watersheds

0 Not deployed No neighbours are deployed

1 Not deployed One or more neighbours are deployed

2 Deployed One or more neighbours are not 
deployed

3 Deployed All neighbours are deployed
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The above procedure was implemented in R version 
3.6.0 [26] with the following algorithm:

1.	 Starting with 2012 as the analysis year:

a.	 Take the cases that were estimated to have been 
infected in that year.

b.	 From the case–controls, we randomly sample 
a number equal to the number of cases for that 
year. So, if there are four cases in a year, then we 
randomly sample four from the 4187 case–con-
trols for 2000–2020 and extract their deployment 
score based on where it would be relative to the 
deployments in 2012 (and then for subsequent 
years).

c.	 We sum the deployment zone scores for both the 
cases and the sampled case–controls.

2.	 Repeat a–c for each year (i.e. 2013, 2014…2019).
3.	 Across the years we sum the scores for the cases ver-

sus the sampled case–controls. If the total deploy-
ment score for the case–controls is lower than that 
for the cases, that would suggest that the cases are 
more likely to be in the deployment area compared 
to the overall distribution of cases. If the scores of the 
case–controls are greater than those for the cases, 
then the cases are less likely to be in the deployment 
area than would be expected.

4.	 Repeat steps 1–3 for 1,000,000 replicates.
5.	 The data are analysed by the proportion of iterations 

for which the cases had a higher score compared to 
the sampled case–controls. A proportion below 5% 
would represent statistical significance at the 95% 
level.

Cases prevented analysis
We also estimate the number of cases that were averted 
by the intervention. This is based on the premise that 
there is a case incidence rate in the controlled areas and 
a separate case incidence rate in the uncontrolled area. 
For example, suppose that prior to control there may 
have been an incidence rate of 4/10,000 inside the con-
trolled area and 2/10,000 outside, so the controlled area 
has twice the incidence rate of the uncontrolled area. We 
can continue to measure the incidence rate of the uncon-
trolled area following the start of the intervention, and 
if the intervention has reduced the incidence rate, then 
there should be a drop in the incidence rate in the con-
trolled area relative to the uncontrolled area. So, if fol-
lowing the start of the intervention the incidence rate 
outside the controlled area fell from 2/10,000 to 1/10,000 
and the incidence rate inside the controlled area fell from 

4/10,000 to 2/10,000, this would indicate that the control 
had no impact on case numbers, but a fall in the con-
trolled area to 1/10,000 would indicate a 50% drop in the 
incidence rate as a result of the intervention. Thus, we 
can use this relative difference to estimate the number of 
cases that were prevented in the controlled area by the 
vector control measures.

To carry out this analysis we must invert the deploy-
ment zone scores so that a score of 3 indicates that the 
case is completely outside the deployment area and 0 
indicates that the case is completely inside the deploy-
ment area. This methodology is then implemented using 
the following algorithm:

1.	 Starting in 2012 we generate a random sample of 
1,000,000 putative controls from the population of 
4186 case–controls by sampling with replacement. 
We extract the 2012 deployment score for the loca-
tion of the sampled controls. Subsequently:

a.	 We take the cases that were infected during that 
year and sum their inverted deployment scores. 
The resulting summed score gives us our bench-
mark score.

b.	 For the 1,000,000 samples, we take the cumula-
tive sum of the scores of the sampled case–con-
trols.

c.	 We perform 10,000 iterations, where we:

	 i.	 Count how many controls are required 
until the cumulative score of the sampled 
controls is greater than the benchmark 
identified above. This number of controls 
is our sample index. So, if our benchmark 
score is 5 and the cumulative sum of our 
controls is 0, 2, 3, 6, 7, 9, 9, 12, then we take 
the fourth score of 6 as our sampled score, 
and the sample index is four.

	 ii.	 We evaluate the values above and below 
the sample index to determine which is 
closer to the total of our cases. So from the 
example above we take the third value of 3 
and fourth value of 6. As our benchmark 
of 5 is nearer to the fourth value than the 
third, we take the fourth value as our num-
ber of controls. Had the benchmark been 5 
and the sequence 0, 2, 4, 6, then we select 
at random between 4 and 6.

	 iii.	Record how many sampled case–con-
trols were required to match the total of 
the cases. In the example above this is four.

	 iv.	From the 1,000,000 samples we remove 
all values up to and including our sample 
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index and repeat the cumulative sum. So in 
the example above with the sequence 0, 2, 
3, 6, 7, 9, 9, 12, we remove the first four val-
ues and subtract 6 from the remainder, so 
our sample now starts 1, 3, 3, 6.

	 v.	 Repeat i–iv until we have completed 
10,000 iterations.

2.	 Repeat 1 for each subsequent year 2013, 2104…2019.

We analyse this by comparing the number of cases 
from each year to the numbers of controls that were sam-
pled in each iteration in each year above. In a given year, 
if more than 95% of iterations had a number of controls 
that was greater than the number of cases for that year, 
then it would indicate that there was a significant differ-
ence between the number of cases and the random sam-
ple. The difference between the median of the samples 
and the number of cases gives the median number of 
excess cases.

Sensitivity analysis
We tested the results using a number of sensitivity 
analyses:

1.	 The earlier years of Tiny Target deployments had a 
smaller extent of deployment and a greater number 
of cases, so we test the robustness of the results by 
excluding these years.

2.	 We adjust the deployment scores using three meth-
odologies. The first increases the scores of 2 and 3 by 
one point, so the scale is 0, 1, 3, 4. The second is mul-
tiplicative by two, so the revised scale is 0, 2, 4, 6. The 
third is a square transformation, so the scale is 0, 1, 4, 
9.

3.	 We conducted three separate leave-one-out analyses 
on the deployment impact methodology. In the first 
instance we repeat the analysis and resulting proba-
bility by dropping in turn each case infected between 
2011 and 2019. The second analysis takes the ranks of 
these probabilities and drops first the highest ranked 
case, then also the second, third, …nth ranked case, 
repeating the analysis after each drop to re-evaluate 
the remaining probability. The third analysis leaves 1, 
2, 3… n cases out at random (repeating the sampling 
10,000 times for each number of cases that are left 
out). To account for the variability in this sampling 
we generate 95% confidence intervals around the 
resulting mean probability.

4.	 A further analysis evaluates the resulting probabil-
ity after adding further cases in the controlled zone 
(deployment score 3) in 2019.

Results
The deployment scores increased year-on-year, but the 
greatest increase was between 2014 and 2015 when the 
deployment expanded in the core area (Tables  2 and 3, 
Figs. 3 and 4, Additional file 1: Figures S1–S8, Additional 
file  2: Figures  S9–S17). The deployment zone scores for 
cases were lower than those for putative controls in all 
years apart from 2014 (Fig. 5). The decrease was particu-
larly pronounced from 2015 onwards, when the extent of 
target deployment was at its greatest and mean scores for 
controls were greatest (Fig. 5).

Taking the sum of the results over the entire period, the 
mean sampled case–control deployment score is 1.86× 
that of the deployment scores for cases infected between 
2012 and 2019, and in only 0.7% of iterations were the 
sampled control deployment scores lower than those for 

Table 2  The area and number of watersheds under different deployment scores during each year of the intervention

a Deployment scores 0 = totally outside the controlled area, 1 = outside but neighbouring the controlled area, 2 = inside the controlled area, but bordering non-
controlled areas, 3 = totally inside the controlled area

Year Watershed areas (km2) Number of watersheds

Deployment scorea Deployment scorea

0 1 2 3 0 1 2 3

2012 20,381 659 335 2 2048 55 29 1

2013 20,249 523 403 201 2032 47 32 22

2014 19,529 937 675 235 1966 83 58 26

2015 16,923 1894 1745 814 1733 174 143 83

2016 16,780 1974 1709 913 1718 181 144 90

2017 15,145 2914 2331 987 1560 276 201 96

2018 14,357 3105 2773 1141 1486 295 240 112

2019 14,357 3105 2773 1141 1486 295 240 112
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Table 3  The number of case–controls (denominator) in each deployment score category by year (left) and (right) the number of cases 
infected in each year by the case’s deployment score category of that year

a Deployment scores 0 = totally outside the controlled area, 1 = outside but neighbouring the controlled area, 2 = inside the controlled area, but bordering non-
controlled areas, 3 = totally inside the controlled area

Year Denominator Case data

Deployment scorea Deployment scorea

0 1 2 3 0 1 2 3

2012 3528 349 309 0 10 0 1 0

2013 3453 157 304 272 11 0 0 0

2014 2012 434 1422 318 3 0 0 2

2015 997 340 1955 894 3 0 0 1

2016 968 359 1808 1051 0 1 0 0

2017 651 458 1833 1244 0 0 1 0

2018 520 502 1810 1354 1 1 0 0

2019 505 514 1810 1357 1 0 0 0
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the cases (Table 4 row 1). Furthermore, when we adjust 
the length of time that we consider, changing the dura-
tion from 2012 to 2019 by removing the first year each 
time, the results remain the same; thus it is insensitive 
to the period that we analyse (Table 4 rows 2–4). In the 
analysis of cases prevented, the model shows that by 2019 
there would have been a median of 48 infected cases in 
the focus [95% confidence intervals (CIs) 40–57] if no 
Tiny Targets had been deployed, whilst there were 36 
observed cases (Fig.  6). Our analysis therefore suggests 
that Tiny Targets prevented 12 cases of gHAT between 
2012 and 2019.

Sensitivity analysis
The results in Table 2 from 2012–2019 are insensitive to 
the scoring system that is used (Table 5).

The leave-one-out analysis showed a strong influ-
ence of certain cases and specifically those that were 

infected outside the controlled zones and infected more 
recently (Fig.  7). Consequently, if we remove the three 
most influential cases (infected in 2019, 2018 and 2015) 
then our result becomes non-significant (Fig. 7). If cases 
are removed at random, then it is necessary to remove a 
greater number of cases to move the probability above 
0.05 (Fig. 7c).

Discussion
Tiny Targets are a technology that has been demonstrated 
to be effective at reducing the numbers of riverine tsetse 
[9]. However, the purpose of this technology is to control 
numbers of cases rather than to eradicate the vector, and 
this has been demonstrated for hyperendemic foci [17] 
and high-incidence riverine swamp ecosystems [12] but 
not previously in a large low-incidence (< 1 case/100,000) 
riverine ecosystem as found in Uganda. This is further 
complicated by the delay between the deployment of the 
technology and realisation of any impact on case num-
bers due to the chronic nature of gHAT. As Tiny Target 
deployments are being carried out in a greater number 
of foci in different agro-ecological settings, it is impor-
tant to establish whether Tiny Targets have an impact on 
gHAT case numbers in different ecosystems.

The strategy in Uganda has not been for blanket cov-
erage of vector control over the entire area, but rather 
control that is targeted at those areas with the great-
est numbers of cases. Hence, the extent of vector con-
trol increased, but never covered the entire area, or the 
entirety of any district (Tables 2 and 3, Additional file 1: 
Figures S1–S8). These analyses show that despite the lim-
ited extent of vector control, a substantial reduction in 
case incidence can be achieved.

In Uganda the decline in numbers of HAT cases had 
been ongoing for several years prior to the commence-
ment of vector control which was associated with active 
screening campaigns during the decade prior to the 
commencement of vector control [25, 27]. By reducing 
transmission, the implementation of Tiny Targets has 
increased the rate of decline and thus accelerated pro-
gress towards elimination. Based on data through the 
end of 2018, Uganda would be in a position of meeting 
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Fig. 5  Bar chart of the mean deployment scores for cases and 
case–controls against the year in which the cases were assumed to 
have been infected. The numbers above the case bars represent the 
number of cases assumed to be infected that year. There were 4186 
controls in each year

Table 4  Summary of the statistical model results for different truncations to the study periods

Results are summed across the study years

Year range (year of 
infection)

Total cases in the 
focus

Case score Mean case–control 
score

Case–control score/case 
score

Proportion of iterations case 
scores > case–control scores

2012–2019 36 15 27.8 1.86 0.007

2013–2019 25 13 25.2 1.94 0.006

2014–2019 14 13 21.1 1.62 0.027

2015–2019 9 7 16.0 2.29 0.004
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the gHAT elimination criteria [1], and this low level was 
maintained in 2019, with only two cases.

The deployment in Uganda presents a number of spe-
cific challenges:

1.	 There was no clear definition of the area of interven-
tion with vector control. Arbitrary boundaries have 
been drawn for illustrative purposes, but these are 
not grounded in the epidemiology or entomology 
of the disease or its vectors. Additionally, whilst an 
intervention area was defined, there were some varia-
tions in the extent of the deployment for certain time 
points, and this variation between deployments must 
be accounted for. Here we developed a novel way of 
defining the area of intervention using the water-
sheds. This works because Tiny Targets are deployed 
along the rivers which are the habitat of the tsetse. 
Thus, by defining the area of intervention in terms of 
watersheds, we account for the ecology of the tsetse 
fly. Alternatives include defining buffers or grid cells 
for the interventions, but watersheds more accurately 
reflect the tsetse ecology and logistics of the inter-
vention.

2.	 We do not know the true date of infection of the 
cases, only the reporting date. To overcome this, we 
use a conservative approach by setting the date of 
infection for stage 2 cases as the lower bound on the 
published range of duration of stage 1 infection. An 
alternative and less conservative approach would be 
to estimate the dates of infection from all cases by 
sampling from the distributions described in Checchi 
et al. [25].

3.	 People and vectors are non-stationary but the case 
locations are point locations, and this does not rep-
resent the true extent of potential exposures to infec-
tion. We overcome this by basing our analysis on the 
vector control status of the watershed of the case as 
well as its neighbours.

However, for these analyses, Uganda also has a number 
of advantages over other geographies:

1.	 It has one of the longest histories of Tiny Target 
deployment, with the first deployments at the end of 
2011.

2.	 In the controlled areas the deployment is complete 
(every permanent river is deployed).

3.	 There have been no gross interruptions of deploy-
ment.

We have shown that there were fewer cases than would 
have been expected inside the intervention area and that 
a median of 12 cases are estimated to have been averted 
by the vector control intervention. There have been other 
interventions in this area running concurrently, not 
least a programme of enhanced passive screening which 
started in 2013 and had different coverages over the 
period in question [7]. However, the broad coverage was 
the entire area, and the programme did not result in an 
increase in detection of cases which might be expected 
when screening is enhanced. A similar passive screen-
ing programme in a HAT endemic area of the DRC with 
no vector control did result in an increase in numbers 
of cases detected [28]. Additionally, there was an active 
screening campaign in the vector control area which did 
not detect any HAT cases [29]. It is still possible that 
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Table 5  Sensitivity analysis of different scoring systems and the resulting probabilities

Deployment scores Probability

Baseline: (Outside = 0; Out–In = 1; In–Out = 2; Inside = 3) 0.007

S1 (additive): (Outside = 0; Out–In = 1; In–Out = 4; Inside = 5) 0.004

S2 (multiplicative): (Outside = 0; Out–In = 2; In–Out = 4; Inside = 6) 0.007

S3 (non-linear): (Outside = 0; Out–In = 1;In–Out = 4; Inside = 9) 0.003
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there were areas of localised elimination of HAT trans-
mission due to HAT control activities prior to 2012, and 
that some of these pockets could have coincided with 
the Tiny Targets deployment. However, due to the extent 
of the Tiny Targets deployment, this impact would be 
minimal.

Sensitivity analysis shows that it would be necessary 
to either remove three very specifically selected cases 
or add four targeted cases in order to push the probabil-
ity above 0.05. As there is underreporting of gHAT, the 
underreporting would need to be biased towards areas 
that have Tiny Targets. However, the areas that have had 
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the greatest coverage of enhanced passive screening have 
coincided with the Tiny Target deployments, so we might 
expect that underreporting would be lower in the con-
trolled areas.

This study does not have the power of a randomised 
controlled trial but it does add further evidence of the 
impact of VC on HAT. Whilst the impact of Tiny Tar-
gets on case numbers looks modest, the benefits of ces-
sation of transmission must be considered against the 
other strategies for breaking transmission in a population 
of over 2 million, or the costs that would be amassed if 
disease were reintroduced. Consequently, we see this as a 
valuable tool in ensuring sustained elimination of gHAT, 
as it is a mechanism for ensuring that the cycle of trans-
mission is broken in a setting where it could be challeng-
ing to screen and break transmission using only medical 
activities in a large and changing population. This could 
be compounded if there were latent infections of gHAT 
in the focus, thus preventing transmission from the latent 
infections [30]. The costs of using Tiny Targets to con-
trol tsetse in Uganda have been estimated [11] but not in 
the context of achieving the elimination of gHAT. These 
analyses are being carried out by the Human African 
Trypanosomiasis Modelling and Economic Predictions 
for Policy (HAT MEPP) programme [31, 32], and will 
include an evaluation of the relative contribution of Tiny 
Targets to the elimination goal.

The balance between screening activities and the 
impacts of vector control as estimated here must be 
further evaluated using economic analysis to estimate 
the relative cost-effectiveness of vector control as an 
intervention.

Conclusions
These analyses have demonstrated and quantified a clear 
impact of the Tiny Targets programme on the incidence 
of gHAT cases which will contribute to the elimination 
of gHAT in this focus. Whilst the reduction in case num-
bers appears modest, it makes a critical contribution to 
elimination in a population too large for systematic mass 
screening and that has a large transboundary flow of peo-
ple from neighbouring South Sudan.
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