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Abstract 

Background:  Aedes albopictus is a vector of major arboviral diseases and a primary pest in tropical and temperate 
regions of China. In most cities of China, the current monitoring system for the spread of Ae. albopictus is based on 
the subdistrict scale and does not consider spatial distribution for analysis of species density. Thus, the system is not 
sufficiently accurate for epidemic investigations, especially in large cities.

Methods:  This study used an improved surveillance program, with the mosquito oviposition trap (MOT) method, 
integrating the actual monitoring locations to investigate the temporal and spatial distribution of Ae. albopictus 
abundance in an urban area of Shanghai, China from 2018 to 2019. A total of 133 monitoring units were selected for 
surveillance of Ae. albopictus density in the study area, which was composed of 14 subdistricts. The vector abundance 
and spatial structure of Ae. albopictus were predicted using a binomial areal kriging model based on eight MOTs in 
each unit. Results were compared to the light trap (LT) method of the traditional monitoring scheme.

Results:  A total of 8,192 MOTs were placed in the study area in 2018, and 7917 (96.6%) were retrieved, with a posi-
tive rate of 6.45%. In 2019, 22,715 (97.0%) of 23,408 MOTs were recovered, with a positive rate of 5.44%. Using the LT 
method, 273 (93.5%) and 312 (94.5%) adult female Ae. albopictus were gathered in 2018 and 2019, respectively. The 
Ae. albopictus populations increased slowly from May, reached a peak in July, and declined gradually from September. 
The MOT positivity index (MPI) showed significant positive spatial autocorrelation across the study area, whereas LT 
collections indicated a nonsignificant spatial autocorrelation. The MPI was suitable for spatial interpolation using the 
binomial areal kriging model and showed different hot spots in different years.

Conclusions:  The improved surveillance system integrated with a geographical information system (GIS) can 
improve our understanding of the spatial and temporal distribution of Ae. albopictus in urban areas and provide a 
practical method for decision-makers to implement vector control and mosquito management.
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Background
Aedes albopictus, also known as the Asian tiger mosquito, 
has invaded all continents except Antarctica during the 
last 30–40  years [1, 2]. Aedes albopictus is a primary 
human-biting pest species that significantly reduces 

the quality of life of infected persons, and is an invasive 
vector of major arboviral diseases, such as dengue, chi-
kungunya, yellow fever, and Zika. In China, Ae. albopic-
tus  has adapted to low temperatures and is currently a 
primary nuisance pest and disease vector in the tropical 
and temperate regions of the country [3]. This species 
is present in regions where Aedes aegypti (Linnaeus) is 
absent [4], including Shanghai, and dengue is one of the 
most widely transmitted diseases carried by Ae. albop-
ictus in China [5]. Aedes albopictus was reported to be 
the primary vector of several epidemics in Guangzhou 

Open Access

Parasites & Vectors

*Correspondence:  zhuyiyi@scdc.sh.cn; wuhuanyu@scdc.sh.cn
†Yibin Zhou and Hongxia Liu contributed equally to this work
1 Department of Infectious Disease Control, Shanghai Municipal Center 
for Disease Control and Prevention, Shanghai 200336, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-9004-3685
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-021-05022-8&domain=pdf


Page 2 of 11Zhou et al. Parasites Vectors          (2021) 14:501 

Province (37,354 laboratory-confirmed cases) in 2014 [6] 
and Zhejiang Province (adjacent to Shanghai) in 2004 [7], 
2009 [8], and 2017 [9].

The dengue case reported in 2017 was the first autoch-
thonous dengue case in Shanghai in the last five decades 
[10]. Since then, three cases have been reported [11], and 
Ae. albopictus has been at the top of the list for vector 
control and surveillance in Shanghai. The public health 
service developed a monitoring system for Ae. albopic-
tus to obtain information regarding its temporal evolu-
tion using the light trap (LT) and mosquito oviposition 
trap (MOT) methods in 2010. This system is used for 
surveillance of the Ae. albopictus population and biting 
rates based on data collected from subdistricts. However, 
a disadvantage of the surveillance network is that it does 
not integrate geographical information, and the subdis-
trict scale, which is usually > 3  km, is large. As a result, 
only the regional average density of Ae. albopictus can be 
obtained with this monitoring system.

Geostatistical methods, which integrate the actual loca-
tions of samples, have been used to investigate the spatial 
distribution of mosquitoes [12] and several mosquito-
transmitted diseases, including malaria [13, 14] and den-
gue fever [15, 16]. Global and local indicators of spatial 
autocorrelation, such as Moran’s I [17] or local indicators 
of spatial association (LISA) [18], have been applied to 
study pests, including mosquitoes [19, 20]. These indica-
tors can detect hot spots of mosquito abundance and pre-
dict the significance of clustering and the effect of disease 
control [21]. Among the geostatistical methods, kriging 
interpolation [22] can predict the vector abundance in 
unsampled areas. Albieri et  al. used kriging interpola-
tion to predict the mosquito population distribution at 
the provincial and municipal scales in northern Italy [23], 
and Azil et  al. used kriging to analyze the costs of den-
gue vector surveillance and control programs in Australia 
[24]. In addition, Giordano et al. created a more efficient 
larvicide control program for West Nile virus awareness 
campaigns in Canada by using kriging interpolation [25].

In China, the density of Ae. albopictus is usually 
assessed based on the Aedes-positive rate in MOT moni-
toring. MOT is a standard method of surveillance for the 
temporal and spatial distributions of container-inhab-
iting mosquitoes, including Ae. albopictus [26]. Current 
Aedes adult sampling methods, such as LTs, are labor-
intensive, expensive, and challenging to implement in 
large numbers [27]. As an alternative method, MOTs are 
artificial traps for Aedes egg collection. Compared to tra-
ditional traps, MOTs are more convenient and inexpen-
sive to implement because they are easy to carry and do 
not require electricity or bait supplies. This method can 
detect the presence of gravid Aedes females with higher 
sensitivity, especially at low densities [28]. However, there 

have been rare reports [29] on the spatial interpolation of 
positive rates of Ae. albopictus.

The present study set out to evaluate the temporal and 
spatial distributions of Ae. albopictus using the MOT 
method, investigate the autocorrelation of Ae. albopic-
tus abundance, and estimate Ae. albopictus abundance at 
non-sampling locations using the binomial areal kriging 
model [30] in an urban area of Shanghai, and identify hot 
spots and risk areas of high infestation. We created an 
improved surveillance program, which included the loca-
tion of the traps and a change in the scale from 14 sub-
districts to 133 monitoring units, for Ae. albopictus in an 
urban area of Shanghai from 2018 to 2019. Eight MOTs 
were applied in each unit to predict Ae. albopictus abun-
dance and spatial structure at non-sampling locations. 
The LT method from the original monitoring scheme was 
also used and compared to the improved MOT method.

Methods
Selection of the study area
Shanghai is situated at 31°12′N latitude and 121°30′E lon-
gitude in the eastern part of the alluvial plain of the Yang-
tze Delta, adjacent to the Yangtze River estuarine and the 
East China Sea. It has four distinct seasons (spring from 
March to May, summer from June to August, autumn 
from September to November, and winter from Decem-
ber to February) and abundant precipitation, with a sub-
tropical monsoon climate. The mean annual temperature 
in Shanghai is ~17 °C, and the mean annual precipitation 
is greater than 1100  mm, with 53% occurring between 
June and September. The study area is situated in the 
center of Shanghai, China, with a total area of 37.37 km2, 
measuring 6.15 km from east to west and 11.93 km from 
south to north (Fig. 1). In 2018, the study region included 
14 subdistricts with a resident population of 1,057,700 
[31].

Meteorological data
The monthly total precipitation and monthly mean maxi-
mum and minimum temperatures were calculated based 
on data from the China Meteorological Administration 
[32]. Weather variables were recorded at Xujiahui, which 
is located ~2 km from the study area.

Entomological survey
The abundance of Ae. albopictus was analyzed using the 
MOT (Tian®, Kaiqi Co., Ltd., Shanghai, China) and LT 
methods (Tian®, Kaiqi Co., Ltd., Shanghai, China). The 
MOTs provide artificial breeding sites for container-
breeding mosquitoes, including Ae. albopictus, and posi-
tive MOTs were defined as those containing adults or 
eggs of Ae. albopictus. The LTs are baited with carbon 
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dioxide to attract adult mosquitos, and the number of 
female adult mosquitoes captured was used as the index.

Each MOT [33] consists of a transparent cylindrical 
plastic jar (100 mm high, 70 mm diameter, 66 mm inter-
nal diameter) with a concave bottom (20 mm inward) and 
a black top cover with three conical openings 100  mm 
in diameter. When used as a collection container, white 
filter paper 70 mm in diameter, which is used as an egg 
deposition substrate, was placed inside the bottom of the 
MOT and 25 ml of dechlorinated water poured into the 
jar to keep the paper moist but not submerged. MOTs 
were placed outdoors on grasslands, and kept away 
from direct sunlight, rain, and wind, at ground level by 
a skilled technician. To reduce competition among the 
MOTs, all of the traps were separated by a distance of 
more than 20 m and maintained unchanged until the end 
of the study.

In 2018, the MOTs were placed once a month between 
April and November. To enhance the data during the 
peak period, the frequency was increased in 2019 to once 
a week in week 20, week 23, week 25, weeks 27–39, and 
weeks 41–46. The MOTs that were removed, emptied, or 

interfered with for any reason were excluded from fur-
ther analysis. After 4 days, each MOT was collected and 
species identification performed in the laboratory under 
a stereomicroscope. The MOT positivity index (MPI) was 
calculated as follows: MPI = number of Aedes-positive 
MOTs / total number of MOTs retrieved × 100%.

The study area had 14 subdistricts containing 276 com-
munities. Every two adjacent communities in one subdis-
trict were grouped into one polygon. When the number 
of communities in one subdistrict was odd, there was a 
polygon composed of three communities. We found a 
residential area with vegetative coverage in each polygon 
as the monitoring unit for the MOT (Fig. 1) and decided 
to place eight MOTs in each unit. The reasoning was as 
follows. First, the smallest subdistrict had six monitor-
ing units. Second, this ensured that there were nearly 50 
MOTs in each subdistrict, as noted in the Implementa-
tion Program of National Vector Surveillance launched 
by China’s Center for Disease Control and Prevention. 
Third, the number of MOTs in each monitoring unit 
was consistent. In 2018, the center of the study area 
was under construction and MOTs could not be placed, 

Fig. 1  Map of Shanghai, China, and locations of MOT monitoring units and LTs in the study area. MOT mosquito oviposition trap, LT light trap



Page 4 of 11Zhou et al. Parasites Vectors          (2021) 14:501 

so we put 128 units in the rest of the area (Fig.  1). The 
MPI values of the eight MOTs were used to represent the 
Ae. albopictus density of the unit. In 2019, we added five 
monitoring units in the middle of the study area, which 
led to a total of 133 monitoring units (Fig. 1).

Due to the low density of Ae. albopictus in April and 
the lower sensitivity of the LT compared with the MOT, 
the LT could not catch adult mosquitoes. Thus, on the 
third Wednesday of each month from May to Novem-
ber, the Center for Disease Control and Prevention set 
two LTs in every subdistrict throughout Shanghai as part 
of a citywide mosquito surveillance program. LTs were 
usually collected from 4 to 10 pm. The contents of these 
traps were sent to the laboratory for species identifica-
tion, and only female Ae. albopictus were collected for 
data analyses.

The georeferenced positions of the MOT monitoring 
units and LTs in 2018 and 2019 are presented in Fig. 1.

Cluster analysis
The monitoring data were assigned to groups based on 
the type of trap and year of collection (i.e., MOT2018, 
MOT2019, LT2018, and LT2019) and analyzed. The 
total yearly collection of each LT and the mean MPI of 
each unit were calculated. Geostatistical analyses were 
conducted using the ArcGIS software (version 10.8; 
ESRI, Beijing, China) Spatial Statistics toolbox and data 
imported from Microsoft Excel 2019. Near table analy-
ses were performed using the Generate Near Table tool 
to calculate the distance from each feature to its nearest 
neighboring feature based on the Euclidean distance.

We evaluated whether the mosquito abundances were 
spatially autocorrelated by calculating the incremental 
spatial autocorrelation (global Moran’s I at multiple dis-
tances). The global Moran’s I [17] was tested using the 
permutation procedure based on feature locations and 
attribute values (yearly total collection from each LT and 
mean MPI of each unit) against the null hypothesis (the 
absence of spatial autocorrelation). This analysis identi-
fied the spatial patterns in the study area but did not indi-
cate where such clusters occurred, which was determined 
by the local Moran’s I [18]. The local Moran’s I analysis 
was performed to assess the presence of hot spots with 
significant clusters, cold spots, and spatial outliers. For 
polygon MOT monitoring units, feature centroids were 
used in distance computations.

Geostatistical analysis
The kriging interpolation method [22] was used to quan-
tify the spatial structure of the data and predict species 
abundance at unsampled locations. The binomial areal 
kriging model [30] is a geostatistical interpolation tech-
nique that extends the kriging theory to count data over 

polygons. In 1991, McNeill [34] derived the formulas 
for binomial kriging models. This step was performed 
using the ArcGIS 10.8 Geostatistical Analyst extension, 
including exploratory statistical analysis and variogram 
modeling. Each polygon of the input data contained a 
count (number of positive MOTs) and a population value 
(number of MOTs retrieved). The output was a figure 
predicting the positive rate and its standard error at each 
location.

A leave-one-out cross-validation method was used to 
determine whether the kriging interpolation provided 
reliable estimates at unsampled locations. The crite-
ria used for accurate prediction in the cross-validation 
were as follows: root mean square standardized (RMSS) 
~1, mean standardized (MS) ~0, and root mean square 
(RMS) approximately the average standard error (ASE).

Digital map
Digital maps of China and Shanghai from the National 
Catalogue Service for Geographic Information (National 
Bureau of Surveying & Mapping, P.R. China), available at 
a scale of 1:1,000,000, were used as background for map-
ping. The shapefile of MOT monitoring units was pro-
duced by hand digitization of an aerial picture (Google 
Earth, May 2018; May 2019) in ArcGIS 10.8. The loca-
tions of LTs were georeferenced using GPS CHCNAV 
X360H (WGS 1984 coordinate system) and later pro-
jected onto the UTM projection at the 51 N zone.

Results
Mosquito collection
In 2018, a total of 8192 MOTs were placed in the study 
area, and 7917 (96.6%) of them were retrieved, with a 
positive rate of 6.45%. In 2019, 22,715 (97.0%) of 23,408 
MOTs were recovered, with a positive rate of 5.44%. LTs 
collected both male and female adult Ae. albopictus, with 
females constituting the majority; 273 (93.5%) and 312 
(94.5%) adult female Ae. albopictus were gathered in 2018 
and 2019, respectively.

Monthly distribution of Ae. albopictus
The monthly mean temperature reached a peak in July 
(33.2  °C) in 2018 and in August (32.9  °C) in 2019. The 
monthly precipitation was highest in August in both 
2018 (230.5 mm) and 2019 (369.5 mm; Fig. 2). The total 
precipitation from May to October was almost twice as 
high in 2019 (1345.8 mm) as in 2018 (709.7 mm). In addi-
tion, the mean monthly maximum temperature from July 
to September was higher in 2018 (31.9 °C, Fig. 2a) than in 
2019 (30.9 °C, Fig. 2b).

As shown in Fig.  3, lower levels of oviposition were 
detected by MOTs in April 2018 and May 2019, with both 
MPIs peaking in July. In 2018, the monthly MPI peaked at 
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14.08%, whereas in 2019 it peaked at 8.28% in the 29th 
week (July). The MPI peak during the 2018 mosquito sea-
son was higher than the peak in the 2019 season. There 
was also a significant peak in the number of female adults 
collected by LTs from July to September in both years.

In 2018, the number of adult female Ae. albopictus 
collected by LTs peaked in July, which is consistent with 
the MPI. The number of female adults collected by LTs 
increased from May to July, reaching the highest values 
in July and August, and then decreasing in September. In 
general, the seasonal fluctuation curves in 2018 and 2019 
indicated that Ae. albopictus populations in the urban 
area of Shanghai slowly increased from May, peaked in 
July, and declined gradually from September to October. 
The Spearman correlation coefficient (r) between the 
monthly number of adult female Ae. albopictus collected 
by LTs and monthly MPI was 0.792 (P = 0.033 4, df = 6) in 
2018 and 0.756 (P = 0.048 9, df = 6) in 2019.

Spatial distribution of MOTs and LTs
The near table analyses produced the mean, minimum, 
and maximum distances between traps (Table  1). The 
mean distance between MOT monitoring units was 

Fig. 2  Monthly maximum–minimum temperature and precipitation: a 2018, b 2019

Fig. 3  The monthly MPI and number of female adult Ae. albopictus captured by LTs: a 2018, b 2019. MPI mosquito oviposition trap positivity index, 
LT light trap

Table 1  Results of the near table

MOT mosquito oviposition trap, LT light trap

Trap collection MOT2018 MOT2019 LT2018 and 2019

Numbers of units 128 133 28

Minimum distance 
(m) to the nearest 
neighbor

8.62 8.62 380.08

Maximum distance 
(m) to the nearest 
neighbor

439.33 504.35 1538.84

Mean distance (m) 179.77 ± 98.87 188.57 ± 107.25 702.05 ± 263.50
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197.77  m in 2018, 188.57  m in 2019, and 702.05  m 
between LTs in both 2018 and 2019.

Cluster analysis of Ae. albopictus abundance
We performed incremental spatial autocorrelation analy-
ses to evaluate the spatial autocorrelation of Ae. albop-
ictus abundance across the study area. Only the MOT 
method demonstrated a significant positive spatial auto-
correlation based on the mean MPI of each unit, which 
peaked at 651  m in 2018 and 528  m in 2019. The LT 
method did not show a significant spatial autocorrelation 
of Ae. albopictus abundance based on the total collected 
in each LT (Table 2).

Local Moran’s I was used to determine the locations 
of hot spots, cold spots, and spatial outliers. MOT2018, 
MOT2019, LT2018, and LT2019 had 13, 14, 2, and 1 clus-
ters or outliers, respectively (Fig. 4).

Prediction of Ae. albopictus abundance at non‑sampling 
locations
We found that the mean MPI of each unit was suitable 
for kriging interpolation because it demonstrated sig-
nificant positive spatial autocorrelation. There was no 
spatial autocorrelation for LT2018 and LT2019, and spa-
tial interpolation was not permitted. We constructed the 
binomial areal kriging model using the yearly number 
of positive MOTs and the number of MOTs retrieved 
in each unit. Semivariograms created with the binomial 
areal kriging model showed spatial dependence (range) 
within ~1900 m and 900 m for MOT2018 and MOT2019 
(Figs. 5, 6), respectively, beyond which the semivariance 

Table 2  Results of incremental spatial autocorrelation analysis

MOT mosquito oviposition trap, LT light trap

*Some units with no neighbors at this distance

**Significant positive spatial autocorrelation when P < 0.05

***Random patterns when P > 0.05

Trap collection MOT2018 MOT2019 LT2018 LT2019

Number of units 128 133 28 28

The distance of peak 
global Moran’s I (m)

651* 528* 680* 716*

Global Moran’s I 0.297 0.279 0.227 0.303

Z-score 4.542 3.247 1.050 1.480

P-value  < 0.001**  < 0.001** 0.293*** 0.139***

Fig. 4  Local Moran’s I maps: a MOT2018, b MOT2019, c LT2018, d LT2019

Fig. 5  Deconvoluted point semivariogram (line) and re-estimated 
empirical semivariogram values for polygons (stars) and their 90% 
confidence intervals (vertical lines) for MOT2018
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remained constant. The best-fitting model for 2018 was 
the Gaussian model, and the exponential model best fit 
the data for 2019.

Prediction maps associated with the standard errors 
based on MOT2018 (Fig. 7) and MOT2019 (Fig. 8) data 
showed that the highest mosquito abundance and strong 
spatial clustering were in the southern and northern 
regions of the study area in 2018, and in the southern 
and central areas in 2019. The prediction of standard 
errors quantified the degree of data uncertainty for each 

location. According to this analysis, the prediction error 
was the lowest around where MOTs were set in the study 
area. Overall, the leave-one-out cross-validation sta-
tistics (Table  3) with the value of RMSS approaching 1 
showed that the predicted models were reliable for map 
production.

Discussion
To the best of our knowledge, this study is the first to 
apply traps together with geostatistical methods to 
develop a routine mosquito surveillance program in 
China. Through this new program, a better understand-
ing and more targeted Ae. albopictus control area was 
able to be achieved. We carried out this work in an urban 
area of Shanghai, where the human population density is 
high, with a higher blood-feeding rate of Ae. albopictus 
[35]. In addition, Ae. albopictus is the dominant mosquito 
species, and sometimes the sole vector, in urban areas of 
China [36].

According to the Implementation Program of National 
Vector Surveillance launched by China’s Center for Dis-
ease Control and Prevention, MOTs and LTs should be 
routinely applied for Ae. albopictus monitoring. Among 
the immature mosquito  survey methods, MOTs have 
several advantages, including low cost, easy deployment, 
and noninvasive setup [37]. LTs have the advantage of 
simple operation, relatively objective monitoring results, 
and simultaneous monitoring at multiple sites [38]. In 
this program, each subdistrict, as a monitoring unit in 

Fig. 6  Deconvoluted point semivariogram (line) and re-estimated 
empirical semivariogram values for polygons (stars) and their 90% 
confidence intervals (vertical lines) for MOT2018

Fig. 7  Predictions of MPI and prediction standard errors in 2018. MPI mosquito oviposition trap positivity index
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Shanghai, has a sample size of 2 LTs and 50 MOTs in a 
park and a residential area, but the spatial scale is lim-
ited for evaluating Ae. albopictus distribution [39, 40]. 
To obtain a more accurate seasonal and spatial distri-
bution of the species in order to identify areas in need 
of effective target control, we developed an improved 
scheme dividing the subdistricts into 133 units. We also 
evaluated the accuracy of MOTs in combination with 
geostatistical analysis as a practical tool for monitor-
ing the spatial distribution of Ae. albopictus in an urban 
area of Shanghai. Compared to the original system, the 
improved monitoring program obtained information on 
a unit scale rather than a subdistrict scale, including the 
spatial distribution of Ae. albopictus, and provided a finer 
spatial resolution to determine the need and allocation of 
effective resources for control.

The MPI peaked in July in both 2018 and 2019, whereas 
the LT collection peaked in July in 2018 and in August in 
2019. However, the indices of LT remained high from July 
to September in both years. Consistent with the study 
by Gao et al., we found a significant correlation between 

monthly sampling yields [41]. The Ae. albopictus popu-
lations in the urban areas of Shanghai slowly increased 
from May, peaked from July to September, and declined 
after September, which coincides with the seasonal high 
temperatures and precipitation, and is also consistent 
with previous reports [42, 43].

In this study, we did not observe a spatial autocorrela-
tion for the LT collections during different periods, possi-
bly due to the small number or low density of LTs during 
these periods. As the spatial analyses used distances to 
establish neighbors, low numbers of neighbors may have 
resulted in lower statistical significance. The spread of Ae. 
albopictus is limited by short-range flight, with a maxi-
mum distance of 600–800  m [44, 45], which is close to 
the peak global Moran’s I of MOT. Duncombe et al. [46] 
suggested the mosquito traps be placed < 1200  m from 
each other, but in this study the maximum distance 
between LTs and the nearest neighbor was > 1500  m 
(Table 1). The spacing of LTs was too large to detect spa-
tial autocorrelation in the sample area [47]. In our study, 
two LTs were arranged in each subdistrict for different 

Fig. 8  Predictions of MPI and prediction standard errors in 2019. MPI mosquito oviposition trap positivity index

Table 3  Leave-one-out cross-validation statistics

RMS root mean square, MS mean standardized, RMSS root mean square standardized, ASE average standard error

Year Kriging type Range (m) RMS MS RMSS ASE

2018 Gaussian 1910 0.0336 0.0023 0.9935 0.0338

2019 Exponential 900 0.0326 − 0.0268 1.0085 0.0320
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areas, which contributed to the different spatial density 
of the traps. More LTs evenly distributed with detailed 
geographical information will improve current surveil-
lance in Shanghai.

According to our results, there was a significantly posi-
tive spatial autocorrelation of MOT2018 and MOT2019 
across the study area, with a maximum distance of 600 m 
for the peak global Moran’s I (Table  2). The semivari-
ograms showed that mosquito collections from MOTs 
more than 1900  m in 2018 and 900  m in 2019 did not 
show a spatial autocorrelation (Figs.  7, 8). We focused 
on the spatial relationship with the risk of dengue fever, 
and we used the binomial areal kriging model because 
it is more suitable for MOT data, with the advantage 
of applying count data over polygons. The areal kriging 
model can make predictions and determine standard 
errors for all points within and between the input poly-
gons by taking the sizes of the polygons into account [28, 
48]. In this study, the estimated point semivariograms in 
Figs. 5 and 6 were different from the estimated empirical 
semivariograms for the polygons. Thus, the areal kriging 
can produce more accurate predictions than point krig-
ing with values assigned to the polygon centroids [30, 49]. 
The kriging maps revealed different oviposition hot spots 
in 2018 versus 2019, which may be attributed to the vary-
ing mosquito abundance and seasonal distribution from 
year to year due to changes in temperature, precipitation, 
and humidity [50, 51]. In addition, the MOT2018 data 
may provide a reference for strict vector control in high-
density areas in 2019, causing a lower MPI density at 
these sites compared to other regions in 2019. Combined 
with the binomial areal kriging model, the improved sur-
veillance scheme obtained a more accurate spatial distri-
bution of Ae. Albopictus, and identified areas in need of 
effective target control.

Currently, some countries use a combination of mos-
quito monitoring and GIS. In Brazil, Noleto constructed 
a map to indicate sites with the largest number of col-
lected eggs [52]. In Singapore, the GIS monitors the 
network of 2000 ovitraps placed island-wide to better 
understand vector trends and identify hot spots and risk 
areas where there is a danger of high Aedes infestation 
[53]. Using the GIS, an alert system was created from a 
synthesis of geospatial data on ovitrap indices in Hong 
Kong at the district level [54]. Compared to these coun-
tries, our new monitoring project can obtain data on the 
distribution of mosquitoes on a smaller scale, providing 
a basis for accurate allocation of public health resources 
and targeted control of Ae. albopictus density.

This surveillance project can be improved by combin-
ing spatial sampling or adding climate and environmen-
tal variables affecting Ae. albopictus abundance, which 
is recommended to improve the accuracy of the spatial 

interpolation [55]. The spatial sampling method with the 
machine learning random forest algorithm for climatic 
variables in Aedes abundance prediction can optimize 
the distribution of monitoring traps [56]. Future stud-
ies should include the preferred Normalized Difference 
Vegetation Index (NDVI) and the human population in 
spatial modeling of abundance, which will increase the 
accuracy and comprehensiveness of the model [24, 25].

Conclusions
In conclusion, an improved surveillance system with 
MOTs based on units can predict areas of Ae. albopictus 
abundance at non-sampling locations. This approach can 
improve our understanding of the spatial and temporal 
distribution of Ae. albopictus in urban regions of Shang-
hai and is a practical method for decision-makers to tar-
get vector control and management of mosquitoes with 
a finer spatial resolution. Future studies should explore 
the application of this monitoring program on a larger 
scale, and more data should be collected to validate this 
improved method.
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