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Abstract 

Background:  Aedes aegypti and Ae. albopictus are vectors of numerous arboviruses that adversely affect human 
health. In mosquito vectors of disease, the bacterial microbiota influence several physiological processes, including 
fertility and vector competence, making manipulation of the bacterial community a promising method to control 
mosquito vectors. In this study, we describe the reproductive tract tissue microbiota of lab-reared virgin Ae. aegypti 
and Ae. albopictus males, and virgin, mated, and mated + blood-fed females of each species, comparing the bacterial 
composition found there to the well-described gut microbiota.

Methods:  We performed metabarcoding of the 16S rRNA isolated from the gut, upper reproductive tract (URT; 
testes or ovaries), and lower reproductive tract (LRT; males: seminal vesicles and accessory glands; females: oviduct, 
spermathecae, and bursa) for each species, and evaluated the influence of host species, tissue, nutritional status, 
and reproductive status on microbiota composition. Finally, based on the identified taxonomic profiles of the tissues 
assessed, bacterial metabolic pathway abundance was predicted.

Results:  The community structure of the reproductive tract is unique compared to the gut. Asaia is the most preva-
lent OTU in the LRTs of both Ae. aegypti and Ae. albopictus. In the URT, we observed differences between species, 
with Wolbachia OTUs being dominant in the Ae. albopictus URT, while Enterobacter and Serratia were dominant in Ae. 
aegypti URT. Host species and tissue were the best predictors of the community composition compared to reproduc-
tive status (i.e., virgin or mated) and nutritional status (i.e., sugar or blood-fed). The predicted functional profile shows 
changes in the abundance of specific microbial pathways that are associated with mating and blood-feeding, like 
energy production in mated tissues and siderophore synthesis in blood-fed female tissues.

Conclusions:  Aedes aegypti and Ae. albopictus have distinct differences in the composition of microbiota found in 
the reproductive tract. The distribution of the bacterial taxonomic groups indicates that some bacteria have tissue-
specific tropism for reproductive tract tissue, such as Asaia and Wolbachia. No significant differences in the taxonomic 
composition were observed in the reproductive tract between virgin, mated, and mated + blood-fed females, but 
changes in the abundance of specific metabolic pathways were found in the predicted microbial functional profiles in 
mated and blood-fed females.
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Background
Aedes aegypti and Ae. albopictus are invasive mosquito 
species that are responsible for the dissemination of 
numerous viruses that adversely affect human health, 
including dengue [1], Zika [2], and chikungunya [3] 
viruses. These species are found throughout the trop-
ics and subtropics, and their populations often overlap 
[4], with Ae. albopictus further distributed in temperate 
regions, as this species can tolerate colder temperatures 
and diapause during winter months [5–7]. The pre-
dicted territories of both Ae. aegypti and Ae. albopictus 
are expected to expand with increasing global tem-
peratures [8], making the development of novel control 
strategies essential to minimize the impact of the dis-
eases transmitted by these vectors.

The expansion of territory habitable by Aedes vec-
tors requires their successful reproduction. After mat-
ing, Aedes females undergo numerous physiological 
and behavioral changes that primarily act to facilitate 
the production of progeny. Male-derived seminal fluid 
proteins, transferred to females along with sperm dur-
ing mating, induce several of the observed post-mating 
changes in Aedes mosquitoes [9, 10], although female 
contributions are also likely to be involved as in other 

insects [11]. While male-derived gene products are 
essential for fertility, other factors can alter the fertil-
ity of female insects, such as nutritional status [12, 
13], immune function [14], male age [15], body size 
[16, 17], and temperature [18]. Another factor that can 
alter fertility is the composition of bacterial microbiota 
[19–21].

Most of the mosquito bacterial microbiota is acquired 
from the aquatic larvae habitat [22, 23] or from nectar-
feeding by adult mosquitos [24], although some bac-
teria can be transmitted vertically, such as Wolbachia 
and Asaia [25]. Bacterial microbiota influence several 
physiological processes including larval growth, blood-
digestion rates, and immune function [26–28]. To date, 
most studies that have examined the bacterial compo-
sition of adult tissues have focused on the gut. How-
ever, mosquito bacterial microbiota is not exclusive to 
the gut, having been described in other tissues such as 
the salivary glands [28]. Studies that have examined the 
composition of reproductive tract (RT) microbiota are 
limited [29–31], with one reporting microbiota from 
Ae. aegypti and Ae. albopictus RT tissues  [31], and 
another sampling the cultivable bacteria of Ae. aegypti 
ovaries [32]. The identification of the microbiota 
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composition of male and female Aedes RT tissues is a 
first step in understanding how these communities 
interact with host fertility.

In anautogenous mosquitoes, reproduction requires 
a successful copulation and ingestion of a blood meal to 
acquire nutrients for egg development. The seminal fluid 
of both Ae. aegypti and Ae. albopictus contain proteins 
with immunity-related functions [33–35], and mating 
increases the expression of immunity-related genes in 
the Ae. aegypti female RT, including genes that code for 
defensins, transferrin, cecropins, lectins, and a Kazal-
type serine protease inhibitor [36–38]. Although blood 
consumption by female mosquitoes induces oxidative 
stress due to the release of iron during hemoglobin diges-
tion [39], blood ingestion alters the microbiota structure 
of the gut, reducing diversity but favoring proliferation of 
enteric bacteria [40]. In Ae. aegypti females, the prolifera-
tion of gut microbiota is observed after a blood meal [41]. 
How mating and/or blood-feeding may influence the RT 
tissue microbiota community has not been examined.

Microbiota can also influence physiological processes 
and behaviors in adult insects important in reproduc-
tion, suggesting that specific bacteria may influence host 
fertility. For example, microbial symbionts can alter host 
pheromone profiles [42], potentially influencing mate 
localization and mate choice. The post-mating tran-
scriptome of Drosophila melanogaster females is altered 
by the microbiome [21], suggesting that bacteria may 
affect downstream processes elicited by seminal protein 
receipt. In adult mosquitoes, microbiota composition 
influences mating preferences [29] and fertility [43, 44]. 
Recently, Serratia infection of female Ae. aegypti was 
shown to alter their blood-feeding propensity [45]. Fur-
ther, microbiota prevalence is also influenced by micro-
bial interactions [45–47]. The identification of Ae. aegypti 
and Ae. albopictus RT tissue-associated microbiota may 
highlight microbiota that influence reproductive param-
eters in these vector species.

To gain insight into the bacterial diversity and their 
potential roles in RT tissues, we described the bacterial 
community of males and females from laboratory popula-
tions of Ae. aegypti and Ae. albopictus reared under iden-
tical conditions. Our goal was to identify the microbiota 
composition of the upper and lower reproductive tracts 
(URT and LRT, respectively) in virgin males and females, 
and in mated and blood-fed females of each species 
(URT: testes or ovaries; LRT males: seminal vesicles and 
accessory glands; females: oviduct, spermathecae, and 
bursa). Additionally, we assessed how the composition 
of RT tissues compared to the gut microbiota. Finally, we 
used the predicted metabolic abundance profile to evalu-
ate the interaction of the microbiota physiology with the 
biological changes of the host.

Methods
Mosquitoes
Thai strain Ae. aegypti was collected in Bangkok, Thai-
land, and has been maintained in colony since 2009. The 
Ae. albopictus strain was established in 2018 from eggs 
oviposited in ovitraps in Medellín, Colombia. Eggs were 
hatched under vacuum pressure (−50  kPa) for 30  min 
in 250 ml double-distilled water (ddH2O) supplemented 
with a pinch of active yeast. The resulting larvae were 
allocated into rearing trays 24 h later at a density of 200 
per tray in 1 L ddH2O and fed four Hikari Gold Cichlid 
food pellets (Hikari, Himeji, Japan). Pupae were separated 
into 5 ml vials to ensure virginity. Adults were transferred 
to single-sex 8 L cages upon eclosion. Larvae, pupae, and 
adults were maintained in an environmental chamber at 
27 °C, 80% relative humidity, and a 12/12 light/dark cycle, 
and had constant access to 10% sucrose.

Mating and sample preparation
Four- to 6-day-old adults were used in our experiments. 
We observed all matings by placing one female and three 
males into an 8 L cage until copulation occurred, defined 
as engagement of male–female genitalia for ≥ 10 s for Ae. 
aegypti and ≥ 30  s for Ae. albopictus; these parameters 
result in successful insemination in 99% of Ae. aegypti 
and 91% of Ae. albopictus [48, 49]. Males were subse-
quently discarded. Females were grouped into 20  min 
mating intervals. A subset of females were blood-fed on 
the arm of a volunteer following a mating interval; only 
engorged females were considered blood-fed. Blood-
feeding was approved by the Human Research Bio-
ethics Committee (Universidad de Antioquia), and all 
volunteers signed a consent form. Females were housed 
in 500  ml cups and maintained in an environmental 
chamber until they were flash-frozen at the appropriate 
time point. Specimens were stored at −80 °C until tissue 
dissection.

We used the following treatments: virgin males and 
females frozen on the same day as the matings, mated 
females, non-blood-fed females at 0  h (frozen immedi-
ately after the 20 min mating interval), 24, 48, and 72 h 
post-mating, and mated + blood-fed females at 24, 48, 
and 72  h post-mating. Virgin females from the same 
cohort were also collected at each time point (24, 48, and 
72  h) as an age control. For tissue samples, the midgut, 
URT (female: ovaries; male: testes), and LRT (female: ovi-
duct, spermathecae, spermathecal vestibule, and bursa; 
male: vas deferens, accessory glands, and seminal vesicle) 
were dissected in 1× phosphate-buffered saline (PBS) 
under sterile conditions. Pools of 20 tissues per treat-
ment were stored in STE buffer (100 mM NaCl, 10 mM 
Tris–Cl, pH 8.0, and 1 mM EDTA) at −80 °C until DNA 
extraction.
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For both species, samples were also extracted from (1) 
whole-body male and female adults (a pool of three vir-
gin individuals), (2) larvae rearing water from the final 
pupating day (merging aliquots from all rearing contain-
ers to a final volume of 1.5 ml), (3) freshly prepared 10% 
sucrose solution fed to adults, (4) 10% sucrose solution 
sampled again on the day before mating (merging ali-
quots from all the cages to a final volume of 1.5 ml), (5) 
a larval food pellet (200 mg), (6) a 1× PBS blank control 
(1.5 ml), and (7) DNA extraction reagents controls, one 
for each extraction round for a total of five samples.

Samples were randomly seeded into five different 
extraction days. Liquid samples (i.e., larvae water, sucrose 
solution, and 1 × PBS) were centrifuged at 13,000  rpm 
for 1 min and the supernatant discarded. For each sam-
ple, lysis was started by adding 6 µl of lysozyme (20 µg/
µl) for 2 h at 37  °C, followed by an overnight incuba-
tion adding 24 µl of proteinase K (20  µg/µl) at 56  °C. 
DNA was extracted using a phenol–chloroform protocol 
and eluted in 50 µl of Buffer AE (Qiagen, Valencia, CA, 
USA). Samples were quantified using the Qubit dsDNA 
BR Assay Kit (Life Technologies, Carlsbad, CA, USA). 
A diagnostic polymerase chain reaction (PCR) was per-
formed to evaluate the quality of bacterial DNA using 
the P338F (5′-ACT CCT ACG GGA GGC AGC AG-3′) 
and 1492R (5′-NTA CCT TGT TAC GAC T-3′) primers 
that targeted the 16S rRNA gene. Positive tissue samples 
and controls were sent to Macrogen (Seoul, Korea) for 
sequencing on the Illumina platform using the primers 
Bakt_341F (5′-CCT ACG GGN GGC WGC AG-3′) and 
Bakt_805R (5′-GAC TAC HVG GGT ATC TAA TCC-
3′) [50], which correspond to the V3-V4 hypervariable 
regions of the 16S rRNA gene with a sequencing depth of 
100,000 reads per sample.

Metabarcoding analysis
Raw reads were processed with Mothur v. 1.43.0 [51]. 
Low-quality sequences with (1) the presence of ambigu-
ous nucleotides, (2) more than eight homopolymers, (c) 
sequence length lower than the 2.5th percentile, and (4) 
sequence length higher than the 97.5th percentile, were 
filtered out. The remaining sequences were pre-clustered 
to reduce sequencing error (allowing one difference for 
every 100  base pairs [bp] of sequence). Chimeras were 
removed with VSEARCH [52]. Non-bacterial sequences 
were removed based on a preliminary classification using 
the SILVA v132 database [53]. Singletons were removed 
to avoid operational taxonomic unit (OTU) overestima-
tion and because of the high sequencing depth of the 
sampling. Samples were normalized to 25,000 sequences.

To decrease the effect of contamination, we initially 
used a clustering-free approach to define our OTUs 

[54]. After cleaning the dataset, each unique sequence 
(i.e., 100% nucleotide identity) was defined as an ampli-
con sequence variant (ASV). We looked for ASVs shared 
between the negative controls (1× PBS and DNA extrac-
tion reagents samples) and tissue samples. To avoid 
removing false-negative sequences due to cross-con-
tamination between samples and negative controls [54], 
we only removed ASVs with an abundance  of ≥ 1% in 
the negative control samples—four in total (two Entero-
bacter, one Serratia, and one Cutibacterium). Using the 
remaining sequences, we clustered OTUs at a 97% iden-
tity level using the OptiClust algorithm implemented in 
Mothur [54]. We calculated the sampling effort with rare-
faction curves and sample coverage index (Good’s cover-
age), and alpha diversity metrics for richness (number of 
OTUs), diversity (Shannon index), and evenness (Pielou’s 
index).

An indicator species analysis, to evaluate OTUs that 
were strongly associated with a specific experimental 
variable, was performed [55] using the labdsv package 
[56] implemented in R (http://​www.r-​proje​ct.​org/); indi-
cator values range from 0 to 1.0, with higher values indi-
cating OTU specificity for treatment. We evaluated (1) 
host species, (2) sampled tissues, (3) mating status (vir-
gin or mated), and (4) nutritional status (non-blood-fed 
or blood-fed). To quantify the overall influence of the 
experimental variables (the same as the indicator spe-
cies analysis plus time points) in the bacterial community 
composition, we performed a permutational analysis of 
variance (PERMANOVA) [57] in the vegan package [58] 
also implemented in R. To complement this analysis, we 
performed an ordination analysis. First, we evaluated a 
linearity assumption using a detrended canonical corre-
spondence analysis (DCA). As our samples did not meet 
this criterion, a canonical correspondence analysis (CCA) 
was implemented as an ordination method.

We used PICRUSt 2.0 [59] to analyze the predicted 
bacterial functional profile. Based on the OTU taxon-
omy and relative abundance for each sample, the bio-
logical pathways used for the bacterial community were 
predicted and classified according to the MetaCyc data-
base [60]. Metabolic pathways with low abundance val-
ues were filtered from the matrix (counts per million 
[CPM] < 1) [61] to identify sources of erroneous vari-
ation, which were included in a design matrix that was 
entered into edgeR [62]. We used a range of biological 
coefficient of variation (BCV) estimates to extract sig-
nificant different metabolic pathways from this data, and 
ultimately found that a value of 0.1 gives a conservative 
value to develop a differential testing. To perform meta-
bolic pathway-wise differential testing, we used a fit gen-
eralized linear model and ultimately performed an F-test 

http://www.r-project.org/
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to identify differentially abundant metabolic pathways 
compared to a baseline sample. For both species, we eval-
uated which metabolic pathways were significantly differ-
ent after (1) mating, using virgin females as the baseline 
samples compared to mated, non-blood-fed females; and 
(2) blood-feeding, using mated non-blood-fed females 
as the baseline samples compared to the blood-fed at 

the same post-mating time point. Metabolic predictions 
were performed in the samples of two time points of spe-
cial interest in the host physiology: 24  h, where mating 
induced transcriptomic changes in the female mosquito 
RT have been reported [36, 38], and at 72 h, when eggs 
are fully developed [62].

Fig. 1  Alpha diversity indicators, a Number of OTUs, b Shannon diversity index, and c Pielou’s evenness index for Ae. aegypti (Ae) and Ae. albopictus 
(Alb) tissue samples. Asterisks indicate statically significant differences between species. *P = 0.05–0.005, **P = 0.0049–0.0005, ***P < 0.00049
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Results
We examined microbial profiles of lab-reared Ae. aegypti 
and Ae. albopictus, identifying the bacterial microbiota 
of three tissues: the gut, URT (females: ovaries; males: 
testes), and LRT (females: oviduct, spermathecae, sper-
mathecal vestibule, and bursa; males: vas deferens, 
accessory glands, and seminal vesicles). We determined 
bacterial composition in virgins of both sexes, and in 
mated females at 0, 24, 48, and 72 h post-mating; 72 h is 
the typical time a female requires to lay a clutch of eggs 
after blood ingestion in the strains used in our experi-
ments. Virgin females were also examined at each time 
point as an age control. Mated females were further split 
into two groups: mated only and mated + blood-fed (a 
blood meal was given to a subset of females shortly after 
mating, see “Methods”); these female groups are referred 
to hereafter as non-blood-fed (NBF) and blood-fed (BF). 
We also identified bacteria in several control samples 
(whole adults, larval rearing water, sucrose solution, 
fish food pellets, 1× PBS, and DNA extraction reagents; 
Additional file 1: Table S1).

Overall, 72 tissue and 19 control samples were 
sequenced (Additional file 1: Table S1), identifying a total 
of 1,536,017 sequences and 2493 OTUs. After OTU clus-
tering, one tissue sample (Ae. aegypti virgin 24  h URT) 
was discarded as the low-abundance OTU overestima-
tion evidenced a highly contaminated sample. The final 
tissue samples contained an average of 16,219 ± 7905 
sequences and 44 ± 31 OTUs. The sampling has a com-
plete coverage according to Good’s index (Additional 
file  1: Table  S1), with most of the samples reaching the 
plateau in rarefaction curves with a subsampling of 5000 
sequences (Additional file 2: Figure S1). For alpha diver-
sity (Fig.  1), richness (number of OTUs) was higher for 
LRT samples, while the diversity (Shannon index) and 
evenness (Pielou’s index) were similar between all tis-
sues, excluding the Ae. albopictus URT, which had the 
lowest richness and diversity of all tissues examined. 
The URT was the only tissue with a statistically signifi-
cant difference between Ae. aegypti and Ae. albopictus 
for all estimators (number of OTUs, W = 128.5, DF = 1,   
P = 0.0001; Shannon, W = 120, DF = 1,  P = 0.0004; Pie-
lou’s, W = 98, DF = 1, P = 0.024).

Community composition in tissue and control samples
Eleven OTUs had an overall abundance of ≥ 1% (Fig.  2; 
abundance is shown in Additional file 3: Table S2). OTU 
distribution varied according to the host species, sex, 
sampled tissue, and treatment. For males, we only sam-
pled virgin individuals of the same age, finding that the 
bacterial community shared the same dominant OTUs. 
The most common bacteria for both Ae. aegypti and Ae. 
albopictus across the different male tissues was Asaia. In 

male Ae. aegypti, the average relative abundance (ARA) 
of Asaia in the gut, URT, and LRT was 65.87%, 91.11%, 
and 76.82%, respectively. For male Ae. albopictus, the 
Asaia ARA for the gut and LRT was 43.64% and 81.64%, 
respectively. The Ae. albopictus URT was the only male 
tissue with a distinct microbiota, dominant for a Wol-
bachia OTU (89.38% ARA).

In females, gut tissue displayed the most differences 
between treatments: in virgin Ae. aegypti, the domi-
nant OTUs were Asaia and Serratia (29.45% and 27.25% 
ARA, respectively). Pseudomonas was also dominant in 
mated NBF females, (33.86% ARA), with a high relative 
abundance of 28% in one BF sample (72 h). Enterobacter 
and Serratia were dominant in BF females (37.15% and 
34.86% ARA, respectively). Chryseobacterium was the 
dominant bacteria in one virgin (72  h) and one mated 
NBF (0  h) sample, with a relative abundance ˃ 70% in 
both cases. In the Ae. albopictus gut, Enterobacter was 
the most abundant OTU for all three female groups, vir-
gin (38.45% ARA), mated NBF (39.67% ARA ), and mated 
BF females (69.95% ARA). Asaia was also abundant in 
NBF Ae. albopictus females (31.55% ARA).

The Ae. aegypti female URT tissue had a similar com-
position to the gut tissue, sharing some of the abundant 
OTUs. Except for virgin samples, where no abundant 
OTUs were dominant. Enterobacter was the most abun-
dant OTU in mated NBF females (46.56% ARA) and 
BF females (34.12% ARA). Other abundant OTUs were 
Serratia in mated NBF females (28.38% ARA) and BF 
females (23.47% ARA), and Acinetobacter, the dominant 
bacteria in the 72 h BF sample, with a relative abundance 
of 75%. The Ae. albopictus URT had a unique community 
compared to other tissues of this species and compared 
to Ae. aegypti, with two Wolbachia OTUs dominant in 
virgin and mated females (ARA ≥ 97%); the presence 
of both Wolbachia strains in our laboratory colony was 
confirmed by PCR using diagnostic wsp primers [63] for 
Wolbachia supergroup A and B (Additional file 4: Figure 
S2).

The LRT was the only tissue where females of both spe-
cies had a similar community structure, with Asaia being 
the dominant OTU for all treatments, with ARA greater 
than 50%. Asaia ARA for virgin, NBF, and BF females was 
65.04%, 70.04%, and 59.74% in the Ae. aegypti LRT, and 
72.63%, 65.21%, and 53.43% in the Ae. albopictus LRT. 
Other abundant OTUs for Ae. aegypti were Chryseobac-
terium, which reached abundance between 11 and 50% in 
some of the virgin, BF, and NBF LRT samples, and Enter-
obacter, with relative abundance of 29% in the mated 
NBF sample at 48  h. This same Enterobacter OTU was 
also found in Ae. albopictus samples in abundance rang-
ing from 10 to 30% at the three post-mating time points. 
Further, the abundance of the two Wolbachia OTUs was 
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lower in the LRT than in the URT, with only one sample 
(48 h BF) reaching 24%.

The distribution of the most abundant OTUs was 
also analyzed in the control samples (Additional file  3: 
Table S2 and Additional file 5: Figure S3). In female whole 
bodies, Raoultella, Serratia, and Enterobacter were domi-
nant in Ae. aegypti (27.55%, 20.15%, and 10.83% ARA, 
respectively), while Enterobacter was highly dominant in 
Ae. albopictus (89.84% ARA). In male whole-bodies for 
both species, Asaia was the most abundant OTU (ARA 
of 23.72% in Ae. aegypti, and 36.91% in Ae. albopictus). 
In the larval rearing water, sucrose solution, and fish 
food samples, the dominant OTUs in tissue samples were 
mostly found in low abundance, except for Asaia, which 
had significant abundance in the final sucrose solution 
samples (ARA of 36.76% in Ae. aegypti, and 26.31% in Ae. 
albopictus).

Community assemblage analyses
The indicator species analysis was performed using 
the subsampling of OTUs with a total overall abun-
dance ≥ 0.001% (281 OTUs in total) with a focus on 
results with high indicator values (≥ 0.75; Table  1). 
At the host species level, the only OTUs with signifi-
cant results were two Wolbachia OTUs associated with 

Table 1  Indicator species analysis for OTUs with an overall abundance ≥ 0.001%

Only OTUs with a high indicator value (≥ 0.75) and a P-value ≤ 0.05 are shown. Associated variables evaluated are host species and tissue, reproductive, and nutritional 
status for each species

OTU code Classification Indicator value P-value Associated variable

Species level Otu0003 Wolbachia 0.97 0.001 Ae. albopictus

Otu0004 Wolbachia 0.91 0.001 Ae. albopictus

Tissue level Otu00010 Raoultella 0.94 0.001 Gut—Ae. aegypti

Otu00009 Staphylococcus 0.94 0.001 URT—Ae. aegypti

Otu00020 Microbacteriaceae unclassified 0.99 0.001 LRT—Ae. aegypti

Otu00014 Delftia 0.97 0.001 LRT—Ae. aegypti

Otu00080 Nocardioides 0.95 0.001 LRT—Ae. aegypti

Otu00024 Alphaproteobacteria unclassified 0.87 0.001 LRT—Ae. aegypti

Otu00026 Arthrobacter 0.86 0.001 LRT—Ae. aegypti

Otu00001 Asaia 0.85 0.001 LRT—Ae. aegypti

Otu00029 Acinetobacter 0.84 0.001 LRT—Ae. aegypti

Otu00019 Sphingobacteriaceae unclassified 0.81 0.001 LRT—Ae. aegypti

Otu00015 Sphingobacterium 0.80 0.002 LRT—Ae. aegypti

Otu00060 Chitinophagaceae unclassified 0.77 0.001 LRT—Ae. aegypti

Otu00002 Enterobacter 0.94 0.001 Gut—Ae. albopictus

Otu00005 Serratia 0.79 0.003 Gut—Ae. albopictus

Otu00010 Raoultella 0.79 0.001 Gut—Ae. albopictus

Reproductive level Otu00021 Chryseobacterium 0.79 0.001 Virgin—Ae. aegypti

Otu00008 Pseudomonas 0.90 0.001 Mated—Ae. aegypti
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Ae. albopictus. For the other evaluated variables (tis-
sue, reproductive status, and nutritional status), we 
performed the analyses separately for each species to 
increase its sensitivity. The most significant variable was 
the host tissue: Raoultella was associated with gut tissue 
of both Ae. aegypti and Ae. albopictus, while Enterobacter 
and Serratia were associated with only the Ae. albopictus 
gut. In the URT, Staphylococcus was associated with Ae. 
aegypti samples. The Ae. aegypti LRT was the tissue with 
the most associated OTUs, 10 in total. At the reproduc-
tive level (i.e., mating status), only two OTUs, Chryseo-
bacterium and Pseudomonas, were associated with virgin 
and mated Ae. aegypti, respectively. Finally, for nutri-
tional status, no bacteria were associated with blood-
feeding or non-blood-feeding (i.e., exclusively sucrose).

The PERMANOVA analysis for host species, sampled 
tissues, time point, mating status, and nutritional status 
variables shows that tissue (R2 = 0.29; P = 0.01), and host 
species (R2 = 0.08; P = 0.01) better explain the bacterial 
community composition, compared to the time point 
(R2 = 0.02; P = 0.83), reproductive status (R2 = 0.01; 
P = 0.27), and nutritional status (R2 = 0.009; P = 0.52). 
This result is confirmed by the CCA (Fig. 3), where clus-
ters defined by host species and tissue can be observed. 
This is most notable in Ae. albopictus URT samples, 
which form an isolated cluster distinguishable from the 
other sample types due to the dominance of Wolbachia 
(Fig. 3).

Predicted bacterial metabolic pathways
We used PICRUSt 2.0 to analyze the predicted bacterial 
functional profile for the tissue samples. Based on the 
OTU taxonomy and relative abundance in each sample, 
we predicted bacterial metabolic pathways to determine 
the effect of mating and blood-feeding on microbial phys-
iology. This analysis predicted 420 predicted metabolic 
pathways overall. We focused on abundance differential 
testing only in the URT and LRT at two time points: at 
24  h, when large-scale mating induced transcriptomic 
changes occur [36, 38], and at 72 h, when eggs are fully 
developed after blood-feeding [62]. The comparisons 
were made between (1) virgin vs. mated NBF females, 
and (2) mated NBF vs. mated BF females. Because the Ae. 
aegypti 24 h virgin URT sample was discarded, we used 
the 48 h vs. 72 h for this comparison. Most of the result-
ing pathways belong to three superclasses according to 
the classification of the Metacyc database: “Biosynthesis,” 
“Degradation/Utilization/Assimilation,” and “Generation 
of Precursor Metabolites and Energy.”

In total, 16 comparison groups were identified. The 
number of pathways with abundance differences ranged 
from only two (Ae. albopictus BF vs. NBF URT at 24 h) 

to 92 (Ae. aegypti BF vs. NBF URT at 72 h) (Additional 
file  6: Table  S3). More overabundance pathways were 
found in the URT compared to the LRT. In the virgin vs. 
NBF group, we found 225 pathways in the URT com-
pared to 86 in the LRT. In the NBF vs. BF group, 186 
pathways were found in the URT compared to 84 in LRT. 
At the species level, for most of the comparison groups, 
more overabundant pathways were found in Ae. aegypti 
microbiota compared to Ae. albopictus communities, 
except for the virgin vs. NBF LRT at 72 h and NBF vs. BF 
LRT at 24 h.

Finally, we examined overabundant pathways shared 
between both host species microbiota (Additional file 7: 
Table  S4). In general, few pathways were shared, with 
two cases having no shared pathways (NBF vs. BF URT 
at 24 h, and NBF vs. BF LRT at 72 h). The groups with 
more identified pathways were the virgin vs. NBF URT 
at 24 h and NBF vs. mated BF URT at 72 h, with 21 and 
26 shared pathways, respectively. For the temporal com-
parison, we analyzed which overabundant pathways were 
shared at 24 and 72  h for each host species (Additional 
file  8: Table  S5). Like the species comparison, very few 
pathways were shared, with none in the Ae. albopictus 
NBF vs. BF URT. As expected, more shared pathways 
were found in the Ae. aegypti virgin vs. NBF URT, as the 
comparison was made between 48 and 72 h samples.

Discussion
Bacterial diversity in Aedes aegypti and Aedes albopictus 
tissues
We characterized the microbiota of the gut, URT, and 
LRT of Ae. aegypti and Ae. albopictus. The predominant 
OTUs belonged to three phyla, Proteobacteria, Bacte-
roides, and Firmicutes, consistent with previous reports 
of mosquito-associated communities [27]. At the genus 
level, the taxonomic composition is vastly more diverse. 
This variability is proposed to be conditioned by envi-
ronmental factors (i.e., breeding site and food source) 
rather than by host physiological factors [25, 26, 28]. Our 
results also evidence that the primary source of bacterial 
diversity is the sampled tissue, indicating a relevant bac-
terial tropism previously reported for mosquito tissues 
[30, 31]. Most OTUs identified in the examined tissues 
were also found in the larval rearing water and in sucrose 
fed to adults, indicating an environmental transmission 
route common for mosquito microbiota [26]. The most 
abundant OTUs belonged to Gammaproteobacteria pre-
viously described as part of the Aedes gut microbiota: 
Acinetobacter [64, 65], Enterobacter [64, 66, 67], Pseu-
domonas [64, 66, 68], and Serratia [31, 69]. Acinetobacter 
and Pseudomonas have also been described in Ae. aegypti 
male and female gonads [31]. The vertically transmitted 
Alphaproteobacteria Wolbachia was also abundant in 
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the Ae. albopictus URT, with OTUs corresponding to the 
wAlbA and wAlbB strains [70].

The most abundant overall OTU in our sampling was 
the Alphaproteobacteria Asaia, a member of the ace-
tic acid bacteria group associated with sugar-fed insects 
[71]. Asaia was dominant in the LRTs of both species but 
absent in their respective URTs. Wolbachia was domi-
nant in the Ae. albopictus URT and reciprocal negative 
interference between Wolbachia and Asaia has been pro-
posed [72]. Asaia was originally described in Anopheles 
[73], associated with larvae and adult survival [74–76], 
and later in Ae. aegypti and Ae. albopictus gut tissue [31, 
64, 72] and Ae. aegypti female and male gonads [31], 
with no association with Aedes physiology yet described. 
Asaia has multiple routes of transmission: nectar feeding 
[24], sexual transmission [77], and vertical transmission 
with its presence on the egg surface suggesting mater-
nal transmission via egg-smearing [72, 78, 79]. We can-
not propose a vertical transmission of Asaia in our assays 
due to its absence in the ovary and the lack of sampling 
of mosquito eggs. Although the abundance of Asaia in 
sucrose suggests transmission by feeding, Asaia was only 
found in sucrose from adult cages 4–6 d after mosquito 
release, suggesting other routes of transmission such as 
excretion in feces or inoculation via saliva, as Asaia has 
been described in salivary glands in other mosquito spe-
cies [31].

Microbiota and host physiology
Insect seminal fluid often contains antimicrobial peptides 
that are transferred to females during mating [80, 81]. 
Mating also stimulates expression of genes with antibac-
terial properties [82]. Aedes aegypti and Ae. albopictus 
seminal fluid also contains immunity-related proteins 
[33–35], and mating induces the expression of genes 
with antimicrobial functions in the female RT [36–38]. 
Female mosquitoes also require a blood meal for egg 
development, with blood ingestion altering microbiota 
composition in the mosquito gut [41]. Further, mating 
and blood-feeding regulate the expression of genes with 
roles in oxidative stress in the Ae. aegypti female RT [36, 
38]. Therefore, we examined the microbiota composition 
in each tissue from virgin and mated females (NBF), and 
in mated females subsequently blood-fed (BF) in both Ae. 
aegypti and Ae. albopictus.

PERMANOVA and indicator species analysis do not 
evidence a statistically significant effect of diet on the 
microbiota taxonomic structure. Instead, we found over-
all relative abundance changes in the gut microbiota of 
OTUs associated with specific diet treatments. Serratia 
and Enterobacter, bacteria with strong hemolytic activ-
ity and associated with blood digestion in Ae. aegypti [44, 
83], had larger relative abundances in BF females than in 

virgin or NBF females of both species. Recently, Entero-
bacteriaceae was shown to interfere with Serratia colo-
nization in the Ae. aegypti gut [45], and the presence of 
Serratia interfered with feeding activity [45], showing 
that microbial interactions can influence adult behavior 
in this species.

No significant differences in the microbiota structure 
were observed between virgin and mated females; only 
two OTUs in Ae. aegypti had a higher abundance asso-
ciated with Ae. aegypti mating status (Chryseobacterium 
in virgin and Pseudomonas in mated samples, respec-
tively). As our study was qualitative and not quantitative, 
we could not establish changes in the microbial load in 
the LRT between virgin and mated insects. Blood-feed-
ing induces egg development [84, 85] and ovary growth. 
In Ae. albopictus, independent of mating status and egg 
development stage, Wolbachia was dominant, showing 
its ability to colonize this tissue over other groups [72, 
86]. Aedes aegypti showed an increase in Acinetobacter 
and Staphylococcus in fully developed ovary tissue at 72 h 
compared to virgin and NBF females. Acinetobacter has 
been previously described as a common ovary resident in 
lab-reared Ae. aegypti [31, 32].

When we examined the predicted metabolic profiles of 
the tissue-associated microbiota, we observed differences 
between groups. In NBF females of both species at 24 h, 
there was an overabundance in microbial energy produc-
tion pathways in the URT, including aerobic respiration 
and fermentation pathways. Sugar fermentation is com-
mon in gut microbiota of insects with a sugar-rich diet, 
such as bees [87, 88]. We also observed an increase Enter-
obacter and Serratia abundance in NBF female ovaries. 
Enterobacterales are facultative anaerobes that can switch 
to sugar fermentation under conditions of oxygen deple-
tion [89]. In NBF and BF samples, most shared overabun-
dance pathways were present at 72 h. The pathways found 
included the following: (1) Pathways related to sugar deg-
radation. (2) Pathways exclusive to Enterobacteriaceae, 
synthesis of enterobacterial common antigen (ECA), an 
outer membrane glycolipid antigen [90], and enterobac-
tin synthesis, a siderophore. Siderophores are highly rep-
resented in the biosynthetic gene clusters of An. gambiae 
microbiota [91]. (3) Quinone synthesis pathways, mole-
cules part of the electron transport chain with additional 
roles in Gram-positive bacteria sporulation [92, 93]. The 
predicted functional profiles do have two limitations: (1) 
accuracy depends on existing reference genomes, and 
(2) some bacteria have similar 16S rRNA hypervariable 
regions despite being genotypically divergent [59, 94]. 
We expect that further in silico and metatranscriptomics 
studies will lead to a better understanding of the func-
tional role of the mosquito microbiota.
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Conclusions
Our comparative analysis shows that Ae. aegypti and Ae. 
albopictus have unique RT microbiota, with the domi-
nant abundance of Wolbachia in Ae. albopictus gonads 
being the most notable difference between the spe-
cies. Also, no major differences were observed in vir-
gin, mated, or blood-fed females of either species. Some 
of the bacteria identified here, such as Asaia and Wol-
bachia, have tissue-specific tropism for the RT, further 
supporting their potential use in vector control strate-
gies. On the other hand, the predicted functional pro-
files of RT-associated microbiota show changes in the 
use of pathways associated with these events, suggest-
ing a physiological interaction between microbiota and 
host that could influence mosquito reproduction and/or 
other physiological processes. The influence of RT tissue 
microbiota requires further elucidation using axenic or 
gnotobiotic models [95] to further evaluate the role of the 
microbiota on the reproductive behaviors and fertility of 
these vector species.
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