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Abstract 

Background:  Aedes albopictus and Aedes japonicus, two invasive mosquito species in the United States, are impli-
cated in the transmission of arboviruses. Studies have shown interactions of these two mosquito species with a 
variety of vertebrate hosts; however, regional differences exist and may influence their contribution to arbovirus 
transmission.

Methods:  We investigated the distribution, abundance, host interactions, and West Nile virus infection prevalence of 
Ae. albopictus and Ae. japonicus by examining Pennsylvania mosquito and arbovirus surveillance data for the period 
between 2010 and 2018. Mosquitoes were primarily collected using gravid traps and BG-Sentinel traps, and sources of 
blood meals were determined by analyzing mitochondrial cytochrome b gene sequences amplified in PCR assays.

Results:  A total of 10,878,727 female mosquitoes representing 51 species were collected in Pennsylvania over the 
9-year study period, with Ae. albopictus and Ae. japonicus representing 4.06% and 3.02% of all collected mosquitoes, 
respectively. Aedes albopictus was distributed in 39 counties and Ae. japonicus in all 67 counties, and the abundance of 
these species increased between 2010 and 2018. Models suggested an increase in the spatial extent of Ae. albopictus 
during the study period, while that of Ae. japonicus remained unchanged. We found a differential association between 
the abundance of the two mosquito species and environmental conditions, percent development, and median 
household income. Of 110 Ae. albopictus and 97 Ae. japonicus blood meals successfully identified to species level, 98% 
and 100% were derived from mammalian hosts, respectively. Among 12 mammalian species, domestic cats, humans, 
and white-tailed deer served as the most frequent hosts for the two mosquito species. A limited number of Ae. albop-
ictus acquired blood meals from avian hosts solely or in mixed blood meals. West Nile virus was detected in 31 pools 
(n = 3582 total number of pools) of Ae. albopictus and 12 pools (n = 977 total pools) of Ae. japonicus.

Conclusions:  Extensive distribution, high abundance, and frequent interactions with mammalian hosts suggest 
potential involvement of Ae. albopictus and Ae. japonicus in the transmission of human arboviruses including Cache 
Valley, Jamestown Canyon, La Crosse, dengue, chikungunya, and Zika should any of these viruses become prevalent 
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Background
The mosquito genus Aedes has garnered international 
attention in recent years after the emergence and rapid 
spread of Zika virus (ZIKV) infections in Central and 
South America, the Caribbean, and the state of Florida 
in the United States [1, 2]. Native to Asia, Aedes albop-
ictus was first introduced into the United States in Texas 
in 1985 [3] and has since spread to 38 states [4, 5]. Also 
introduced from Asia, Aedes japonicus was first reported 
in the United States in Connecticut in 1997 [6, 7], New 
York and New Jersey in 1998 [8], and Pennsylvania in 
1999 [9]. Aedes japonicus is now found in 33 states, [10, 
11]. Both Ae. albopictus and Ae. japonicus are container-
inhabiting mosquitoes that take advantage of natural and 
artificial containers and thrive in peridomestic environ-
ments [12]. The spread of both Aedes species is inex-
tricably linked to these artificial containers (e.g., tires) 
transported across infrastructure (i.e., highways) [3, 13]. 
Their successful invasion is due in large part to their 
adaptability to a wide range of environmental conditions 
in temperate climates and human environments.

Not only have Ae. albopictus and Ae. japonicus suc-
cessfully invaded temperate North America, but there is 
evidence to suggest that under certain conditions they 
may outcompete native mosquito species including Aedes 
triseriatus [14, 15]. It is also suggested that this species 
is outcompeting Aedes atropalpus in some areas of the 
United States due to shorter larval development periods 
[16]. Bearing highly adaptive traits and exhibiting com-
petitive advantages over native mosquito species, Ae. 
albopictus and Ae. japonicus may alter mosquito bio-
diversity and indirectly influence the epidemiology of 
mosquito-borne diseases [10]. Co-occurrence of these 
two species has also affected interspecific competition, 
with Ae. albopictus generally outcompeting Ae. japoni-
cus in larval habitats [17]. Although Ae. albopictus has 
been shown to be superior to Ae. japonicus in compet-
ing for food resources in larval habitats in the United 
States (particularly in artificial container habitats), higher 
overwintering survival and earlier hatching means that 
Ae. japonicus is able to exploit larval habitats before Ae. 
albopictus [15, 18]. Field observations suggest that Ae. 
albopictus are more abundant in urban and suburban 
areas while Ae. japonicus are more common in rural 
areas [12]. This distinction in habitat niche may be due 
to differences in temperature tolerance. Aedes japonicus 
is a temperate mosquito, primarily distributed in cooler 
latitudes in its native and invaded ranges [10]. Hot, dry 

summer conditions mediated by climate change and 
urban heat islands may negatively impact Ae. japoni-
cus distribution, especially in highly urbanized areas, 
whereas these conditions are more favorable to increased 
populations of Ae. albopictus [19].

Mosquito–host interactions are important for assess-
ing vectorial capacity in Aedes populations and estimat-
ing the risk of arbovirus transmission. Host interaction 
studies show that Ae. albopictus obtains blood meals pre-
dominantly from a variety of mammalian hosts includ-
ing humans, domestic cats, brown rats, dogs, opossum, 
rabbits, deer, and squirrels. Human-derived blood meals 
have been identified in 50–100% of Ae. albopictus across 
many studies [20–27]. However, opportunistic blood-
feeding of this mosquito species from a wide variety of 
mammalian hosts has been reported in other investiga-
tions [28–30]. Aedes albopictus has also been reported to 
obtain blood meals from avian, reptilian, and amphibian 
hosts [21, 27, 28, 31–35]. Collectively, these studies indi-
cate that Ae. albopictus interacts with a variety of host 
species and potentially contributes to epizootic-epidemic 
transmission of arboviruses in different regions.

Previous studies have demonstrated that Ae. japoni-
cus is associated exclusively with mammalian hosts in 
blood-feeding [21, 29, 36–41] in North America. Multi-
ple studies in the northeastern United States have found 
that white-tailed deer, the most abundant large mammal 
in the region, represent the majority of blood meals iden-
tified from Ae. japonicus [36–39]. But other mammalian 
hosts have also been identified including the domes-
tic cat [29, 40], brown rat [29], opossum [38], cow [41], 
chipmunk [37], and horse [36, 38]. Opportunistic blood-
feeding suggests that Ae. japonicus may be an important 
vector for arboviruses involving small and medium-sized 
mammalian hosts [29, 42]. The potential for Ae. japoni-
cus to act as a “bridge vector” for West Nile virus (WNV) 
cannot be entirely discounted, because it has been shown 
to feed on both humans [29, 37, 38, 40] and birds in 
the laboratory [43] and in the field [44], albeit at lower 
frequencies.

Aedes albopictus and Ae. japonicus are vectors for viral 
pathogens causing diseases in animals and humans. Mul-
tiple arboviruses have been isolated from field-collected 
Ae. albopictus including Cache Valley virus (CVV), east-
ern equine encephalitis virus (EEEV), Jamestown Can-
yon virus (JCV), La Crosse virus (LACV), and WNV [45, 
46]. Local transmission of other arboviruses including 
dengue (DENV), chikungunya (CHIKV), and ZIKV by 

in Pennsylvania. Limited interaction with avian hosts suggests that Ae. albopictus might occasionally be involved in 
transmission of arboviruses such as West Nile in the region.
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established populations of Ae. albopictus has occurred in 
temperate areas [47–52].

Aedes japonicus in its native range has been impli-
cated in Japanese encephalitis virus (JEV) outbreaks 
[53]. In laboratory studies, Ae. japonicus has been shown 
to be a competent vector of LACV [54], WNV [55], St. 
Louis encephalitis virus (SLEV) [56], EEEV [57], DENV, 
CHIKV [58], and Rift Valley fever virus (RVFV) [59]. In 
the United States, WNV [60–62], LACV [40, 42], and 
CVV [63] have been isolated from field-collected Ae. 
japonicus.

Urban landscapes impact the spatial variability of mos-
quito abundance [35], community composition [12], 
mosquito–host interactions [25, 30, 33, 34], and infec-
tion rates [64, 65]. Because of their vector competence, 
close association with and blood-feeding on humans, 
Ae. albopictus and Ae. japonicus are considered vec-
tors of public health importance. Thus, a better under-
standing of the impact of urban landscapes on mosquito 
abundance, blood-feeding, and infection status of Ae. 
albopictus and Ae. japonicus is vital for mitigating the 
risk of human infection with arboviruses. WNV is of par-
ticular concern as it is the most common arbovirus in the 
United States and is the only arbovirus known to cause 
significant human disease in Pennsylvania. In Pennsyl-
vania in 2018, the incidence of WNV neuroinvasive dis-
ease (0.74 per 100,000) was > 35% higher than the median 
national incidence and was highest among New England 
and mid-Atlantic states [66]. In this study, our objectives 
were to (1) explore spatial and temporal changes in the 
distribution and abundance of Ae. albopictus and Ae. 
japonicus, (2) assess the influence of urban landscapes 
on their abundance and blood-feeding patterns, and (3) 
investigate Ae. albopictus and Ae. japonicus infection sta-
tus with WNV in Pennsylvania between 2010 and 2018.

Methods
Mosquito collection
Mosquitoes were collected in Pennsylvania from 2010 to 
2018 as part of a statewide arbovirus surveillance pro-
gram (Fig.  1). Most adult collections were made from 
April through October, with some occurring outside 
that time frame, including collections made from winter 
hibernacula. Surveillance was conducted in all 67 coun-
ties from over 19,000 unique collection sites. The surveil-
lance program had a heavy emphasis on the detection of 
WNV in Culex mosquitoes in urban and suburban envi-
rons. Therefore, mosquito collections were largely, but 
not exclusively, focused near human population centers. 
Surveillance sites included wastewater treatment facili-
ties, manure pits on farms, stormwater retention and 
detention basins, green spaces, wetlands, residential 

properties, salvage yards, tire recycling facilities, and 
other locations.

Trapping methodologies included the use of gravid 
traps baited most frequently with a hay/lactalbu-
min infusion (2800 Series, BioQuip products, Rancho 
Dominguez, CA, USA), Centers for Disease Control and 
Prevention (CDC) miniature light traps baited with car-
bon dioxide (John W. Hock Co., Gainesville, FL, USA), 
Biogents BG-Sentinel traps baited with BG-Lure and car-
bon dioxide (Biogents, Regensburg, Germany), aspiration 
with handheld aspirators (John W. Hock Co., Gainesville, 
FL, USA), Fay-Prince omnidirectional traps baited with 
carbon dioxide (John W. Hock Co., Gainesville, FL, USA), 
Mosquito Magnet traps baited with carbon dioxide and 
1-octen-3-ol (American Biophysics Corp., Kingstown, 
RI, USA), resting boxes (constructed by Department of 
Environmental Protection staff), and Zumba traps baited 
with carbon dioxide (ISCA Technologies, Riverside, CA, 
USA). Traps were typically set overnight and collected 
the following morning. Biogents BG-Sentinel traps were 
frequently run for 24 h to increase collection success for 
Ae. albopictus, which can be highly active during the day. 
In some cases, particularly with the Mosquito Magnet, 
traps were allowed to run for multiple days before col-
lection. Mosquitoes collected from gravid and Biogents 
BG-Sentinel traps represented 94.6% of all collected mos-
quitoes. Mosquitoes were either shipped to the Depart-
ment of Environmental Protection laboratory overnight 
on dry ice or delivered to the lab alive and euthanized in 
a −80 °C freezer.

Mosquito processing
Mosquitoes were morphologically identified, sorted, enu-
merated, and pooled (vector spp.) on a chill table with the 
aid of a Leica MZ7.5 stereomicroscope (Leica Microsys-
tems, Wetzlar, Germany) using descriptive keys [67–69]. 
Specimens were identified to the lowest practical taxo-
nomic level, typically species level, but often grouped by 
genus or species groups (e.g., Culex pipiens/restuans) for 
purposes of pooling specimens to maximize virus test-
ing efficiency. Specimens retained for blood meal analysis 
were placed in 1.5  ml microtubes and labeled accord-
ingly. If multiple engorged specimens were collected 
from a single sample, they were retained communally in 
the same tube unless the abdomens were visibly dam-
aged, in which case those specimens were placed in tubes 
singly to avoid cross-contamination. The tubes were 
then placed in a −  80  °C freezer until further process-
ing. Aedes japonicus with visible blood in their abdomens 
were retained from 2010 to 2015, while Ae. albopictus 
were retained in 2018.
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Pathogen testing (virus isolation and identification)
Specimens retained for the intent of virus testing were 
pooled into 11  ml polypropylene tubes (Sarstedt, Nüm-
brecht, Germany) by species (or other relevant taxon) 
of typically up to 100, but occasionally up to 200, speci-
mens per tube and linked with their associated collection 
data. Mosquito pools were homogenized in tubes con-
taining four 4.5 mm-diameter copper-coated steel beads 
and 1–2.5 ml BA-1 diluent [70]. Tubes were placed in a 
multi-tube vortexer (Fisher Scientific, Waltham, MA, 
USA) for 60  s and the homogenate centrifuged (Allegra 
25R centrifuge, Beckman Coulter, Inc., Brea, CA, USA) 
at 3571×g for 10  min at 4  °C. Subsamples of mosquito 
pool homogenates (220 µl) were then transferred to a 
96-well S-block containing 280 µl lysis buffer AL/carrier 
RNA mix and Qiagen protease and incubated at 56  °C 
for 10  min. All assays included no template controls 
[Buffer AVE, RNase-free water with 0.04% NaN3 (Qiagen, 

Hilden, Germany)], negative control (real-time reverse 
transcription polymerase chain reaction) [RT-PCR]-neg-
ative mosquito pool homogenate), and positive control 
(fivefold dilution of virus-infected tissue culture). Nucleic 
acids were purified using the QIAamp Virus BioRobot 
MDx Kit (Qiagen) on the Qiagen BioRobot Universal 
System following manufacturer-recommend procedures 
and eluted in 75 µl AVE buffer (Qiagen).

RT-PCR assays to detect WNV in pools targeted the 3′ 
untranslated region [70], and SLEV and LACV assays tar-
geted the NS5 gene and M segment of the viral genome 
using primers and probes, respectively [71, 72]. A second 
primer/probe set targeting the envelop (E) gene was used 
as necessary for confirmatory tests [70]. Probes were 
labeled with 5′-6-carboxyfluorescein (FAM) reporter 
dye and 3′-6-carboxytetramethylrhodamine (TAMRA) 
quencher (Thermo Fisher Scientific, Waltham, MA, 
USA).

Fig. 1  Location of Pennsylvania in the northeastern United States and a traps containing Ae. albopictus, b traps containing Ae. japonicus, and c 
locations of blood-fed Ae. albopictus and Ae. japonicus 
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Reaction mixtures contained 0.80  µM of each primer, 
0.20  µM probe, 8 µl 2× qScript One-Step master mix, 
Low ROX (Quantabio, Beverly, MA, USA), 0.32 μl 
qScript One-Step reverse transcriptase, 7.2 μl nuclease-
free water, and 4 µl RNA template in 20 μl total reaction 
volume. RT-PCR was performed using the 7500 Real-
Time PCR System (Applied Biosystems, Foster City, CA, 
USA) with the following cycling conditions: 48  °C for 
10 min followed by 95 °C for 5 min and 40 cycles of 95 °C 
for 15  s and 60  °C for 1  min. Samples were considered 
positive for cycle threshold (Ct) values ≤ 38, and samples 
with low viral loads, i.e., Ct > 38, were confirmed by tar-
geting the E gene.

Blood meal identification in engorged Ae. japonicus 
and Ae. albopictus mosquitoes
To identify the sources of blood meals in engorged 
mosquitoes, abdomens were individually dissected 
on microscope slides using sterile razor blades with 
the aid of a stereomicroscope. Extraction of genomic 
DNA from the mosquito abdomens was performed 
using the DNeasy Blood & Tissue Kit (Qiagen, Valen-
cia, CA, USA) or DNAzol BD (Molecular Research 
Center, Cincinnati, OH, USA) according to the man-
ufacturer’s suggested protocols with modifications 
described elsewhere [30, 37, 73, 74]. PCR assays on 
extracted DNA were conducted using primers based 
on the vertebrate mitochondrial cytochrome b gene 
[73, 75, 76] and Taq PCR Core Kit (Qiagen). DNA 
samples isolated from the blood of several vertebrate 
species were used in PCR reactions as positive con-
trol [74]. UltraPure DNase/RNase-free-molecular 
biology-grade distilled water (Invitrogen by Life Tech-
nologies, Grand Island, NY, USA) was used as nega-
tive control. Detailed PCR protocols including reaction 
mixtures and thermal cycling conditions have been 
described elsewhere [73, 76]. PCR-amplified products 
were purified using the QIAquick PCR Purification 
Kit (Qiagen) and sequenced in forward and reverse 
directions using Sanger sequencing on a 3730xl DNA 
Analyzer (Applied Biosystems, Foster City, CA, USA) 
at the Keck Sequencing Facility (Yale University, New 
Haven, CT, USA). ChromasPro version 1.7.5 (Techne-
lysium Pty Ltd., Tewantin, Australia) was used to anno-
tate the sequences. Sequences were compared to the 
sequences in the NCBI GenBank (https://​blast.​ncbi.​
nlm.​nih.​gov/​Blast.​cgi?​PROGR​AM=​blast​n&​PAGE_​
TYPE=​Blast​Searc​h&​LINK_​LOC=​blast​home) using 
the BLASTn search tool. A positive identification was 
made when > 97% identity was attained between the 
query and subject sequence.

Statistical analysis
Maximum likelihood estimation (MLE) is considered 
the most appropriate estimate of infection rate when 
pool size varies [77]. To estimate annual infection rates 
across Pennsylvania, we calculated the MLE as previ-
ously described [78] for all mosquito species that had at 
least one positive pool. Further, we calculated infection 
rates using MLE per 1000 mosquitoes by location for Ae. 
albopictus and Ae. japonicus.

To explore relationships between urban landscapes and 
Ae. albopictus and Ae. japonicus abundance, we accessed 
spatially explicit, freely available data on development 
(DEV) and median household income (MHI). The 2016 
National Land Cover Database classification was simpli-
fied into four classes characterizing water, developed, 
undeveloped, and agricultural land cover [30]. In Arc-
GIS, we calculated the proportion of developed land 
within a radius of 200 m of each trap location to meas-
ure the influence of urban landscapes on Aedes mos-
quitoes (Fig.  2). For each census tract in Pennsylvania, 
we accessed the United States Census 2010 estimates of 
MHI (US Census Bureau 2010, Table S1903). In ArcGIS, 
we extracted this estimate of MHI at each trap location 
(Fig. 2). We standardized the environmental conditions, 
the DEV and MHI, across all trap locations by subtract-
ing the mean and dividing by the standard deviation.

We used contingency tables to compare abundance 
and blood meals across environmental conditions split 
at the mean, and generalized linear mixed effects models 
(GLMM) to evaluate how the urban landscape, DEV and 
MHI, influences Ae. albopictus and Ae. japonicus abun-
dance (family = Poisson), blood-feeding (family = bino-
mial), and WNV infection rates (family = Poisson). We 
used mixed-model regression to accommodate the tem-
poral structure of the data, with year as a random effect. 
All statistical analyses were completed using R Statisti-
cal Software version 3.6.2 [79] and maps were created in 
ArcGIS version 10.8 (Esri, Redlands, CA, USA).

Results
Across all trap types, a total of 10,878,727 female mos-
quitoes were collected between 2010 and 2018. The most 
frequently collected species were Cx. restuans (42.58%; 
n = 4,631,831) and Cx. pipiens (25.50%; n = 2,774,163), 
together with those identified as either Culex species 
(12.48%; n = 1,358,060), comprising 80.56% (n = 8,764,054) 
of the total collection (Table  1). Aedes albopictus repre-
sented 4.06% (n = 441,542) and Ae. japonicus represented 
3.02% (n = 328,438) of all mosquitoes collected between 
2010 and 2018 (Table 1). Gravid traps were by far the most 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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common trap types used, representing 85% of all traps, fol-
lowed by BG-Sentinel traps (9.6%).

Temporal and spatial changes in the abundance of Ae. 
albopictus and Ae. japonicus
The abundance of Ae. albopictus (odds ratio [OR] = 1.150; 
95% confidence interval [CI] = [1.147, 1.154]; P < 0.001) 
and Ae. japonicus (OR = 1.124; 95% CI = [1.123, 1.126]; 
P < 0.001) increased between 2010 and 2018 (Fig. 3). We 
detected Ae. albopictus in 39 counties and Ae. japonicus 
in all 67 counties in Pennsylvania (Fig.  1a and b). The 
models suggest that the spatial extent of Ae. albopictus 
increased (OR = 1.084; 95% CI = [1.03, 1.141]; P = 0.002) 
while the spatial extent of Ae. japonicus did not change 
(OR = 0.993; 95% CI = [0.961, 1.026]; P = 0.667) between 
2010 and 2018.

Influence of urban landscape on the abundance of Ae. 
albopictus and Ae. japonicus
We found that Ae. albopictus and Ae. japonicus were 
associated with environmental conditions, DEV and 
MHI. Aedes albopictus abundance was positively asso-
ciated with DEV (OR = 2.666; 95% CI = [2.623, 2.704]; 
P < 0.001) and MHI (OR = 1.059; 95% CI = [1.048, 
1.070]; P < 0.001) (Table  2). The interaction between 
DEV and MHI was also significant, and areas of higher 
DEV (above the mean) and lower MHI (below the 
mean) had the greatest abundance of Ae. albopictus 
(OR = 0.749; 95% CI = [0.741, 0.758]; P < 0.001) (Fig. 4). 
Aedes japonicus abundance was negatively associated 

with DEV (OR = 0.951; 95% CI = [0.948, 0.955]: 
P < 0.001) and MHI (OR = 0.781; 95% CI = [0.777, 
0.784]: P < 0.001) (Table  2) and was abundant across 
all urban environments, with the highest abundance 
in areas with lower MHI (below the mean) compared 
to other areas (OR = 0.917; 95% CI = [0.912, 0.921]; 
P < 0.001) (Fig. 4).

Blood meal analysis results and influence of urban 
landscape on blood‑feeding patterns
A total of 187 engorged Ae. albopictus from 85,824 
(0.21%) collected in 2018 were subjected to blood meal 
analysis. Of these, 58.82% (n = 110) had viable results. 
Most blood meals were identified as a single host 93.64% 
(n = 103). Across single and mixed blood meal results, 
most included mammalian blood 98.18% (n = 108); the 
three most common hosts were domestic cat, human, 
and Virginia opossum, representing 43.64% (n = 48), 
28.18% (n = 31), and 13.64% (n = 15) of all blood meals 
analyzed, respectively. Avian blood was identified in 
7.27% (n = 8) of blood meals analyzed (Table  3). Of the 
181,133 Ae. japonicus collected between 2010 and 2015, 
just 97 contained visible blood meals (0.05%). All Ae. 
japonicus fed on mammals, and the most common host 
was white-tailed deer, representing 79.38% (n = 77) of all 
blood meals analyzed (Table 4).

To investigate the influence of urban landscapes on 
Ae. albopictus and Ae. japonicus blood-feeding, we per-
formed logistic regression with DEV, MHI, and the 
interaction between these two variables included in 

Fig. 2  Explanatory variables percent development derived from the National Land Cover Database (a) and median household income (b) in 
Pennsylvania
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the models. We found that Ae. albopictus fed more on 
domestic cats in more highly developed areas with lower 
MHI and fed more on humans in less developed areas 
with lower MHI (Table  5). The number of identified 
blood meals from opossums and white-tailed deer were 
not sufficient to discern differences in host feeding across 
urban landscapes. We found that Ae. japonicus fed more 
on white-tailed deer in less developed areas (Table 5).

Infection rates of Ae. albopictus and Ae. japonicus
Between 2010 and 2018, a total of 215,670 pools compris-
ing 9,187,270 mosquitoes across 25 species were tested 
for WNV, and a subset were tested for LACV and SLEV. 

The only arbovirus detected was WNV, which was iden-
tified in 10 species including in Ae. albopictus and Ae. 
japonicus mosquito pools. We calculated the annual MLE 
for all species that had at least one positive pool (Addi-
tional file 1: Table S1). Just 31 of 3582 Ae. albopictus and 
12 of 977 Ae. japonicus pools were positive for WNV. 
Overall, we found that Ae. albopictus had a WNV infec-
tion rate of 0.14 (95% CI = [0.10, 0.20]) and Ae. japonicus 
had a WNV infection rate of 0.55 (95% CI = [0.32, 0.96]).

To investigate the influence of urban landscapes on 
the MLE of WNV infection rates of Ae. albopictus and 
Ae. japonicus blood-feeding, we performed general-
ized linear regression with percent DEV and MHI, and 
the interaction between these two variables included in 
the models. Aedes albopictus had higher WNV infec-
tion rates in areas of lower DEV and higher MHI, while 
Ae. japonicus had higher WNV infection rates in areas 
of lower DEV and lower MHI compared to other areas 
(Table 6). While we found a positive association between 
Ae. japonicus WNV infection rates and MHI, the high-
est infection rates were in areas of low DEV and low MHI 
(Fig. 5).

Discussion
This study provides insight into the distribution, abun-
dance, vector–host interactions, and WNV infection 
rates of two invasive vectors of arboviruses, Ae. albopic-
tus and Ae. japonicus, in Pennsylvania. During the study 
period, 2010–2018, the spatial extent and abundance of 
Ae. albopictus in Pennsylvania increased and the abun-
dance of Ae. japonicus also increased. One explanation 
for the observed increase in the spatial extent of Ae. 
albopictus but not Ae. japonicus is that the sampling was 
conducted largely in urban/suburban habitats, which are 
more conducive to Ae. albopictus than to Ae. japonicus. 
A second possibility is that Ae. japonicus has had more 
time to distribute across the state. As early as 2001, Ae. 
japonicus was common in all 67 counties in Pennsylva-
nia, whereas Ae. albopictus was relatively rare.

Identification of greater than 98% of Ae. albopictus and 
100% of Ae. japonicus blood meals acquired from mam-
malian hosts in this study is in concert with the results 
of other studies. Studies have shown the percentage of 
Ae. albopictus mammalian-derived blood meals between 
71 and 100% [20–32] and between 85 and 100% for Ae. 
japonicus [21, 29, 36–41, 44].

We found frequent interactions of Ae. albopictus with 
humans (27%) and domestic cats (44%) as hosts in our 
study. While some studies have identified these two 
mammalian species as the primary hosts for Ae. albop-
ictus (between 61 and 100%) [20–27, 30], other studies 

Table 1  Number of adult female mosquitoes collected from trap 
locations in Pennsylvania between 2010 and 2018

Species Total Percent (%)

Culex restuans 4,631,831 42.58

Culex pipiens 2,774,163 25.50

Culex pipiens/restuans 1,358,060 12.48

Aedes albopictus 441,542 4.06

Aedes japonicus 328,438 3.02

Aedes trivittatus 282,458 2.60

Aedes vexans 243,617 2.24

Culex salinarius 145,814 1.34

Psorophora ferox 105,443 0.97

Aedes triseriatus 62,858 0.58

Coquillettidia perturbans 57,787 0.53

Aedes canadensis 56,156 0.52

Aedes sticticus/trivittatus 54,844 0.50

Anopheles punctipennis 47,689 0.44

Aedes sticticus 45,233 0.42

Culex erraticus 36,995 0.34

Anopheles quadrimaculatus 21,224 0.20

Aedes stimulans 9551 0.09

Culex territans 9484 0.09

Psorophora columbiae 5547 0.05

Aedes cinereus 3061 0.03

Aedes dorsalis 2017 0.02

Uranotaenia sapphirina 1343 0.01

Anopheles barberi 1240 0.01

Aedes cantator 1198 0.01

Culiseta minnesotae 1123 0.01

Psorophora ciliata 937 0.01

Anopheles walkeri 755 0.01

Aedes atropalpus 675 0.01

Other spp. 147,644 1.36

Total 10,878,727 100
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have reported that 19% and 35% of blood meals for Ae. 
albopictus originated from cottontail rabbits in Missouri 
[31] and in multiple states (Missouri, Florida, Indiana, 

Illinois, and Louisiana) [28], respectively. A study in Bal-
timore, Maryland reported that 72% of blood meals came 
from rats [29].

Here we found 4% of Ae. japonicus blood meals 
acquired from humans and 79% obtained from white-
tailed deer. One study in Belgium found that 60% of Ae. 
japonicus blood meals originated from humans [41]. 
However, other studies have shown mammals other than 
humans to be the primary source of blood meal. In Mary-
land, 50% of blood meals originated from rats [29], and 
multiple studies have shown that most blood meals (53–
100%) were derived from white-tailed deer [36–39]. The 
frequency of white-tailed deer as hosts for Ae. japoni-
cus in these studies is, at least in part, an indication of 
the abundance of this vertebrate species in these study 
locations.

Domestic cats in Pennsylvania have not been shown to 
be infected with arboviruses that infect humans. How-
ever, infection of white-tailed deer with WNV, EEEV, 
LACV, and SLEV in Pennsylvania [80] and with WNV 
and SLEV in neighboring New Jersey has been reported 
[81]. White-tailed deer have also been shown to be 

Fig. 3  Aedes albopictus (left) and Ae. japonicus (right) total abundance divided by trap nights across gravid trap sites in Pennsylvania 2010–2018

Table 2  Poisson mixed-effect regression model testing the effect of development (DEV), median household income (MHI), and the 
interaction between development and median household income (DEV × MHI) on Ae. albopictus and Ae. japonicus collected in gravid 
traps in Pennsylvania 2010–2018

Ae. albopictus Ae. japonicus

OR 95% CI P-value OR 95% CI P-value

Intercept 0.031 (0.024, 0.039)  < 0.001 0.246 (0.203, 0.298)  < 0.001

DEV 2.666 (2.623, 2.704)  < 0.001 0.951 (0.948, 0.955)  < 0.001

MHI 1.059 (1.048, 1.070)  < 0.001 0.781 (0.777, 0.784)  < 0.001

DEV × MHI 0.749 (0.741, 0.758)  < 0.001 0.917 (0.912, 0.921)  < 0.001

Fig. 4  Aedes albopictus and Ae. japonicus abundance across urban 
landscapes, percent development and median household income, 
both stratified at the mean
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amplifying hosts of CVV and JCV [82, 83]. In areas with 
abundant populations of white-tailed deer, they are often 
targeted by mosquitoes [36]. In Pennsylvania, white-
tailed deer support Ae. japonicus populations through 
ample blood meals and have been shown to be infected 
with arboviruses that can infect humans [80].

Only 7.3% of Ae. albopictus obtained blood meals from 
avian hosts exclusively or in mixed blood meals. Most 
other studies have also shown birds to be infrequent 

hosts for Ae. albopictus [21, 28, 30, 32, 34]. However, one 
study in a forested area of China found that avian blood 
was detected almost as frequently as human blood [84]. 
Studies in urban areas have also found Ae. albopictus to 
feed on birds; in Missouri, 21% [31] and in Korea, 26% 
of blood meals were from birds [27]. We did not find any 
evidence of Ae. japonicus avian blood-feeding, which is 
in accord with most other studies [29, 36–41]. Only one 
study conducted at an urban zoo in Switzerland found 
avian blood-feeding. While most Ae. japonicus fed on 
mammals (84.7%), the remaining 15.3% of blood meals 
originated from birds [44].

In this study we explored the importance of urban 
development on Ae. albopictus and Ae. japonicus abun-
dance and blood-feeding. We found greater abundance 
of Ae. albopictus in areas of higher DEV, while more Ae. 
japonicus were found in areas of lower DEV (Table  2). 
Aedes albopictus and Ae. japonicus have previously 
been shown to occupy slightly different niches, with Ae. 
albopictus more abundant in urban and Ae. japonicus in 
rural areas [12]. Adult Ae. japonicus show a preference 
for heavily vegetated areas regardless of the landscape 
matrix, i.e., agricultural, rural, suburban, or urban [11]. 
We also found that MHI was significantly related to the 
abundance of these two mosquito species, with more Ae. 
albopictus found in areas of high MHI and Ae. japonicus 
in areas of low MHI (Table 2). We did find a significant 
interactive effect between percent DEV and MHI, such 

Table 3  Number and percentage of avian- and mammalian-derived blood meals from Aedes albopictus collected in Pennsylvania, 
2018

Vertebrate hosts
Common name (species name)

Frequency of 
blood meals
No. (%)

Mammalian

 Domestic cat (Felis catus) 46 (41.82)

 Human (Homo sapiens) 28 (25.45)

 Virginia opossum (Didelphis virginiana) 14 (12.73)

 White-tailed deer (Odocoileus virginianus) 8 (7.27)

 Brown rat (Rattus norvegicus) 3 (2.73)

 Dog (Canis lupus familiaris) 1 (0.91)

 Red fox (Vulpes vulpes) 1 (0.91)

Avian

 House finch (Haemorhous mexicanus) 2 (1.82)

Mixed

Human and house finch (Homo sapiens and Carpodacus mexicanus) 2 (1.82)

Virginia opossum and house finch (Didelphis virginiana and Carpodacus mexicanus) 2 (1.82)

Dog and house finch (Canis lupus familiaris and Carpodacus mexicanus) 1 (0.91)

Domestic cat and house finch (Felis catus and Carpodacus mexicanus) 1 (0.91)

Domestic cat and human (Felis catus and Homo sapiens) 1 (0.91)

Total 110 (100)

Table 4  Number and percentage of mammalian-derived blood 
meals from Aedes japonicus collected in Pennsylvania, 2010–2015

Vertebrate hosts
Common name (species name)

Frequency of 
blood meals
No. (%)

Mammalian

 White-tailed deer (Odocoileus virginianus) 77 (79.38)

 Domestic cat (Felis catus) 6 (6.19)

 Dog (Canis lupus familiaris) 5 (5.15)

 Human (Homo sapiens) 4 (4.12)

 Eastern cottontail rabbit (Sylvilagus floridanus) 2 (2.06)

 Cow (Bos taurus) 1 (1.03)

 Horse (Equus caballus) 1 (1.03)

Mixed

 Cat and groundhog (Felis catus and Marmota monax) 1 (1.03)

Total 97 (100)
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that the highest Ae. japonicus abundance was in areas of 
low DEV and low MHI (Table 2; Fig. 4). It is interesting 
that we found higher Ae. albopictus abundance in areas 
of higher MHI in Pennsylvania while other studies have 
shown higher Ae. albopictus abundance in areas with 
lower MHI [35, 85]. Differences in the relationship of 
Aedes mosquitoes to DEV and MHI across studies may 
be driven by variability in container habitat and vegeta-
tion across socioeconomic status among other factors 
[35].

Aedes albopictus fed more on domestic cats in more 
highly developed areas with lower MHI and fed more 
on humans in less developed areas with lower MHI 
(Table 5). Aedes japonicus fed more on white-tailed deer 
in less developed areas. Among other factors, these dif-
ferences in host feeding likely reflect the variation in 

Table 5  Logistic regression results (odds ratios, 95% confidence intervals, and significance level) for Ae. albopictus and Ae. japonicus 
blood-feeding

Significance levels: *** refers to a P-value of less than 0.001; ** refers to a P-value between 0.001 and 0.01; and *refers to a P-value between 0.01 and 0.05

Ae. albopictus

Domestic cat Human Virginia opossum White-tailed deer

Intercept 0.434 (0.236, 0.745)** 0.525 (0.303, 0.878)* – –

DEV 9.864 (2.442, 45.465)** 0.231 (0.079, 0.638)** – –

MHI 0.636 (0.290, 1.263) 0.730 (0.319, 1.480) – –

DEV × MHI 0.373 (0.181, 0.717)** 11.685 (2.053, 75.505)** – –

Ae. japonicus

White-tailed deer Domestic cat Dog Human

Intercept 4.517 (2.535, 9.291)*** 0.032 (0.002, 0.112)*** 0.033 (0.004, 0.100)*** 0.011 (0.000, 0.078)*

DEV 0.376 (0.155, 0.742)* 5.388 (1.178, 100.273) 2.166 (0.562, 25.398) 10.249 (1.062, 1084.212)

MHI 1.067 (0.547, 2.198) 0.649 (0.158, 2.994) 0.409 (0.104, 1.148) 0.494 (0.076, 3.948)

DEV × MHI 0.596 (0.214, 1.523) 3.351 (0.462, 23.278) 1.362 (0.218, 8.481) 7.267 (0.512, 101.626)

Table 6  Generalized linear regression model (family = Poisson) testing the effect of development (DEV), median household income 
(MHI), and the interaction between development and median household income (DEV × MHI) on the maximum likelihood estimation 
of West Nile virus infection rates of Ae. albopictus and Ae. japonicus in Pennsylvania, 2010–2018

Ae. albopictus Ae. japonicus

OR 95% CI P-value OR 95% CI P-value

Intercept 0.402 (0.360, 0.447)  < 0.001 0.881 (0.801, 0.966) 0.008

DEV 0.853 (0.775, 0.945) 0.002 0.792 (0.726, 0.865)  < 0.001

MHI 1.543 (1.407, 1.689)  < 0.001 1.189 (1.101, 1.279)  < 0.001

DEV × MHI 1.102 (1.036, 1.176) 0.003 1.253 (1.152, 1.367)  < 0.001

Fig. 5  Aedes albopictus and Ae. japonicus West Nile Virus infection 
rates across urban landscapes, percent development and median 
household income, both stratified at the mean
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availability of hosts across urban environments, where 
blood-feeding frequency can vary by environmental 
characteristics [30].

The paucity or lack of avian-derived blood meals in 
field-collected Ae. albopictus and Ae. japonicus could be 
due the proximity of the traps to the ground, which may 
not capture Ae. albopictus and Ae. japonicus that feed 
on birds, or simply the difficulty in collecting sufficient 
number of engorged mosquitoes [29, 38]. In this study, 
just 0.21% of Ae. albopictus and 0.05% of Ae. japonicus 
sampled were blood-engorged. Although low, we did find 
that 0.14 per 1000 (0.01%) of Ae. albopictus and 0.55 per 
1000 (0.06%) of Ae. japonicus were infected with WNV. 
Because birds are viewed as the principal reservoir and 
amplification hosts of WNV, these aforementioned fac-
tors may underlie the limitations associated with a rela-
tively small number of engorged mosquitoes analyzed in 
this study (and by others) and detection of avian-derived 
blood meals rather than a true absence of avian feeding. 
Alternatively, it may be possible for Ae. albopictus and 
Ae. japonicus to acquire WNV from mammals such as 
white-tailed deer or eastern chipmunk, as has been sug-
gested by other studies [37, 38].

WNV has been isolated from field-collected Ae. albop-
ictus and Ae. japonicus in various regions of the United 
States [45, 61, 62, 86–88]. Isolation of arboviruses includ-
ing CVV, LACV, JCV, and EEEV has also been reported 
from wild-caught Ae. albopictus [45, 46] and LACV and 
CVV from Ae. japonicus [40, 42, 63] in the United States. 
The emergence of LACV has been linked to Ae. albop-
ictus and Ae. japonicus in the Appalachian region of the 
United States [15]. Human-derived blood meals in con-
cert with the detection of WNV from field-collected Ae. 
albopictus and Ae. japonicus in Pennsylvania suggest the 
potential roles these mosquitoes play as bridge vectors in 
WNV transmission to humans. More research is needed 
to investigate titers of WNV and other arboviruses in 
Ae. albopictus and Ae. japonicus to determine whether 
these field-infected mosquitoes can also transmit this 
arbovirus.

We also investigated whether WNV infection rates in 
Ae. albopictus and Ae. japonicus varied with DEV and 
MHI in Pennsylvania. The WNV infection rate of both 
species was higher in areas of low DEV. However, Ae. 
albopictus infection rates were higher in areas of high 
MHI, while Ae. japonicus infection rates were higher 
in areas of low MHI. It is important to note that Ae. 
japonicus WNV infection rates were highest in areas of 
low DEV and low MHI (Fig. 5). A recent study in Balti-
more, Maryland found that WNV infection rates were 
negatively associated with mean neighborhood income 
[65]. The limitation of the present study in encounter-
ing very few WNV-positive pools of Ae. albopictus and 

Ae. japonicus highlights the need for further research 
in order to draw definitive conclusions about the rela-
tionship between these urban characteristics and WNV 
infection prevalence in these invasive Aedes mosquitoes.

Conclusion
Better understanding of the distribution, abundance, 
infection prevalence, and host interaction of Ae. albop-
ictus and Ae. japonicus in nature is vital for assessing 
their vectorial capacity and contribution to arbovirus 
transmission in different virus foci. Our study indicates 
widespread distribution, high abundance, range expan-
sion, and frequent interactions of Ae. albopictus and Ae. 
japonicus with mammalian hosts, including humans, and 
highlights their potential for transmission of arboviruses 
to humans in the region. Avian-derived blood meals in 
Ae. albopictus, albeit at lower frequency, and infection 
with arboviruses in field-collected mosquitoes also sug-
gest that this mosquito species might occasionally serve 
as a bridge vector of WNV to humans and other mam-
mals in the region.
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