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Abstract 

Background:  Human echinococcosis is affected by natural environmental factors, and its prevalence shows a dis-
tinct geographical distribution. Western China has the highest endemicity of human echinococcosis worldwide, but 
the spatial pattern and environmental determinants of echinococcosis are still unclear.

Methods:  Hot/cold spot analysis was used to investigate the spatial distribution of human echinococcosis preva-
lence. Geodetector was used to identify key natural factors, and a structured additive regression model was used to 
analyse the relationship between natural factors and human echinococcosis prevalence and spatially predict echino-
coccosis epidemics.

Results:  Hot spots for human echinococcosis prevalence include western and southeastern parts of Tibet Autono-
mous Region (henceforth Tibet) and the border areas between Tibet and the provinces of Qinghai and Sichuan. 
Spatial effects are crucial when modelling epidemics, and relative humidity, altitude and grassland area ratio were 
found to have the most evident effects on echinococcosis epidemics. The relationship between these three factors 
and echinococcosis prevalence was non-linear, and echinococcosis risk was higher in areas with high relative humid-
ity, high altitude, and a high ratio of grassland to other land use types. The prevalence that was predicted from the 
investigated environmental factors was generally higher than the actual prevalence, and more epidemic hot spots 
were predicted for the Qinghai-Tibet Plateau, Inner Mongolia Autonomous Region, and the provinces of Yunnan and 
Sichuan than the rest of western China. These results indicate that prevention and control measures may effectively 
reduce echinococcosis prevalence.

Conclusions:  We suggest that the prevention and control of human echinococcosis should be prioritized in the hot 
spots identified here, through the rational allocation of limited medical resources to where they are most needed. 
Furthermore, the spatial epidemiological modelling methods used in this study can be employed in future studies on 
echinococcosis and similar diseases.
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Background
Human echinococcosis is a parasitic disease caused by 
the larval stages of species of the genus Echinococcus. 

The two most important forms of echinococcosis in 
humans are cystic echinococcosis (CE) and alveolar echi-
nococcosis (AE), which are caused by the tapeworms 
Echinococcus granulosus and Echinococcus multilocu-
laris, respectively. The annual global disease burdens of 
CE and AE are 1 million and 666,000 disability-adjusted 
life years, respectively [1, 2]. Both CE and AE have a 
distinctive geographical distribution [3]. CE is globally 
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distributed except for Antarctica; parts of Eurasia, north-
ern and eastern Africa, Australia and South America 
are hyperendemic for this disease [4]. In contrast, AE is 
only found in the northern hemisphere, and especially in 
China, Russia, Europe and North America [3]. China has 
a disease burden of 40% and 95% of the global CE and AE 
disability-adjusted life years, respectively [1, 5]. Human 
echinococcosis is a huge burden on health in China, 
especially in economically disadvantaged agricultural and 
pastoral areas. The distinct geographical distribution of 
human echinococcosis implies that it is closely related 
to natural environmental factors, thus it was considered 
important to investigate how the latter impact echino-
coccosis epidemics.

Natural environmental factors can affect the transmis-
sion of echinococcosis to humans. The survival of Echi-
nococcus spp. eggs, the population dynamics and spatial 
distribution of the hosts of Echinococcus, and human 
exposure risk are all directly or indirectly affected by 
natural environmental factors [6]. Natural risk factors 
for echinococcosis fall under two categories: climate 
and geographical landscape. Temperature (T), precipita-
tion (Pre), and relative humidity (Rh) are the main cli-
mate risk factors for echinococcosis. In France, the risk 
of AE is higher in areas with very cold winters and high 
annual Pre [7]. CE prevalence was found to be negatively 
correlated with land surface temperature in China [8, 9], 
and nonlinearly related to annual mean Pre in the Tibet 
Autonomous Region (henceforth Tibet) [10]. Altitude, 
land use type, vegetation type, and landscape pattern are 
the main geographical  landscape factors related to echi-
nococcosis prevalence. Two studies found that altitude 
is positively correlated with echinococcosis prevalence 
[8, 10]. Another study indicated that, in China, AE risk 
is higher in high-altitude alpine grassland areas [11]. As 
echinococcosis prevalence is positively correlated with 
grassland area ratio and negatively correlated with forest 
area ratio [9, 11], the primary focus of the present study 
was these two natural environmental factors.

Although the natural environmental factors that affect 
human echinococcosis prevalence have been analysed in 
many studies, most of these were focussed on the rela-
tionship between specific natural factors and human 
echinococcosis, and there has been no research on nat-
ural environmental factors as predictors of echinococ-
cosis epidemic risk. In the present study, hot/cold spots 
and natural risk factors for human echinococcosis (both 
CE and AE) prevalence were analysed, and an optimal 
county-level model including spatial effects developed 
for western China. In addition, using this model, the rela-
tionships between key natural factors and human echino-
coccosis were analysed and the prevalences and potential 

hot/cold spots of human echinococcosis across western 
China predicted.

Methods
Study area
Western China has a high endemicity of echinococco-
sis in the world [12]. Therefore, 344 counties of western 
China were selected as the study area for this research. 
These counties are located in the Inner Mongolia Auton-
omous Region (henceforth Inner Mongolia), the Ningxia 
Hui Autonomous Region (henceforth Ningxia), the prov-
inces of Gansu, Qinghai, Sichuan and Yunnan, the Xin-
jiang Uygur Autonomous Region (henceforth Xinjiang), 
and Tibet (Fig. 1). These areas are the most endemic for 
echinococcosis in China, and their natural environmental 
conditions are diverse. The southwestern study area has 
high rainfall and abundant animal and plant resources; 
the northwestern study area is arid and rainless, with rel-
atively high levels of sunshine; and the Qinghai-Tibet Pla-
teau is high in altitude and experiences low temperatures.

Data collection and preprocessing
The county-level prevalence data of human echinococ-
cosis were collected from recent scientific papers and 
reports. The data for 24 counties in Yunnan and 70 coun-
ties in Tibet were derived from papers published by local 
centers for disease control [13–20], and the data for the 
remaining 150 counties were derived from epidemiologi-
cal surveys [21]. The same methodology was used for all 
the epidemiological surveys carried out in these counties, 
and the details of the diagnosed cases and human preva-
lence estimates are described in Wang [21].

In the present study, nine natural environmental fac-
tors, which fall into two categories, climate and geo-
graphical  landscape, and a total of 81 variables, were 
considered (Table  1). The climatic factors comprised T, 
Pre, Rh, and sunshine duration (Sun). The geographi-
cal landscape factors comprised a digital elevation model 
(DEM), the normalized difference vegetation index 
(NDVI), proportion of grassland to total land use area 
(GrassR), proportion of forest to total land use area (For-
estR), and proportion of cultivated land to total land use 
area (CultivatedR). Statistical indices included minimum 
(Min), maximum (Max), and mean values (Mean). The 81 
variables comprised GrassR, ForestR, CultivatedR, mini-
mum DEM (DEM_Min), maximum DEM (DEM_Max), 
and mean DEM (DEM_Mean), and 75 other variables, 
which included T, Pre, Rh, Sun, and NDVI extracted from 
seasonal and statistical indices. Seasonal indices included 
spring (Spr), summer (Sum), autumn (Aut), and winter 
(Win). The naming rule for the variables was factor_sea-
sonal index_statistical index. For example, Pre_Sum_Min 
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represents minimum precipitation in summer. The tem-
poral information for the epidemiological surveys and all 
of the 81 variables are given in Additional file 1: Tables S1 
and S2.

Analytical methods
The Getis-Ord Gi* statistic was used to identify statisti-
cally significant hot/cold spots. The spatial clustering of 
high/low values (hot/cold spots) was obtained by cal-
culating and analysing the z-scores and p-values. The 
higher (or lower, negative) the z-score, the more intense 
the clustering. A z-score near zero indicated no apparent 
spatial clustering. A high (or low, negative) z-score and 
small p-value for a feature indicated spatial clustering 
of high (or low) values. All the analyses were conducted 
using the hot spot analysis tool in ArcGIS 10.3.1.

Geodetector is used to detect spatially stratified het-
erogeneity and determine driving factors [22, 23]. In this 
study, Geodetector was used to detect the contribution 
of each factor (X) to human echinococcosis prevalence 

(Y) according to the  q-statistic value. The q-statistic is 
defined by the following equation:

where N is the number of samples in the study area, L 
is the number of categories of X, σ 2 is the total variance 
of Y in the study area, and σ 2

h  is the variance of Y within 
category h of X. The larger the q-value, the better that X 
explains Y.

A structured additive regression (STAR) model was 
used to assess the natural determinants of echinococcosis 
prevalence. In this study, the STAR model was estimated 
using Bayesian inference. The penalized least squares 
approach was used to select relevant covariates after 
Geodetector analysis, and a fully Bayesian estimation 
based on the Markov chain Monte Carlo method was 
used for model estimation. As echinococcosis prevalence 
is spatially heterogeneous, two models were developed 
that differ in whether or not they include spatial effects 
for comparison. The spatial effect term described the 

(1)q = 1−

∑L
h=1Nhσ

2
h

Nσ 2

Fig. 1  Map of the study area
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geographical spatial relationship for each county. These 
models are given by:

where prevalencei is the prevalence of echinococcosis in 
county i(i = 1, . . . n) ; α0 is the intercept; xik =

(

xi1, . . . xiq
)

 
is a vector containing q covariates; fk(xik) is the nonlin-
ear smooth functions of the covariates xik , where Bayes-
ian P-splines are utilized; funstr

(

Countyi
)

 is a function 
that accounts for unstructured spatial effects for each 
county, where we define a Markov random field prior for 
a spatial covariate.

The deviance information criterion (DIC) value was 
used for model checking and comparison; usually the 
model with the smallest DIC is the preferred one. The 
DIC was calculated as DIC = D + 2pD , where D is the 
posterior mean of the deviance, which is a measure of 
how well the model fits the data, and pD is the effective 
number of parameters, which is a complexity penalty 
on the model. The root-mean-square error (RMSE) and 
residual predictive deviation (RPD) were used to com-
pare reported prevalence and model-fitted prevalence, 
which can measure the predictive ability of the model. 
Fully Bayesian analyses were conducted using the R pack-
age R2BayesX.

At the factor selection and modelling analysis stage, the 
time that all natural data were recorded was consistent 
with the time that human echinococcosis prevalence was 
surveyed for each county. In the modelling and predic-
tive stage, the natural data from 2016 were used for all 
the counties in western China. The temporal information 
for the data is given in Additional file 1: Table S2.

(2)Model I : prevalencei = α0 +

q
∑

k=1

fk(xik)

(3)

Model II : prevalencei = α0 +

q
∑

k=1

fk(xik)+ funstr
(

Countyi
)

Results
Spatial distribution of human echinococcosis
Figure  2a shows the spatial distribution of human echi-
nococcosis prevalence in western China. Human echino-
coccosis is endemic in eight provinces/regions of western 
China, and Qinghai, Sichuan, and Tibet are those with 
the highest endemicity. The distribution of human echi-
nococcosis prevalence in western China shows spatial 
clustering. Highly endemic areas are mainly concentrated 
on the Qinghai-Tibet Plateau, especially the southwest-
ern part, where human echinococcosis prevalence is 
highest. Although human echinococcosis is also endemic 
in counties that are not part of the Qinghai-Tibet Pla-
teau, the prevalences in most of these is generally low 
(less than 0.5%). Western and southeastern parts of Tibet 
and the border areas of Tibet, Qinghai, and Sichuan were 
hot spots (Fig. 2b). A cold spot was determined in north-
western Xinjiang, and the prevalences in other counties 
of this region did not show statistically significant spa-
tial clustering. All three hot spots were located on the 
Qinghai-Tibet Plateau, which indicates that environmen-
tal conditions there are suitable for human echinococco-
sis transmission. The results indicate that unstructured 
spatial effects may be potential risk factors for human 
echinococcosis.

Modelling of natural factors and human 
echinococcosis
Identification of key natural factors
Key natural risk factors were identified from the 81 varia-
bles examined using Geodetector. All the selected factors 
had the largest q-value of each type, which means that 
they contributed greatly to human echinococcosis preva-
lence and could be considered for inclusion in the mod-
elling. Figure 3 shows the nine selected factors and their 
contribution to human echinococcosis prevalence. These 
latter factors were used as input for the STAR model for 
the final selection of factors using the penalized least 

Table 1  Attributes of the natural environmental factors

Category Factor Description Data source

Climate T Temperature National Earth System Science Data Center, National Science & Tech-
nology Infrastructure of China (http://​www.​geoda​ta.​cn)Pre Precipitation

Rh Relative humidity

Sun Sunshine duration

Geographi-
cal land-
scape

DEM Digital elevation model Resource and Environment Data Cloud Platform (http://​www.​resdc.​cn/​
DataL​ist.​aspx)NDVI Normalized difference vegetation index

GrassR Proportion of grassland to total land use area

ForestR Proportion of forest to total land use area

CultivatedR Proportion of cultivated land to total land use area

http://www.geodata.cn
http://www.resdc.cn/DataList.aspx
http://www.resdc.cn/DataList.aspx
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squares approach. Finally, Pre_Sum_Min, Rh_Win_
Mean, Sun_Sum_Mean, DEM_Mean, NDVI_Spr_Max, 
GrassR, and ForestR were included in the modelling 
analysis.

Model comparison and validation
Using human echinococcosis prevalence as the depend-
ent variable and the seven selected key factors as the 
independent variables, two STAR models were devel-
oped for comparison. The first model (model I) included 
the selected key factors, and the second model (model II) 
considered the spatial random effect based on model I. 
DIC, RMSE, and RPD were used to compare the models, 
and the results are given in Table 2. The predictive abil-
ity and fit of model II were notably better than those of 
model I, which indicated that the spatial random effect 
was essential for modelling human echinococcosis preva-
lence with respect to natural environmental factors.

The fit of model II was validated by the RMSE value 
and by comparing the reported values (Fig.  2a) and the 
fitted values (Fig.  4a) of human echinococcosis preva-
lence. The results demonstrated that model II fits well 
the prevalence and spatial distribution pattern of human 
echinococcosis in western China. The model was con-
sidered qualified as 95.95% of the standardized residuals 
(Fig. 4b) were in the interval (− 2, 2).

Analysis of the relationships between key natural factors 
and human echinococcosis
The nonlinear effects of the investigated key natural fac-
tors on human echinococcosis prevalence are shown in 
Fig.  5, together with the 95% credible intervals. Human 
echinococcosis prevalence was affected by climate fac-
tors, including Pre, Sun, and Rh. Human echinococcosis 
prevalence increased with Pre_Sum_Min and Sun_Sum_
Mean when they were below 90 mm and 17.5 h, respec-
tively (Fig. 5a, b). With a further increase in these factors, 
prevalence first decreased and then increased. Human 
echinococcosis prevalence gradually increased with 
Rh_Win_Mean, reached a peak when it was 50%, and 
then stabilized (Fig. 5c). Geographical landscape factors 
also had a clear impact on human echinococcosis preva-
lence, especially altitude and vegetation characteristics. 
Figure 5d shows the steady rise in human echinococcosis 
prevalence with increasing DEM_Mean. A lower preva-
lence was observed when DEM_Mean was below 3500 m, 
while the prevalence increased sharply when DEM_
Mean was higher than 3500  m. Human echinococcosis 
prevalence gradually increased when NDVI_Spr_Max 
was below 0.5 or above 0.7, and decreased when it was 
within the range 0.5–0.7 (Fig. 5e). Human echinococcosis 
prevalence was lower when GrassR was below 50%, and 
increased rapidly thereafter (Fig.  5f ). Although human 

Fig. 2  Spatial distribution of echinococcosis at the county level in western China: a echinococcosis prevalence; b hot/cold spots
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echinococcosis prevalence varied with ForestR (Fig. 5g), 
there was no significant correlation between them.

Spatial prediction of human echinococcosis prevalence
Key natural factor data for 2016 were used to predict the 
prevalence and hot/cold spots of human echinococco-
sis in 743 counties of western China in model II (Fig. 6). 
Figure  6a shows the geographic distribution of pre-
dicted human echinococcosis prevalence in each county 
of western China. The predicted human echinococcosis 
prevalences based on natural environmental factors were 
higher than the actual prevalences. For the Qinghai-
Tibet Plateau, which has a high prevalence, the predicted 
prevalence was generally higher than the surveyed one, 
especially in the case of Tibet. Clusters of higher preva-
lence were predicted for some areas with relatively low 
endemicity for human echinococcosis, e.g. central Inner 
Mongolia, eastern and southern Sichuan, and southern 
Yunnan. The hot spot analysis also revealed natural risk 
for human echinococcosis epidemics in western China 
(Fig.  6b). Compared with the results of the hot spot 

analysis of the reported prevalences (Fig. 2b), there was 
more spatial clustering in the predicted prevalences, and 
more hot and cold spots were observed. More hot spots 
were observed especially in Tibet and the Tibetan areas 
of Qinghai and Sichuan. Some scattered hot spots were 
also observed in Inner Mongolia, Sichuan, and Yunnan. 
Cold spots were observed in all areas except for Tibet, 
and there were more cold spot clusters in Inner Mon-
golia, Ningxia, Gansu, and Xinjiang. These phenomena 
indicated that the natural environmental factors exam-
ined play a role in the transmission and prevalence of 
human echinococcosis in western China. Thus, more 
effective targeted prevention and control measures need 
to be implemented in these areas.

Discussion
The impact of two types of natural environmental factors 
on the prevalence of human echinococcosis was investi-
gated. Climate factors have a significant effect on human 
echinococcosis [6, 11]. Our study indicated that Pre, Sun, 
and Rh are three important climate factors for human 
echinococcosis. The release, survival, and infectivity of 
Echinococcus eggs are sensitive to climatic factors, espe-
cially humidity [24–26]. One study [25] showed that a dry 
environment was inimical for echinococcosis transmis-
sion. A study in western China [9] found that CE preva-
lence was significantly positively correlated with annual 
mean Pre. A significant positive correlation between 
human seropositivity for E. granulosus and E. multilocu-
laris and summer Pre was reported for Ningxia [27].

Geographical landscape factors have been reported to 
be important drivers for the transmission of echinococ-
cosis [11]. Two studies [6, 28] showed that the spatial 
overlap and predation of the definitive host on the inter-
mediate host were related to landscape factors, which 
directly affected the transmission of echinococcosis. Two 
studies [10, 11] found that echinococcosis prevalence was 
positively correlated with altitude, especially in highly 
endemic areas in China, which were concentrated at high 
altitudes. One of these studies [11] showed that AE prev-
alence was positively correlated with alpine meadows and 
negatively correlated with forests in mainland China. CE 
prevalence was significantly positively correlated with 
NDVI in winter in western China [9].

In the present study, the predicted prevalence was 
overestimated. Although there may be many reasons 
for this, the most important one is thought to be the 
efficacy of the national control program for echinococ-
cosis which was initiated by the Chinese government in 
2006 [29]. After the completion of the national program, 
human echinococcosis prevalence had decreased from 
1.08%, in 2004, to 0.28% in 2016 [12, 30]. Compared with 
2006, by 2014 the annual total expenditure for the control 

Fig. 3  The q-values of variables based on the Geodetector analysis. 
T Temperature, Sum summer, Mean mean value, Pre precipitation, 
Rh relative humidity, Win winter, Sun sunshine duration, DEM digital 
elevation model, NDVI normalized difference vegetation index, Spr 
spring, Max maximum, GrassR proportion of grassland to total land 
use area, ForestR proportion of forest to total land use area, CultivatedR 
proportion of cultivated land to total land use area

Table 2  Comparison of model fit

pD Effective number of parameters, DIC deviance information criterion, RMSE 
root-mean-square error, RPD residual predictive deviation

Model fit Model I Model II

D 964.50 507.37

pD 38.84 − 13.60

DIC 1042.17 480.17

RMSE 0.98 0.43

RPD 1.53 3.53
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Fig. 4  Fit and evaluation of model II: a fitted prevalence; b standardized residual

Fig. 5  Nonlinear relationships between key natural factors and human echinococcosis prevalence: a Pre_Sum_Min; b Sun_Sum_Mean; c Rh_Win_
Mean; d DEM_Mean; e NDVI_Spr_Max; f GrassR; g ForestR. For abbreviations, see Fig. 3
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of echinococcosis and specifically that for interventions 
aimed at humans and dogs had increased 15.76- and 
45.65-fold, respectively (Fig.  7) [31]. Health education, 
improvements in sanitation, and interventions targeted 
at humans (ultrasound screening, surgical and albenda-
zole treatment) and dogs (management and deworming) 
were the main measures implemented [29, 32]. The out-
comes show that strengthening preventative and control 
measures is decisive for the mitigation of echinococcosis 
epidemics. Although the Chinese government prioritizes 
the prevention and control of human echinococcosis, the 
current levels of expenditure on these are not sufficient 
for the treatment of new patients and the deworming 
of dogs [31]. Our spatial prediction results are mean-
ingful for the rational allocation of limited resources as 
they indicate specific potential hot spots where medical 
resources should be prioritized.

To the best of our knowledge, this study is the first to 
model and predict the spatial distribution of echinococ-
cosis in western China, where the prevalence of this dis-
ease is the highest in the world. The methodology used 
in the present study improves on that used in previous 
studies in three ways. First, this is the first study to sys-
tematically screen and model natural factors impacting 
human echinococcosis in western China, and a more 

comprehensive range of important factors was consid-
ered than in previous studies. Second, spatial differences 
between each county were taken into consideration in 
the modelling analysis, which significantly improved the 
accuracy of the model fit. Third, we predicted human 
echinococcosis prevalence spatially based on natural 
environmental factors and spatial effects, and hot/cold 
spots of human echinococcosis prevalence were mapped.

However, there were a few inevitable limitations to this 
study, which should be acknowledged. First, the epide-
miological surveys were not conducted at the same time 
in each of the studied counties. Second, some additional 
risk factors for human echinococcosis were not consid-
ered in this study. For example, socioeconomic condi-
tions, demographic characteristics, religious beliefs, 
human behaviour and habits, and host animal infections, 
which can also affect the prevalence of human echino-
coccosis. Some studies [9–12] found that gross domestic 
product, Tibetan population rate, and number of yaks 
and dogs were all key risk factors for the transmission 
and prevalence of echinococcosis in western China. Due 
to data limitations, it was difficult to achieve compre-
hensive spatial predictions based on natural, social and 
other factors in the present study. Although the predicted 
prevalences based on the natural environmental factors 
were overestimates, they do represent a relative risk for 

Fig. 6  Predicted spatial distribution of human echinococcosis at the county level in western China: a predicted prevalence; b predicted hot/cold 
spots
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human echinococcosis epidemics. At the same time, they 
also reflect the importance of implementing measures for 
the control of echinococcosis. Therefore, in our future 
research we will also estimate more comprehensively, at a 
smaller spatial scale, the effects of natural environmental 
factors, socioeconomic conditions and human interven-
tions on echinococcosis prevalence.

Conclusions
We investigated the effects of natural environmental 
factors on human echinococcosis at the county level 
in western China. Hot spots of human echinococcosis 
prevalence were mainly concentrated on the Qinghai-
Tibet Plateau, especially in the western and southeast-
ern parts of Tibet and the border areas of Tibet, Qinghai, 
and Sichuan. Pre_Sum_Min, Rh_Win_Mean, Sun_Sum_
Mean, DEM_Mean, NDVI_Spr_Max, GrassR, and For-
estR were the key natural factors identified from the 
modelling. The results of the modelling showed that the 
spatial effect was crucial, and that humidity, altitude, 
and grassland area ratio have a clearer relationship with 
human echinococcosis epidemics than the other factors 
investigated. The predicted prevalences revealed that 
some natural environmental factors are favourable for the 
transmission of human echinococcosis in western China 
and epidemics of this disease. Almost the entire Qinghai-
Tibet Plateau was a hot spot for human echinococcosis 
prevalence, indicating that more attention needs to be 
paid to echinococcosis there and resources targeted for 
its prevention and control. Although the Chinese govern-
ment prioritizes the prevention and control of human 
echinococcosis, the widespread epidemic of this dis-
ease in China indicates that more medical resources are 
required for its treatment. Therefore, we suggest that 
counties of the Qinghai-Tibet Plateau, Inner Mongolia, 
Yunnan and Sichuan, all of which had hot spots, should 

be prioritized for targeted prevention, control and long-
term monitoring of human echinococcosis. This study 
provides an excellent model for investigating relation-
ships between environmental factors and zoonotic para-
sitic diseases and for predicting their spatial distribution. 
Including socioeconomic and host animal factors in epi-
demiological models to increase the accuracy of their 
predictions will help further develop and improve the 
field of environmental epidemiology.
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