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Abstract 

Background:  Vector-borne diseases are a major burden to public health. Controlling mosquitoes is considered 
the most effective way to prevent vector-borne disease transmission. Mosquito surveillance is a core component of 
integrated vector management, as surveillance programs are often the cornerstone for the development of mos-
quito control operations. Two traps are the most commonly used for the surveillance of adult mosquitoes: Centers 
for Disease Control and Prevention miniature light trap (CDC light trap) and BG-Sentinel trap (BioGents, Regensburg, 
Germany). However, despite the importance of the BG-Sentinel trap in surveillance programs in the United States, 
especially in the Southern states, its effectiveness in consistently and reliably collecting mosquitoes in rural and natu-
ral areas is still unknown. We hypothesized that BG-Sentinel and CDC light traps would be more attractive to specific 
mosquito species present in rural and natural areas. Therefore, our objective was to compare the relative abundance, 
species richness, and community composition of mosquitoes collected in natural and rural areas by BG-Sentinel and 
CDC light traps.

Methods:  Mosquitoes were collected from October 2020 to March 2021 using BG-Sentinel and CDC light traps 
baited with dry ice, totaling 105 trap-nights.

Results:  The BG-Sentinel traps collected 195,115 mosquitoes comprising 23 species from eight genera, and the CDC 
light traps collected 188,594 mosquitoes comprising 23 species from eight genera. The results from the permutational 
multivariate analysis of variance (PERMANOVA) and generalized estimating equation model for repeated measures 
indicate the BG-Sentinel and CDC light traps had similar sampling power.

Conclusion:  Even though BG-Sentinel traps had a slightly better performance, the difference was not statistically 
significant indicating that both traps are suitable to be used in mosquito surveillance in rural and natural areas.
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Background
Vector-borne diseases are a major burden to public 
health. Currently, half of the world’s population is at risk 
of vector-borne pathogen infections, resulting in approx-
imately 1 billion infections every year [1–4]. In 2019, 
approximately 3 million cases of dengue were reported 
in the Americas [5], and vector-borne pathogen trans-
mission is being reported more frequently not only in 
endemic areas [6–9], but also in non-endemic countries 
such as Croatia, France, and Italy [10–12].

The availability of effective drugs and vaccines is lim-
ited to a few pathogens and has reduced effectiveness in 
decreasing the prevalence and incidence of vector-borne 
pathogens [13–16]. In this context, controlling mosqui-
toes is widely accepted as the most effective way to pre-
vent vector-borne pathogen transmission to humans and 
animals [17–19]. However, many mosquito vector species 
are responsible for transmitting different arboviruses and 
other pathogens, and the timely and precise detection 
of mosquito vector species in a given area is key for the 
development of targeted and effective control strategies 
[20].

Mosquito surveillance is a core component of inte-
grated vector management, as surveillance programs 
are often the cornerstone for the development of mos-
quito control operations [18]. Most mosquito con-
trol districts in the United States operate surveillance 
systems to inform their control operations and guide 
control efforts including source reduction, chemi-
cal interventions, and environmental management 
[21–23]. However, consistently, accurately, and reli-
ably assessing the presence and relative abundance 
of mosquito species is not a simple task often relying 
upon multiple trap types and approaches [23–26]. Fur-
thermore, invasive mosquito species are an increas-
ing threat to public health, and vector species such as 
Aedes albopictus and Culex coronator have expanded 
their range and abundance considerably in the last 
decade [27–32]. A reliable mosquito surveillance sys-
tem should be able to early detect invasive species 
allowing stakeholders to implement control efforts to 
curb their proliferation and avoid their establishment.

Therefore, a surveillance system should be able to 
inform stakeholders regarding the relative abundance, 
species richness, and community composition of mos-
quitoes. However, different traps have different levels 
of attractiveness for different mosquito species, and 
choosing the right trap for collecting adult mosquitoes 
in different areas is key to achieving reliable and action-
able results. In this context, two traps are the most 
commonly used for the surveillance of adult mosqui-
toes, Centers for Disease Control and Prevention min-
iature light trap (CDC light trap) and BG-Sentinel trap 

(BioGents, Regensburg, Germany). BG-Sentinel traps 
are the current gold standard for collecting Aedes ste-
gomyia mosquitoes [33]. On the other hand, CDC light 
traps are considered more of a generalist trap that will 
attract a wider range of mosquito species, including 
Anopheles and Culex [23, 34, 35].

However, despite the importance of the BG-Sentinel 
trap in surveillance programs in the United States, 
especially in the Southern states, its effectiveness in 
consistently and reliably collecting mosquitoes in rural 
and natural areas in the United States is yet to be deter-
mined. We hypothesized that BG-Sentinel and CDC 
light traps have different levels of attractiveness and 
will be more attractive to specific mosquito species 
present in rural and natural areas leading to different 
outcomes of the community composition assessment. 
Therefore, our objective was to compare the relative 
abundance, species richness, and community composi-
tion of mosquitoes collected in natural and rural areas 
by BG-Sentinel and CDC light traps.

Methods
Collection of mosquitoes
Mosquitoes were collected from October 2020 to March 
2021 using battery-powered BG-Sentinel 2 and CDC light 
traps, totaling 105 trap-nights. Firstly, we set three CDC 
and three BG-Sentinel traps at no more than 50 m from 
each other once a week for 24 h for 7 weeks in a rural area 
in the southern region of Miami-Dade County, Florida 
known for having great richness and abundance of mos-
quitoes (25°24′19.9″N; 80°30′03.9″W). Secondly, to test 
if the mosquito species richness and relative abundance 
after 7  weeks of collections would be similar in other 
areas of the Miami-Dade County, we selected 11 differ-
ent collection sites in rural and natural areas, in which 
one BG-Sentinel and one CDC light trap were deployed 
together for 24 h at no more than 50 m from each other 
(Fig.  1). An insulated cooler with approximately 2  kg of 
dry ice was placed next to the traps as bait [36]. The traps 
were placed under similar environmental conditions hid-
den in the vegetation in shaded areas to protect the traps 
from the elements and enhance mosquito collections. 
CDC traps were set in tree branches at a height of approx-
imately 1  m above ground level and BG-Sentinel traps 
were set directly on the ground. The collected mosquitoes 
were transported to the Miami-Dade County Mosquito 
Control Laboratory and subsequently morphologically 
identified to species using taxonomic keys [37].

Statistical analyses
Biodiversity analyses were carried out for each trap type 
based on the Shannon, dominance, and equitability indi-
ces. The Shannon index takes into consideration species 
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abundance and richness, therefore, less diversity results 
in lower values, and more diversity results in higher val-
ues [38]. Dominance (1-Simpson) index estimates the 
association between species richness and abundance, 
values close to 1 indicate the presence of dominant spe-
cies whereas values closer to 0 imply a more even dis-
tribution between species richness and abundance [39]. 
The equitability index is calculated using the Shannon 
diversity index divided by the logarithm of the number 
of species [40]. This measures the evenness with which 
specimens are divided among the species in a given mos-
quito community. Analyses were carried out with 10,000 
randomizations where each randomization is done with-
out replacement using a 95% confidence interval (CI). To 
compare the mosquito species composition collected by 
CDC light traps and BG-Sentinel traps, we performed a 
permutational multivariate analysis of variance (PER-
MANOVA) with 9999 permutations based on Bray–Cur-
tis distances [41, 42]. The data were organized into two 
groups (Group 1 = CDC light traps; and Group 2 = BG-
Sentinel traps) to compare the mosquito species compo-
sition collected by the two different traps. Then, we used 
the SIMPER (similarity percentage) method to assess the 
contribution of each mosquito species to the observed 
differences between trap types [43]. Analyses were done 
using PAST v3.2 [44].

We performed a generalized estimating equation (GEE) 
model for repeated measures to assess differences in the 
species richness (number of species) and relative abun-
dance of mosquitoes collected by BG-Sentinel and CDC 
light traps [45]. Species richness and relative abundance 
were used as dependent variables, trap type (BG-Senti-
nel and CDC light trap) as units, and collection date as 
repeated measures (longitudinal model). The model was 
done in SPSS v.28 software.

Results
A total of 26 species from nine genera were collected by 
both BG-Sentinel and CDC light traps, totaling 383,709 
specimens. The BG-Sentinel traps collected 195,115 mos-
quitoes comprising 23 species from eight genera. The 
CDC light traps collected 188,594 mosquitoes comprising 
23 species from eight genera. Aedes triseriatus, Coquillet-
tidia perturbans, and Culex quinquefasciatus were only 
collected by the BG-Sentinel traps, whereas Aedeomyia 
squamipennis, Aedes condolescens, and Wyeomyia mitch-
elli were only collected by the CDC light traps. The BG-
Sentinel traps collected 6521 more mosquitoes than the 
CDC light traps. Culex nigripalpus was the most abun-
dant species collected by both the BG-Sentinel (131,661) 
and CDC light traps (131,237), followed by Culex errati-
cus (BG-Sentinel = 16,127; CDC light trap = 13,442) and 

Fig. 1  Map showing the location of the collection sites in Miami-Dade, Florida. The first set of 7 weeks of collection sites and trap locations are 
displayed in green, and the second set of experiments showing the 11 different collection sites in rural and natural areas and trap locations are 
displayed in red. The figure was produced using ArcGIS 10.2 (Esri, Redlands, CA) using freely available layers from the Miami-Dade County’s Open 
Data Hub—https://​gis-​mdc.​opend​ata.​arcgis.​com/

https://gis-mdc.opendata.arcgis.com/
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Anopheles crucians (BG-Sentinel = 15,515; CDC light 
trap = 13,878). Aedes triseriatus and Ae. condolescens were 
the least common species, being collected only once by a 
BG-Sentinel and a CDC light trap, respectively. Manso-
nia dyari was collected in larger numbers by BG-Sentinel 
traps (BG-Sentinel = 16,823; CDC light trap = 7984), on 
the other hand, Culex panocossa was collected in larger 
numbers by CDC light traps (BG-Sentinel = 2148; CDC 
light trap = 8387) (Table 1).

The diversity indices yielded similar values for the mos-
quito community identified by both BG-Sentinel and CDC 
light traps. The mosquito community estimated by the BG-
Sentinel traps yielded a dominance index of 0.47, whereas 
the CDC light traps yielded a dominance index of 0.5. 
The Shannon and equitability indices also yielded similar 
results for both traps 1.2 and 0.38, respectively (Table 2).

The PERMANOVA did not yield significant results 
for the comparison between the mosquito community 
comprising the mosquitoes collected by the BG-Sentinel 
and CDC light traps (F = 1.54; P = 0.11). The subsequent 

SIMPER analysis of the mosquito community showed 
that Cx. nigripalpus, An. crucians, and Cx. erraticus con-
tributed the most to the observed differences (Table 3).

The results of the GEE models for repeated measures 
for species richness and relative abundance of mosquitoes 
collected by BG-Sentinel and CDC light traps showed no 
statistically significant differences between traps (Table 4). 
Even though the comparison of the species richness and 
relative abundance of the mosquitoes collected by the BG-
Sentinel and CDC light traps were not significantly dif-
ferent, the BG-Sentinel traps collected more species per 
trap-night when compared to CDC light traps. Both the 
BG-Sentinel and CDC light traps had similar performances 
estimating the relative abundance of mosquitoes (Fig. 2).

Discussion
BG-Sentinel and CDC light traps have been extensively 
used to successfully assess the relative abundance, spe-
cies richness, and community composition of vector 

Table 1  Total number of mosquitoes collected by BG-Sentinel and CDC light traps in Miami-Dade County, Florida

Species BG-Sentinel trap CDC light trap Grand total

Males Females Total Males Females Total

Aedeomyia squamipennis 3 39 42 42

Aedes albopictus 17 17 8 3 11 28

Aedes atlanticus 10 5174 5184 2978 2978 8162

Aedes condolescens 0 1 1 1

Aedes infirmatus 27 27 55 55 82

Aedes scapularis 5 5 36 36 41

Aedes taeniorhynchus 55 55 101 101 156

Aedes tortilis 177 177 346 346 523

Aedes triseriatus 1 1 1

Anopheles crucians 192 15,323 15,515 32 13,846 13,878 29,393

Anopheles quadrimaculatus 2 3089 3091 3 4299 4302 7393

Anopheles walkeri 51 51 97 97 148

Coquillettidia perturbans 7 7 7

Culex coronator 124 124 64 64 188

Culex erraticus 27 16,100 16,127 77 13,365 13,442 29,569

Culex interrogator 206 206 379 379 585

Culex nigripalpus 62 131,599 131,661 176 131,061 131,237 262,898

Culex panocossa 10 2138 2148 117 8270 8387 10,535

Culex quinquefasciatus 5 5 5

Mansonia dyari 16,823 16,823 7984 7984 24,807

Mansonia titillans 3735 3735 5157 5157 8892

Psorophora columbiae 108 108 32 32 140

Uranotaenia lowii 2 24 26 8 43 51 77

Uranotaenia sapphirina 1 20 21 2 8 10 31

Wyeomyia mitchellii 0 3 3 3

Wyeomyia vanduzeei 1 1 1 1 2
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mosquitoes [23, 46, 47], and are essential for mosquito 
control operations. Our results show that the BG-Sen-
tinel and the CDC light traps performed equally in 
assessing the species richness and relative abundance of 
mosquitoes. The number of mosquitoes collected by the 
BG-Sentinel and the CDC light traps varied less than 4%. 
Both the BG-Sentinel and the CDC light traps collected 
23 species from eight genera from a total of 26 species 
from nine genera detected in total. The diversity indi-
ces yielded virtually identical results and the GEE model 
for repeated measures showed no significant differences 
between the performance of the BG-Sentinel and CDC 
light traps. However, even though the difference was not 
statistically significant, the BG-Sentinel traps had slightly 
superior performance; they collected more mosqui-
toes in total and yielded higher species richness in more 
trap-nights.

Most species collected by the BG-Sentinel and the 
CDC light traps during this study were fairly evenly dis-
tributed between traps. However, Ma. dyari and Cx. 
panocossa were the exceptions. Twice as many Ma. dyari 
were collected by BG-Sentinel traps, and Cx. panocossa 
was collected approximately 4 times more by CDC light 
traps. Furthermore, BG-Sentinel traps failed to collect 
Ad. squamipennis, and CDC light traps failed to collect 
Cq. perturbans. These results indicate that even though 
the performance in collecting mosquitoes of the BG-Sen-
tinel and the CDC light traps were not statistically signifi-
cantly different, some species were more attracted by one 
trap instead of the other.

The results of the PERMANOVA showed no significant 
differences in the mosquito community collected by the 
BG-Sentinel and the CDC light traps, in agreement with 
the GEE model for repeated measures and the diversity 
indices. Furthermore, the subsequent SIMPER analysis 
showed that the most abundant mosquitoes contributed 
the most to the observed differences indicating that the 
performance of the traps in collecting mosquitoes was 
similar. These results indicate that  both trap types had 
similar performances in collecting rare species or failing 
to collect specific species.

Studies done in Europe and China had similar results 
to the ones obtained in this study, in which BG-Sentinel 
traps performed equally or were slightly superior to CDC 

light traps [48, 49]. However, in another study done in 
South Africa CDC traps had a superior performance in 
comparison to BG-Sentinel traps [50]. Local environmen-
tal and climatic conditions have a major influence on the 
development and proliferation of mosquitoes and greatly 
affect their behavior and ecology [51–54]. Therefore, 
locally assessing the effectiveness of the traps used to 
investigate the mosquito community composition, spe-
cies richness and relative abundance in rural and natural 
areas is essential to improve the reliability and usefulness 
of mosquito surveillance and early warning systems.

Our results showed the presence of mosquito vector 
species in the rural and natural areas surveyed in this 
study. Among them two primary vectors of pathogens 
were collected in large numbers, Anopheles quadri-
maculatus (primary vector of malaria in the Americas) 
and Cx. nigripalpus (primary vector of West Nile virus) 
[53, 55]. Mosquito surveillance in rural and natural areas 

Table 2  Diversity indices values for the mosquito community 
identified by both BG-Sentinel and CDC light traps

Confidence interval (CI) = 95%

Indices BG-Sentinel traps CDC light traps

Dominance 0.47 (CI: 0.4749–0.4799) 0.5 (CI: 0.4973–.5027)

Shannon 1.20 (CI: 1.198–1.209) 1.20 (CI: 1.195–1.207)

Equitability 0.38 (CI: 0.3821–0.3857) 0.38 (CI: 0.3811–0.3891)

Table 3  SIMPER (similarity percentage) analysis of which species 
contributed the most to the observed differences comparing 
BG-sentinel and CDC light traps

Species Average 
dissimilarity

Contribution (%) Cumulative 
contribution 
(%)

Culex nigripalpus 44.36 54.98 54.98

Anopheles crucians 12.4 15.37 70.36

Culex erraticus 7.54 9.35 79.71

Mansonia dyari 6.18 7.66 87.38

Anopheles quadrimacu-
latus

3.34 4.15 91.53

Culex panocossa 2.40 2.97 94.51

Mansonia titillans 1.86 2.30 96.81

Aedes atlanticus 1.68 2.08 98.9

Psorophora columbiae 0.16 0.20 99.11

Culex interrogator 0.15 0.19 99.3

Aedes tortilis 0.15 0.19 99.49

Aedes taeniorhynchus 0.14 0.18 99.67

Uranotaenia lowii 0.06 0.07 99.75

Anopheles walkeri 0.05 0.06 99.81

Culex coronator 0.03 0.04 99.86

Aedes infirmatus 0.03 0.04 99.9

Uranotaenia sapphirina 0.03 0.03 99.94

Aedes scapularis 0.01 0.01 99.96

Aedeomyia squamipennis 0.01 0.01 99.97

Wyeomyia mitchellii 0.008 0.01 99.98

Aedes albopictus 0.008 0.01 99.99

Coquillettidia perturbans 0.002 0.002 100

Wyeomyia vanduzeei 0.001 0.001 100

Culex quinquefasciatus 0.0009 0.001 100

Aedes triseriatus 0.0004 0.0005 100

Aedes condolescens 0.0002 0.0003 100
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bordering urban areas is key to avoiding vector-borne 
pathogen transmission to human and animal popula-
tions [56–58]. Anthropogenic alterations in the envi-
ronment such as deforestation and defaunation often 
lead to habitat fragmentation [59]. Such human-made 
environmental alterations have a substantial impact on 
the mosquito community composition, relative abun-
dance, and species richness. The behavior and ecology 
of mosquito vector species that are anthropophilic but 
non-synanthropic are greatly affected by anthropogenic 
alterations in the environment [60–63]. As a conse-
quence, these mosquito vector species will invade urban 
areas seeking resources and will increase their contact 
with humans leading to a higher risk of pathogen spillo-
ver to human populations [64–66]. Therefore, the cor-
rect identification of the relative abundance and species 
richness in rural and natural areas bordering urban areas 
is key to determining the risk of vector-borne pathogens 
to humans [67–69].

Reliable and effective mosquito surveillance systems 
are key for the early detection of invasive species and to 
help to prevent their establishment as well as to inform 
mosquito control operations and guide control efforts 
[70–72]. Even though BG-Sentinel and the CDC light 
traps have had similar performances and were able to 

assess the community composition of mosquitoes in 
rural and natural areas, other sampling methods should 
also be considered to improve the effectiveness of sur-
veillance systems. Immature mosquito surveillance 
systems should also be considered as the information 
obtained from such surveillance systems is complemen-
tary to adult mosquito surveillance systems, provid-
ing important information on what aquatic habitats are 
being used by each species and where the highest rela-
tive abundance levels of immature mosquitoes are con-
centrated [24]. Gravid traps are also an important tool 
since they use a different approach than traps that mimic 
a host (e.g., BG-Sentinel and the CDC light traps), and 
thus potentially complementing the sampling power of 
the surveillance system [73–75].

Mosquito collections were done between October 2020 
and March 2021, and therefore, we were unable to assess 
all weather and season variations that would have pro-
vided further insight into the population dynamics and 
the mosquito community composition. CDC light traps 
and BG-Sentinel traps were not rotated in the first set 
of experiments due to the need to tie CDC light traps to 
tree branches. For this reason, the traps were set in the 
same environment at no more than 50 m from each other 
to avoid biases and inconsistencies in the collections.

Table 4  Results of the generalized estimating equation models for repeated measures for species richness and relative abundance of 
mosquitoes collected by BG-Sentinel and CDC light traps

Dependent variables Parameters Parameter estimates Tests of model effects

Standard error 95% Wald CI Wald Chi-square df P-value Wald Chi-square df P-value

Species richness Intercept 1.30 5.06 10.17 34.22 1  > 0.001 100.40 1  > 0.001
Trap type 1.49 − 3.22 2.63 0.03 1 0.84 0.04 1 0.840

Relative abundance Intercept 1616.40 844.55 7180.72 6.16 1 0.013 14.11 1  > 0.001
Trap type 1995.68 − 4439.89 3383.01 0.07 1 0.79 0.07 1 0.790

Fig. 2  Comparison of the effectiveness of BG-Sentinel and CDC light traps in assessing species richness and relative abundance of mosquitoes in 
rural and natural areas of Miami-Dade, Florida



Page 7 of 9Wilke et al. Parasites & Vectors           (2022) 15:51 	

Conclusion
The results of the BG-Sentinel and CDC light traps in 
assessing the relative abundance and species richness of 
mosquitoes in rural and natural areas of Miami-Dade 
indicate that both traps performed equally, yielding 
similar results in all analyses. Therefore, we were able 
to reject the hypothesis that BG-Sentinel and CDC light 
traps would be more attractive to specific mosquito 
species present in rural and natural areas. Even though 
BG-Sentinel traps had a slightly better performance, the 
difference was not statistically significant indicating that 
both traps are suitable to be used in mosquito surveil-
lance in rural and natural areas.
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