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Abstract 

This review focuses on the most reliable and up-to-date methods for diagnosing trypanosomoses, a group of diseases 
of wild and domestic mammals, caused by trypanosomes, parasitic zooflagellate protozoans mainly transmitted by 
insects. In Africa, the Americas and Asia, these diseases, which in some cases affect humans, result in significant illness 
in animals and cause major economic losses in livestock. A number of pathogens are described in this review, includ-
ing several Salivarian trypanosomes, such as Trypanosoma brucei sspp. (among which are the agents of sleeping sick-
ness, the human African trypanosomiasis [HAT]), Trypanosoma congolense and Trypanosoma vivax (causing “Nagana” 
or animal African trypanosomosis [AAT]), Trypanosoma evansi (“Surra”) and Trypanosoma equiperdum (“Dourine”), and 
Trypanosoma cruzi, a Stercorarian trypanosome, etiological agent of the American trypanosomiasis (Chagas disease). 
Diagnostic methods for detecting zoonotic trypanosomes causing Chagas disease and HAT in animals, as well as a 
diagnostic method for detecting animal trypanosomes in humans (the so-called “atypical human infections by animal 
trypanosomes” [a-HT]), including T. evansi and Trypanosoma lewisi (a rat parasite), are also reviewed. Our goal is to pre-
sent an integrated view of the various diagnostic methods and techniques, including those for: (i) parasite detection; 
(ii) DNA detection; and (iii) antibody detection. The discussion covers various other factors that need to be considered, 
such as the sensitivity and specificity of the various diagnostic methods, critical cross-reactions that may be expected 
among Trypanosomatidae, additional complementary information, such as clinical observations and epizootiological 
context, scale of study and logistic and cost constraints. The suitability of examining multiple specimens and samples 
using several techniques is discussed, as well as risks to technicians, in the context of specific geographical regions 
and settings. This overview also addresses the challenge of diagnosing mixed infections with different Trypanosoma 
species and/or kinetoplastid parasites. Improving and strengthening procedures for diagnosing animal trypanosomo-
ses throughout the world will result in a better control of infections and will significantly impact on “One Health,” by 
advancing and preserving animal, human and environmental health.
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Background
The family Trypanosomatidae (phylum Protozoa, class 
Kinetoplastida) comprises 14 monoxenous genera infect-
ing insects (e.g. Leptomonas, Herpetomonas) and five 
dixenous genera having invertebrates as vectors (one 
genus infecting plants [Phytomonas] and the other four 
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infecting animals and humans). Among the four genera 
infecting animals and humans, two are anecdotic, i.e. 
Endotrypanum found in sloths and Porcisia found in por-
cupine; the other two genera, namely Trypanosoma and 
Leishmania, contain pathogenic parasites of medical and 
veterinary importance. Both Trypanosoma and Leishma-
nia are widely distributed over the world, and they affect 
humans, animals or both, as anthroponotic or zoonotic 
agents [1]. In humans, leishmaniasis has a high medi-
cal impact, with approximately 70,000 deaths recorded 
annually and an estimated 350 million individuals at risk 
[2]. In animals, leishmanioses seriously affect dogs, while 
in cattle and horses, the impact is limited [3, 4]. Trypa-
nosomoses are significant diseases of domestic and wild 
mammals, affecting millions of livestock in Africa, the 
Americas and Asia [5], as well as of humans in Africa and 
Latin America [6–10].

Among the 125 Trypanosoma species found in mam-
mals, 10% are considered to be pathogenic to humans 
and/or other mammals [11]. These pathogenic trypano-
somes mainly inhabit the host’s blood and lymph, but 
do occur sometimes in the cerebrospinal fluid (CSF) and 
other host tissues, and some of them have intracellular 
stages. Trypanosomes are mainly transmitted by insects, 
but alternative means of transmission include mammals 
as vectors (e.g. vampire bats for Trypanosoma evansi and 
marsupials for Trypanosoma cruzi) and transcutaneous 
and transmembrane routes, such as peroral, venereal, 
intraplacental, iatrogenic, routes, among others, which 
allow occasional horizontal and vertical transmission.

The major pathogenic trypanosomes, approximately 10 
species, subspecies or types, originate from Africa, where 
they are mainly cyclically transmitted by the bite of tsetse 
flies (as Salivarian trypanosomes) [11]; two subspecies 
are zoonotic, while the others are “animal parasites,” 
infecting wild and domestic mammals, including live-
stock, despite scarce occurrences in humans [12]. One 
other important pathogenic trypanosome of mammals 
occurs in the Americas, i.e. T. cruzi (subgenus Schizot-
rypanum) where it is responsible for a neglected tropical 
disease (NTD) named “Chagas disease” that extends into 
South and Central America. As a Stercorarian trypano-
some, T. cruzi is biologically transmitted through the 
feces of triatomine bugs, and host contamination occurs 
by transmembrane or transcutaneous penetration. Tryp-
anosoma cruzi is not only a human pathogen but also a 
zoonotic parasite, affecting a huge range of domestic 
and wild mammals, including livestock, as reported in a 
recent review [13]. In this review, we focus on the diag-
nosis of trypanosomes in animals; however, in a “One 
Health concept” [14], this focus includes human patho-
gens, providing that animals carry and/or are affected by 
these pathogens, and/or play a role in the epidemiology 

of the human diseases (reservoir or screen). We also 
cover the so-called “atypical human infections by animal 
trypanosomes” [12].

Definitions and geographical distributions
African trypanosomoses
Animal trypanosomoses of African origin (ATAO) are 
known under several disease names that are associ-
ated with one or several Trypanosoma species involved. 
“Nagana” is a disease complex caused by one or several 
Salivarian trypanosomes belonging to subgenera Nan-
nomonas (Trypanosoma congolense, T. simiae and T. god-
freyi) Duttonella (Trypanosoma  vivax and T. uniforme; 
the occurrence of the latter needs to be confirmed) and 
Trypanozoon (Trypanosoma  brucei brucei, T. brucei 
gambiense and T. brucei rhodesiense) “Surra” is a disease 
caused by T. evansi, and “Dourine” is caused by Trypano-
soma equiperdum (sometimes referred as T. brucei evansi 
and T. brucei equiperdum, due to their phylogenetic rela-
tions) [11, 15–19].

Apart from the last two species that will be discussed 
below, Trypanosoma spp. responsible for Nagana are 
mainly cyclically transmitted by flies of the genus Gloss-
ina (tsetse flies). Their geographical distribution is deter-
mined by the geographical distribution of the tsetse fly, 
which is restricted to specific areas of Africa (Fig.  1). 
Tsetse flies have been reported to occur in an area esti-
mated to be 10  million km2 in size, in 37 countries, in 
humid and sub-humid sub-Saharan part of Africa (from 
latitude 10° N to 20°–30° S and in some limited areas of 
the Arabian Peninsula [5, 20, 21]. Nagana affects both 
wild and domestic mammals, but the impact of infec-
tion is the highest in cattle, with about 3 million livestock 
dying annually despite the administration of approxi-
mately 35 million doses of trypanocidal drugs. The eco-
nomic losses in cattle production is estimated to be about 
US$ 1.0–1.2 billion [22]. Although the most pathogenic 
agent of Nagana for livestock is T. congolense type Savan-
nah [23], T. vivax is the most prevalent. To a lesser extent 
and with a somehow enigmatic impact, T. brucei brucei 
also contributes to the disease complex. Moreover, the 
human pathogens T. b. gambiense and T. b. rhodesiense 
have been found in livestock [24–29], but their patho-
genic effects and impact are not yet thoroughly clari-
fied. However, experimental infections of cattle with T. b. 
rhodesiense were found to lead to a fatal central nervous 
syndrome in half of the cases tested [30]. In addition to 
cattle, other species, such as goats, sheep, pigs and dogs, 
may be affected. Horses and camels are very susceptible 
to Nagana; indeed, in the past, tsetse flies used to consti-
tute a natural barrier preventing the introduction of cam-
els and horses into the southern Sahel regions of Africa 
[31].
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Some of these Trypanosoma spp. may also be mechani-
cally transmitted by biting flies, such as tabanids and 
Stomoxyine flies [37, 38], especially T. vivax, as first 
suspected [39] and later confirmed in semi-liberty con-
ditions [40], and also T. evansi, which is discussed in sub-
sequent sections. Mechanical transmission has allowed 
T. vivax to spread in some areas of Africa that are free 
of or were cleared of tsetse (e.g. in Ethiopia [41]). Simi-
larly, during the eighteenth century, T. vivax invaded 
South and Central America [6], and more recently it was 
reported in Iran [42]. Geographical distribution of T. 
vivax is presented in Fig. 2.

The other members of the ATAO are the two Trypano-
zoon derived from the T. brucei lineage, but these are not 
transmitted cyclically. Trypanosoma evansi, the causative 
agent of Surra, is mechanically transmitted by tabanids 
and Stomoxyine flies and found in tropical areas, but also 
ranges up to Mongolia. Surra significantly affects camels 
and horses in Africa and Latin America, but also cattle 
and buffaloes in Asia [43]. Surra is the most widely dis-
tributed animal trypanosomosis, ranging from South 
to Central America, the upper half of Africa, Middle 

East and Asia (Fig.  3). Trypanosoma equiperdum is the 
causative agent of Dourine, a venereal disease transmit-
ted worldwide among equids [44]. In the last decade it 
was described in Italy [45], Mongolia [46], Ethiopia [47] 
and Iran [48], but its geographical distribution is mostly 
unknown. These two species may be found in the same 
hosts and in the same areas as the agents of Nagana, 
which interfers with species-specific diagnosis. Together 
with T. vivax, these trypanosomes are responsible for 
the “non-tsetse-transmitted animal trypanosomoses” 
(NTTAT) [49].

Clinical signs of ATAO may include intermittent fever, 
anemia, edema, abortion, decreased fertility, emaciation 
and death; genital and neurological symptoms are also 
possible. However, none of these symptoms are pathog-
nomonic. Clinically, ATAO can be confused with other 
parasitic diseases (i.e. babesiosis, anaplasmosis, among 
others), rabies, plant intoxications and T. cruzi infection 
in Latin America. Therefore, case identification must 
rely on diagnostic techniques that: (i) confirm the pres-
ence of trypanosomes, with by microscopic visualization 
or by obtaining evidence of trypanosome DNA, or (ii) 

Fig. 1  Geographical distribution of the “Nagana” disease complex (Trypanosoma congolense, T. vivax and T. brucei) [32–36]
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demonstrate a host—parasite contact through antibody 
detection techniques [51]. Differential diagnosis is based 
on observations and evolution of clinical signs, epide-
miological context and, most critically, by laboratory test 
results.

Human African trypanosomiasis (HAT), or sleeping 
sickness, is caused by two  T. brucei  subspecies trans-
mitted by tsetse flies, with a substantial socio-economic 
impact in humans, although it is still classified as a 
NTD [9, 52]. If not treated, sleeping sickness is usually 
a fatal disease. Trypanosoma b. gambiense is respon-
sible for a primarily anthroponotic disease form that 
accounts for 98% of HAT cases [53, 54]. It results in a 
chronic disease that can last several years, and occurs 
in West and Central Africa. Some animals have been 
reported as potential reservoirs [26, 29], but their exact 
role in the epidemiology of the human disease is not 
clear [28, 55]. Based on molecular characterization, a 
variant of T. b. gambiense has been described recently, 
leading to the consideration of variants Tbg1 and Tbg2, 
and possibly more, within T. b. gambiense [56]. In East 

Africa, where the zoonotic T. b. rhodesiense is respon-
sible for an acute disease form in humans, representing 
2% of HAT cases [53, 54], the parasite is also found in a 
wide range of wild and domestic animals, including cat-
tle, goats and pigs, which act as reservoirs [27, 57–59]. 
About 70 million people worldwide are at risk of sleep-
ing sickness [53]. In addition to the socio-economic 
impact on exposed populations, the presence of these 
two subspecies creates a risk of infection for farmers, 
veterinarians and slaughter-house workers as well as 
laboratory technicians, when handling meat, carcasses 
and blood. Consequently, in these areas of Africa, 
animal samples should be handled with appropriate 
biosafety and containment procedures. The existence of 
these two forms of HAT also creates a need for subspe-
cies-specific diagnosis methods in order to evaluate the 
human risk and to investigate, and possibly control, the 
animal reservoirs. Under the expanding “One Health” 
concept, identifying these zoonotic agents in livestock 
(and wild fauna) may prove useful to control HAT [60, 
61].

Fig. 2  Geographical distribution of Trypanosoma vivax [6, 32–34, 36, 42]
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American trypanosomosis
Trypanosoma cruzi, the agent of the American human 
trypanosomiasis, or Chagas disease, is mainly trans-
mitted via feces of triatomine bugs, affecting 6–8 mil-
lion people, mainly in Latin America, most of whom are 
chronic carriers [62], while 65–100 million people are 
at risk [63]. Other ways of transmission are of variable 
importance, such as vertical (mother to fetus and mother 
to child) and iatrogenic transmission, especially through 
blood transfusion and organ transplantation [64]. Detect-
ing the potential presence of T. cruzi in blood collected 
from Latin American people who lived previously in 
endemic areas is a serious concern, notably in Europe 
and the USA [10]. Acute human cases were reported 
recently to be linked to peroral infection via fruit juices 
contaminated by the bug’s feces. This route of infection, 
possibly under-detected in the past, now appears to be 
a significant mode of transmission [65–68]. Although T. 
cruzi is considered to be a human pathogen, it has a large 
wild animal reservoir that includes marsupials, armadil-
los, raccoons, squirrels, wild pigs, rats, among others, as 
well as a domestic reservoir, including dogs, cats, pigs, 

sheep, goats, cattle and horses [69]. The presence of T. 
cruzi may be a source of interference in animals being 
investigated for trypanosomoses, as already observed for 
T. evansi/T. cruzi infections in horses in Argentina [70]. 
Additionally, the possible presence of a human pathogen 
in animal samples constitutes a potential risk for human 
health at the farm and laboratory levels. Trypanosoma 
cruzi is a neglected but true pathogen in animals, and 
even though the production cycle of livestock is mostly 
too short to allow clear clinical expression of the disease 
(especially for short-cycle species such as pigs [71]) it 
may undergo a complete evolution and cause deleterious 
clinical signs in other animals; for example, myocarditis 
has been observed in dogs and nervous invasion with 
ataxia in horses [72–74]. The geographical distribution of 
Chagas disease in humans extends from mid-Argentina 
and Chile to Mexico; however, the geographical distri-
bution of T. cruzi extends more northwards to include 
most of the southern USA and a broad area extending 
from northern California to northern Pennsylvania [75] 
(Fig. 4). Consequently, in these areas, special care should 
be taken when handling animal samples; laboratory work 

Fig. 3  Geographical distribution of Trypanosoma evansi (“Surra”) [6, 33, 43, 50]
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should be performed with appropriate biosafety and con-
tainment procedures, especially when horse, cattle, pig, 
dog or wild fauna samples are being handled as these may 
be infected with T. cruzi [69].

Atypical human infections by animal trypanosomes
Very rare human cases caused by animal Trypanosoma 
species, including T. vivax, T. congolense, T. b. brucei, T. 
evansi and T. lewisi or T. lewisi-like, have been reported; 
these are referred to as as “atypical human infections by 
animal trypanosomes” (a-HT) [12, 77]. Among these, 
a growing number of human cases have been reported, 
particularly in Asia due to T. evansi, and T. lewisi (subge-
nus Herpetosoma). Trypanosoma lewisi is a cosmopolitan 
parasite of rats which has low pathogenicity in its origi-
nal host [12]. Diagnostic methods for detecting T. lewisi 
in rats are thus needed for risk analysis and, conversely, 
diagnosis of this species may also be required in humans. 
Several human infections by T. congolense were recently 
exposed by PCR examination in a survey in Maro, south-
ern Chad [78], suggesting that human infections with 
T. congolense might be more frequent than previously 

thought. In any case, these surprising results certainly 
need confirmation.

Distribution of pathogenic trypanosomes
In addition to vector control, in the absence of protec-
tive vaccines or efficient prophylactic strategy, control of 
the diseases mentioned above strongly relies on detect-
ing and treating positive cases. Diagnostic results not 
only support treatment decisions, but they are the basis 
for epidemiological studies, monitoring and evaluation of 
the efficiency of disease control measures. Furthermore, 
in the field of animal husbandry, diagnosis is also a tool 
used to implement health policy, including slaughter-
hous policy, and to define the health status of animals 
prior to international movements. Finally, knowledge of 
those Trypanosoma species that are potentially present 
in the investigated area is necessary to consider interfer-
ence in diagnosis and to prevent the risk of infection to 
humans handling these samples. To support such aware-
ness, a tentative world distribution of pathogenic animal 
trypanosomes is represented in Fig.  5, mostly based on 

Fig. 4  Geographical distribution of Trypanosoma cruzi [6, 69, 76]
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publications, including geographical reviews [6, 34–36, 
43, 50].

Review and characterization of available diagnosis 
techniques
Clinical signs of animal trypanosomoses are not suffi-
ciently specific to support a clinical diagnosis and, there-
fore, laboratory tests are required to confirm clinical 
suspicions. As a consequence, case confirmations and 
epidemiological studies can only be carried out using lab-
oratory facilities.

The course of a Salivarian trypanosome infection can 
vary from acute to chronic, but also be asymptomatic, 
depending on the intrinsic pathogenicity of the parasite 
and susceptibility, immune competence and health his-
tory of the host. One of the characteristics of pathogenic 
Salivarian trypanosome infections is a highly fluctuat-
ing parasitemia, which reflects the affinity of the parasite 
to tissues, and the control of the parasite population by 
the host immune system, which the parasite cyclically 
escapes by developing a population with new variable 

surface glycoprotein (VSG), the generation of which is 
referred to as “variable antigen type” (VAT). Conse-
quently, when a VAT is recognized by the host immune 
system, the trypanosome population exhibiting this VAT 
is destroyed by the immune system and the parasitemia 
decreases drastically to undetectable levels for some time; 
when a new VAT population multiplies, parasitemia once 
again increases. This cycle is the reason why parasite con-
centrations in the host blood are highly variable from one 
day to another and sometimes even nil, or undetectable. 
As a general rule, parasitemia is high in early infections, 
lower and less frequent in chronic infections and nil or 
erratic in the case of subclinical evolution of the disease. 
Therefore, diagnosis efficacy can be seriously affected 
when performed at times of low parasitemia levels.

Numerous diagnostic tests are available to detect 
trypanosomes or diagnose trypanosomoses [79]. Cur-
rent diagnostic tests vary in their sensitivity and speci-
ficity, the ease with which they can be implemented and 
their cost [80]. The choice of one or several particular 
tests is guided by epidemiologically-adapted diagnostic 

Fig. 5  Geographical distribution of pathogenic mammal trypanosomes [6, 33–36, 42, 43, 50, 69, 76]



Page 8 of 24Desquesnes et al. Parasites & Vectors           (2022) 15:64 

requirements, availability of equipment and expertise and 
economic principles. These choices will  be discussed in 
another article in this journal  (“Proper use and perspec-
tive on diagnosis methods for animal trypanosomoses”). 
In the present review we describe the characteristics of 
the methods currently available for diagnosing animal 
trypanosomes. Apart from antigen detection, which 
despite numerous attempts remains unsuccessful, three 
types of diagnostic techniques for animal trypanosomes 
can be distinguished: (i) parasite detection; (ii) DNA 
detection; and (iii) antibody detection (Tables  1, 2). 
Technical information on these tests is available on the 
websites of the World Organization for Animal Health 
(OIE) [81] and of the Food and Agriculture Organization 
of the United Nations (FAO) [32]. A recently published 
“Compendium of standard diagnosis protocols for animal 
trypanosomoses of African origin” is available on the OIE 
website [13]. These documents can be found at the fol-
lowing links: https://​www.​oie.​int/​filea​dmin/​Home/​eng/​
Health_​stand​ards/​tahm/3.​04.​14_​NAGANA.​pdf; https://​
www.​fao.​org/3/​X0413E/​X0413​E00.​htm; https://​www.​oie.​
int/​app/​uploa​ds/​2021/​06/​compe​ndium​stand​arddi​agnos​
ticpr​otoco​lsani​maltr​ypans​omose​safri​canor​igin-​en.​pdf , 
respectively. 

Finally, the four OIE reference laboratories on animal 
trypanosomoses may provide biological materials and 
technical training to support diagnostics (Table 3).

In this review, we primarily consider the methods 
recommended by the OIE (fully demonstrated and vali-
dated by large field applications), presenting their char-
acteristics, performance, advantages, disadvantages and 
limitations.

Parasite detection techniques
In the hosts
Several direct parasite detection techniques based on 
microscopic examination can be used; ranked from the 
lowest to highest sensitivity these include: (i) microscopic 
examination of fresh wet blood films (simplest tech-
nique); (ii) the Giemsa-stained thin blood smear (GSBS), 
which allows identification to the subgenus level based 
on parasite morphology (Fig. 6); (iii) the hematocrit con-
centration technique (HCT), which uses a capillary tube, 
or the Woo method [93]; and (iv) the buffy coat method 
(BCM, Murray method) [94]. Thelatter is derived from 
the HCT, but the capillary tube is cut after centrifuga-
tion to extrude the buffy coat onto a microscope slide for 
examination. Concentration techniques exhibit a higher 
sensitivity (Table 1); however, the BCM has lower repeat-
ability and reproducibility rates than the HCT due to 
varying levels of technician skills linked to the delicate 

extrusion and dropping of the buffy coat onto the slide 
that can in some instances vary in quality.

Parasite detection techniques require little equipment 
and are generally inexpensive, fast and easy to carry out 
although blood smear observation is time-consuming. 
Therefore, they are the techniques of choice to ascertain 
a Trypanosoma infection. The GSBS is subgenus spe-
cific, i.e. it is able to distinguish the subgenera Nanno-
monas, Duttonella, Trypanozoon, Megatrypanum (such 
as Trypanosoma theileri, a non-pathogenic trypanosome 
found in bovines and cyclically transmitted by tabanids 
as a Stercorarian parasite [11]), Schizotrypanum and Her-
petosoma (Fig. 6). In addition, GSBS allows the study of 
parasite morphology and can faciliatedifferential diag-
nosis of other haemoparasitoses (e.g. Babesia, Theileria, 
Anaplasma). Both the HCT and BCM give immediate 
results, but HCT is better suited to screen large numbers 
of animals since it is the faster and more reproducible of 
the two tests. HCT and BCM also provide the packed 
cell volume (PCV), which estimates the level of anemia, 
one of the most critical indicators of trypanosomosis in 
cattle, among other hemoparasitoses, hemonchosis, etc. 
As trypanosomosis is a herd problem, the PCV profile 
can be used as a marker to orientate investigations. The 
PCV can also be used to decide whether a sample should 
be submitted for PCR examination, thereby limiting the 
total number of samples needed to be tested and increas-
ing the probability of detecting infected animals. Nev-
ertheless, the main drawbacks of these techniques are 
their very low analytic sensitivity, which depends on the 
concentration of the parasite in the sample and the vol-
ume of the sample examined (as low as 70 µl in capillary 
tubes and around 3–5 µl in direct blood examination and 
GSBS). Consequently, the sensitivity of parasitological 
techniques may vary from “very high” in early infection, 
when the animals are unable to control the parasitemia 
(91% for T. evansi in cattle [95, 96]), to “low” in chronic 
infections, when parasitemia is lower and transient 
(30–60% in sheep infected with T. vivax), and “nil” in 
healthy carrier situations when the animals can maintain 
the parasite at undetectable level in the blood [6] or in 
extravascular foci [97], including the skin [98]. BCM has 
been reported to have a very low individual sensitivity of 
around 14–24% [82]. Parasitological techniques are thus 
likely to miss chronic infections and asymptomatic carri-
ers. At a population level, the sensitivity of parasite detec-
tion techniques is “high” during epizootic outbreaks, but 
“low” or “very low” in stable enzootic areas where most 
of the animals are in chronic or subclinical stages of the 
disease evolution. As an example of the latter: in French 
Guiana, despite regular sampling of about one-third of 
the cattle farms per year, T. vivax may not be observed 

https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.04.14_NAGANA.pdf
https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.04.14_NAGANA.pdf
https://www.fao.org/3/X0413E/X0413E00.htm
https://www.fao.org/3/X0413E/X0413E00.htm
https://www.oie.int/app/uploads/2021/06/compendiumstandarddiagnosticprotocolsanimaltrypansomosesafricanorigin-en.pdf
https://www.oie.int/app/uploads/2021/06/compendiumstandarddiagnosticprotocolsanimaltrypansomosesafricanorigin-en.pdf
https://www.oie.int/app/uploads/2021/06/compendiumstandarddiagnosticprotocolsanimaltrypansomosesafricanorigin-en.pdf


Page 9 of 24Desquesnes et al. Parasites & Vectors           (2022) 15:64 	

Ta
bl

e 
1 

Su
m

m
ar

y 
of

 d
ia

gn
os

tic
 te

ch
ni

qu
es

 u
se

d 
fo

r a
ni

m
al

 A
fri

ca
n 

tr
yp

an
os

om
os

is
 a

nd
 n

on
-t

se
ts

e 
tr

an
sm

itt
ed

 a
ni

m
al

 tr
yp

an
os

om
os

is

M
ai

n 
te

st
 c

ha
ra

ct
er

is
tic

s 
ar

e 
in

di
ca

te
d.

 Q
ua

lit
at

iv
e 

in
fo

rm
at

io
n 

is
 g

iv
en

 fo
r s

en
si

tiv
ity

 a
nd

 s
pe

ci
fic

ity
, r

an
gi

ng
 fr

om
 lo

w
 (−

) t
o 

hi
gh

 (+
 +

 +
) p

er
fo

rm
an

ce
. Q

ua
nt

ita
tiv

e 
da

ta
 a

re
 g

iv
en

 w
he

n 
av

ai
la

bl
e.

 It
 s

ho
ul

d 
be

 n
ot

ed
 

th
at

 th
es

e 
va

lu
es

 a
re

 n
ot

 d
ire

ct
ly

 c
om

pa
ra

bl
e 

si
nc

e 
te

st
s 

w
er

e 
pe

rf
or

m
ed

 o
n 

di
ffe

re
nt

 s
am

pl
es

 s
et

s, 
w

ith
 d

iff
er

en
t t

ec
hn

iq
ue

s 
an

d 
in

 d
iff

er
en

t l
ab

or
at

or
ie

s. 
Pr

im
ar

y 
us

e 
is

 in
di

ca
te

d 
fir

st
 a

nd
 a

dd
iti

on
al

 u
se

 is
 g

iv
en

 in
 

pa
re

nt
he

se
s

a  S
ee

 A
bb

re
vi

at
io

n 
Li

st
 fo

r t
he

 fu
ll 

de
sc

rip
tio

n 
of

 e
ac

h 
ab

br
ev

ia
tio

n

Ta
rg

et
Te

ch
ni

qu
ea

A
na

ly
tic

 s
en

si
tiv

ity
 

(p
ar

as
ite

/m
l)

Se
ns

iti
vi

ty
 

(p
er

ce
nt

ag
e 

es
tim

at
io

n 
if 

av
ai

la
bl

e)

Sp
ec

ifi
ci

ty
Lo

gi
st

ic
 n

ee
ds

: 
fie

ld
/la

bo
ra

to
ry

Co
st

In
fe

ct
io

n 
st

ep
Sc

al
e

Li
ve

st
oc

k 
/f

au
na

Te
st

 o
bj

ec
tiv

e 
an

d/
or

 c
on

te
xt

Pa
ra

si
te

 W
et

 b
lo

od
 fi

lm
10

4 –1
05  [8

0]
N

o 
da

ta
 +

 
Fi

el
d:

 m
ic

ro
sc

op
e

Lo
w

A
cu

te
 in

fe
ct

io
n

In
di

vi
du

al
Li

ve
st

oc
k 

(fr
es

h 
bl

oo
d)

Ep
id

em
io

lo
gy

 
or

 e
xp

er
im

en
ta

l 
fo

llo
w

-u
p

H
TC

/B
C

M
2.

5 
×

 1
02 –5

 ×
 1

03
 +

 (1
4–

24
) [

82
]

 +
  +

 
Fi

el
d:

 m
ic

ro
ce

n-
tr

ifu
ge

 +
 m

ic
ro

-
sc

op
e

Lo
w

A
cu

te
 s

ub
-a

cu
te

 
in

fe
ct

io
n

In
di

vi
du

al
 (g

ro
up

)
Li

ve
st

oc
k 

(fr
es

h 
bl

oo
d)

In
di

vi
du

al
 d

ia
gn

os
-

tic
 (e

pi
de

m
io

lo
gy

)

m
A

EC
T

 +
 

 +
  +

 
Fi

el
d:

 m
ic

ro
ce

n-
tr

ifu
ge

 +
 m

ic
ro

-
sc

op
e

H
ig

h
A

cu
te

 s
ub

-a
cu

te
 

in
fe

ct
io

n
In

di
vi

du
al

Li
ve

st
oc

k 
(fr

es
h 

bl
oo

d)
Fo

r r
es

ea
rc

h:
 p

ar
a-

si
te

 is
ol

at
io

n

Ro
de

nt
s 

in
oc

ul
a-

tio
n

10
–1

03
 +

  +
  +

 
 +

  +
  +

 
La

bo
ra

to
ry

 w
ith

 
an

im
al

 fa
ci

lit
ie

s
H

ig
h

A
cu

te
 s

ub
-a

cu
te

 
in

fe
ct

io
n

In
di

vi
du

al
Li

ve
st

oc
k 

(fr
es

h 
bl

oo
d)

Fo
r r

es
ea

rc
h:

 p
ar

a-
si

te
 is

ol
at

io
n

D
N

A
Pa

n-
sp

ec
ie

s 
pr

im
-

er
s 

(IT
S1

)
50

 [8
3]

 +
  +

 (5
4–

74
) [

84
]

 +
  +

 m
ay

 re
qu

ire
 

se
qu

en
ci

ng
 

(9
9–

10
0)

 [8
4]

La
bo

ra
to

ry
 fo

r 
m

ol
ec

ul
ar

 b
io

lo
gy

H
ig

h
A

cu
te

 s
ub

-a
cu

te
 

in
fe

ct
io

n
In

di
vi

du
al

 a
nd

 
gr

ou
p

Li
ve

st
oc

k 
an

d 
w

ild
lif

e
Ep

id
em

io
lo

gy

G
en

us
/s

pe
ci

es
 

sp
ec

ifi
c 

pr
im

er
s

1–
10

 [8
5]

 +
  +

  +
 (6

5–
88

) 
[8

4]
 +

  +
  +

  +
 (9

9–
10

0)
 

[8
4]

La
bo

ra
to

ry
 fo

r 
m

ol
ec

ul
ar

 b
io

lo
gy

H
ig

h
A

cu
te

 s
ub

-a
cu

te
 

in
fe

ct
io

n
In

di
vi

du
al

 a
nd

 
gr

ou
p

Li
ve

st
oc

k 
an

d 
w

ild
lif

e
Ep

id
em

io
lo

gy

A
nt

ib
od

ie
s

EL
IS

A
 a

ga
in

st
 to

ta
l 

an
tig

en
s

 +
  +

  +
 (9

0.
5)

 [8
2]

 +
  +

 
La

bo
ra

to
ry

 fo
r 

se
ro

lo
gy

Lo
w

A
cu

te
 to

 c
hr

on
ic

 
an

d 
pa

st
 in

fe
ct

io
n

G
ro

up
 (i

nd
iv

id
ua

l)
Li

ve
st

oc
k

Ep
id

em
io

lo
gy

 (i
nd

i-
vi

du
al

 d
ia

gn
os

tic
)

Pr
ot

ei
n 

sp
ec

ifi
c 

EL
IS

A
 +

  +
  +

 (9
8.

9)
 [8

6]
; 

(8
5.

9–
98

.1
) [

87
]

 +
  +

  +
 (9

8.
9)

 [8
6]

; 
(9

0.
4–

10
0)

 [8
7]

La
bo

ra
to

ry
 fo

r 
se

ro
lo

gy
M

ed
iu

m
A

cu
te

 to
 c

hr
on

ic
 

an
d 

pa
st

 in
fe

ct
io

n
G

ro
up

 (i
nd

iv
id

ua
l)

Li
ve

st
oc

k
Ep

id
em

io
lo

gy
 (i

nd
i-

vi
du

al
 d

ia
gn

os
tic

)

A
gg

lu
tin

at
io

n 
te

st
 

(C
AT

T)
 +

  +
 (8

7)
 [8

8]
; 

(4
4.

5–
95

.2
) [

89
]; 

(7
6–

88
) [

90
]; 

(3
2.

4–
52

.9
) [

91
]

 +
  +

 (8
1)

 [8
8]

; 
(7

9.
5–

99
.5

) [
89

]; 
(9

2–
98

) [
90

]; 
(7

7.
8–

84
.6

) [
91

]

Fi
el

d
Lo

w
A

cu
te

 to
 c

hr
on

ic
 

an
d 

pa
st

 in
fe

ct
io

n
In

di
vi

du
al

 (g
ro

up
)

Li
ve

st
oc

k
In

di
vi

du
al

 d
ia

gn
os

-
tic

 (e
pi

de
m

io
lo

gy
)

IF
AT

 +
  +

 
 +

 
La

bo
ra

to
ry

 fo
r 

se
ro

lo
gy

M
ed

iu
m

A
cu

te
 to

 c
hr

on
ic

 
an

d 
pa

st
 in

fe
ct

io
n

In
di

vi
du

al
 (g

ro
up

)
Li

ve
st

oc
k

In
di

vi
du

al
 d

ia
g-

no
st

ic

C
FT

 +
  +

 (3
1.

5–
73

.5
) 

[8
9]

; (
90

–1
00

) [
92

]
 +

  +
 (8

9.
2–

98
.5

) 
[8

9]
; (

89
–9

9)
 [9

2]
La

bo
ra

to
ry

 fo
r 

se
ro

lo
gy

M
ed

iu
m

A
cu

te
 to

 c
hr

on
ic

 
an

d 
pa

st
 in

fe
ct

io
n

G
ro

up
 (i

nd
iv

id
ua

l)
Li

ve
st

oc
k

In
di

vi
du

al
 d

ia
gn

os
-

tic
 (e

pi
de

m
io

lo
gy

)

TL
N

o 
da

ta
 +

  +
 

La
bo

ra
to

ry
 w

ith
 

an
im

al
 fa

ci
lit

ie
s

Ve
ry

 h
ig

h
A

cu
te

 to
 c

hr
on

ic
 

an
d 

pa
st

 in
fe

ct
io

n
In

di
vi

du
al

Li
ve

st
oc

k
In

di
vi

du
al

 d
ia

g-
no

st
ic



Page 10 of 24Desquesnes et al. Parasites & Vectors           (2022) 15:64 

during a 3- to 5-year period, before relapse occurs and 
the parasite being detected again on several farms [6].

There are other techniques based on parasite detec-
tion, and while these may be more sensitive, they are also 
more expensive and/or more time-consuming. In addi-
tion, they require specific skills and equipment that are 
not generally available. The use of anion exchange chro-
matography was thoroughly investigated and described 
in a study published in the 1970s [99]. It was recently 
reviewed and described again for the diagnosis of sleep-
ing sickness [100]. The mini anion exchange centrifuga-
tion technique (mAECT), currently the most sensitive 
method to diagnose sleeping sickness [101, 102], can 
be applied to animal samples. However, the technique 
is cumbersome and is not suitable for the examination 
of a large number of samples. In vivo isolation of trypa-
nosomes through intra-peritoneal injection of blood 
from a suspect animal to rodents, usually mice or rats, 

preferably immunosuppressed using cyclophosphamide 
[103], is expensive and time-consuming, diagnosis is not 
immediate and the method raises serious animal welfare 
concerns. Nevertheless, blood inoculation into rodents 
is more sensitive than HCT and some PCR procedures 
(e.g. tests targeting the internal transcribed spacer [ITS]); 
thus, blood inoculation is beneficial in revealing sub-
patent infections and for parasite isolation [104]. How-
ever, the success rate of in vivo cultures depends on the 
Trypanosoma species involved: it is “highly sensitive” for 
the detection of Trypanozoon infections (especially T. 
evansi), of “medium sensitivity” for T. congolense strains, 
and generally “nil” or “scarcely effective” for T. vivax. On 
the other hand, the method is currently an essential tool 
for parasite isolation (parasite purification and enrich-
ment before cryo-conservation) and the massive produc-
tion of trypanosomes to prepare trypanosome antigens 
used in serological diagnosis or for subsequent molecular 

Table 2  Summary of diagnostic uses for main Tryanosoma species responsible for animal African trypanosomosis and non-tsetse 
transmitted animal trypanosomosis

a See Abbreviation List for the full description of each abbreviation
b Qualitative uses: +  +  +  = well adapted and used; +  +  = adapted and used; +  = can be used; 0 = not used in practice

Target Techniquea Subgenus Nannomonas Subgenus Duttonella Subgenus Trypanozoon

Trypanosoma congolense Trypanosoma vivax Trypanosoma 
brucei brucei

Trypanosoma evansi Trypanosoma 
equiperdum

Parasite Wet blood films  +b  +   +   + Trypanozoon 

HTC/BCT  +  +  +   +  +  +   +  +  +   +  +  + Trypanozoon 

mAECT − − − − −
Inoculation of rodents  +  0  +   +  +   + 

DNA Pan-species primers (ITS1)  +  +   +  +   +  +   +  + Trypanozoon  + 

Genus/species/type-specific 
primers

 +  +  +   +  +  +   +  +  +   +  +  + Trypanozoon  +  + 

Specific primers among 
Trypanozoon

0  +  0

Antibodies ELISA on WCLSA  +  +  +   +  +  +   +  +  +   +  +  + Trypanozoon  + 

Protein-specific ELISA Under test Under test 0  +  0

Agglutination test (CATT) 0 0  +   +  +  +  0

IFAT − − − −  + 

CFT 0 0 0 0  +  + 

TL 0 0 0  +  0

Table 3  World Organization for Animal Health reference laboratories for trypanosomes

Topics OIE reference laboratories

Trypanosomoses (tsetse transmitted)/animal trypa-
nosomes of African origin

CIRAD-Bios, UMR InterTryp (CIRAD-IRD), 34,398 Montpellier, cedex 5, France

Surra (Trypanosoma evansi) National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary 
Medicine, Obihiro, Japan

Institute of Tropical Medicine Antwerp, B-2000 Antwerpen, Belgium

Dourine (Trypanosoma equiperdum) ANSES, Laboratory for animal health, Normandy site, Unit Physiopathology & Epidemiology of 
Equine Diseases (PhEED), RD675, 14430 Goustranville, France
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characterization. Procedures for in  vitro cultivation of 
Trypanosoma spp. have also been described, but these 
require sophisticated equipment and protocols, the test 
results are not immediate (time delay) and they are cer-
tainly not suitable for large-scale studies. Competition 
among field stocks may also affect the results of in vitro 
cultures; for example, in the case of mixed infections, T. 
theileri easily overgrows T. b. brucei [105].

Overall, a negative result from parasitological examina-
tion does not unequivocally mean the absence of infec-
tion, as a negative result is not conclusive in terms of 
carrier/non-carrier since a Trypanosoma parasite may 
still be present and remain undetected. Such long periods 
of undetectable infection (1 year) despite a daily blood 
test (HTC) were observed in French Guiana, in a sheep 
experimentally infected with T. vivax and kept under a 
mosquito net [6].

Conversely, a positive parasitological result may verify 
the infection of an animal by a specific Trypanosoma 

parasite depending on the level of specificity allowed 
by the technique and the epizootiological context. For 
example, microscopic observation of a Trypanozoon on a 
GSBS from a cattle blood sample in Southeast Asia indi-
cates T. evansi, while the same result in Africa can only 
indicate a Trypanozoon due to the potential presence of 
up to five species or subspecies of Trypanozoon on the 
African continent.

Consequently, detecting a single taxon cannot exclude 
the presence of a mixed infection, according to the geo-
graphical origin of the sample. Thus, in areas of possible 
mixed infections (Africa, Latin America), detection of an 
infection in an animal by a Trypanosoma will always leave 
open the possibility of mixed infection by one (or several) 
other Trypanosoma species or type, which may remain 
undetected, for several reasons (parasitemia below the 
detection threshold, extravascular refuge of the parasite, 
etc.). In conclusion, the status of an animal whose parasi-
tological test results are positive should be considered as 

Fig. 6  Main morphological features of four subgenera of mammal trypanosomes on Giemsa-stained thin blood smears. a Microscopic image 
of Trypanosoma brucei brucei in mice blood; morphology of the subgenus Trypanozoon: large-sized trypomastigote (17–30 µm), slender form, 
free flagellum, small sub-terminal kinetoplast, sharp posterior extremity, central nucleus and large undulating membrane; b Microscopic image 
of Trypanosoma congolense-type savanna in mice blood; morphology of the subgenus Nannomonas: small-sized trypomastigote (8–22 µm), no 
free flagellum, terminal sub-lateral kinetoplast, round posterior extremity, central nucleus and no undulating membrane. c Microscopic image of 
Trypanosoma vivax in cattle blood; morphology of the subgenus Duttonella: large-sized trypomastigote (20–27 µm), slender form, free flagellum, 
large terminal kinetoplast, round posterior extremity, central nucleus and large undulating membrane. d Microscopic image of Trypanosoma 
lewisi in rat blood; morphology of the subgenus Herpetosoma: very large-sized trypomastigote (21–36 µm), slender form, free flagellum, very large 
sub-terminal kinetoplast, very long sharp posterior extremity, anterior nucleus and large undulating membrane. Scale bar: 10 µm
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“animal infected by at least (the trypanosome subgenus, 
species or type detected), and possibly others”. Potential 
concomitant infection(s) will always lead to dubious situ-
ations in the field.

In the vectors
Microscopic observation of pathogenic trypanosomes 
may also be applied to cyclical vectors (tsetse flies and 
triatomine bugs); however, the morphology of trypano-
somes in their cyclical vector is not characteristic, and 
the location of the parasite in the vector’s organs, such as 
gut, salivary glands or proboscis, may be confusing; con-
sequently, such diagnoses have a very low species speci-
ficity. When molecular techniques were also applied, 
many parasitological diagnoses were shown to be wrong, 
probably due to a lack of sensitivity in the vector’s organ 
detection, but also due to the potential presence of many 
unidentified Trypanosoma spp. that may be found in the 
same vector’s organs, thus interfering with the diagnosis 
[106]. In addition, the dissection procedure is subject to a 
high risk of contamination, mainly between organs of the 
same vector, which could result in false positive organs 
by PCR due to the high sensitivity of the latter. Conse-
quently, it is recommended that microscopic observation 
be used first to detect the trypanosomes in the vector’s 
organ, followed by molecular tools on these organs to 
identify the species or subspecies, similar to procedures 
used in hosts (see section In the hosts).

DNA detection techniques
 DNA detection techniques used for trypanosomes can 
be applied to both the hosts and vectors. Several primer 
pairs have been designed for PCR amplification of trypa-
nosome DNA. Based on highly repetitive satellite DNA 
(10,000–20,000 tandem repeats per genome), the gold 
standard primer sets available for the different trypano-
some subgenera, species and types are, based to the OIE 
“Compendium of standard diagnosis protocols for ani-
mal trypanosomoses of African origin” [51]: TBR1 and 
TBR2 (subgenus Trypanozoon); TCS1 and TCS2 (T. con-
golense savannah type); TCF1 and TCF2 (T.  congolense 
forest type); TCK1 and TCK2 (T. congolense Kenya Coast 
type [or Kilifi]); TSM1 and TSM2 (T. simiae); DGG1 and 
DGG2 (T. godfreyi) [107]; and TVW1 and TVW2 (T. 
vivax) [108, 109]. These monospecific PCRs are positive 
when the specific weight product expected is visible on 
the gel (Fig. 7a).

For T. vivax, several other primer sets have been pub-
lished since the development of TVW primers [110–113], 
but none have proved to exhibit better sensitivity than 
the gold standard. In addition, it has been claimed by a 
few authors that some strains of T. vivax, notably from 
East Africa, may not be detected using TVW primers 

[110]; however, such parasites have never been isolated, 
and the results were never confirmed [114]. Conse-
quently, to date, TVW primers remain the gold standard 
method for detecting and identifying T. vivax, but a well-
designed comparison of the different published primers 
pairs on samples from different regions deserves to be 
performed.

Similarly, several primers have been developed to 
detect T. evansi [95, 115, 116], including nested and 
TaqMan primers [117, 118], but their sensitivity was 
found to be lower than that of TBR primers [85]. As per 
their specificity regarding other subspecies of the subge-
nus Trypanozoon, it was never fully documented. More 
interestingly, some primers were developed to distin-
guish Type A from Type B of T. evansi [83, 119]; these 
primers are helpful for obtaining accurate epidemiologi-
cal information. More specific methods are also avail-
able to identify T. b. gambiense and T. b. rhodesiense 
[120–123], which could provide new information on the 
role of domestic and wild fauna in the maintenance of 
some sleeping sickness foci [26, 27, 29, 59, 124]. However, 
these single-gene targets are of low sensitivity [125]. Due 
to the diversity of taxon-specific primers in tsetse flies or 
mammalian hosts within the tsetse belt in Africa, a com-
plete identification of Trypanosoma species may require 
three to six or even more PCR tests to be carried out 
per sample, which considerably increases the cost of the 
diagnosis.

In the Americas, and outside the tsetse belt in Africa, 
primers TBR and TVW are recommended for detect-
ing T. evansi and T. vivax, respectively, for the diagno-
sis of trypanosomes in livestock. However, in horses, it 
is not possible tomake a definitive distinction between 
T. equiperdum and T. evansi using standard diagnostic 
tools. Clinical observations, analysis of the presence of 
vectors and information on the mode of transmission 
and overall epidemiological context are necessary to dif-
ferentiate these two species. In fact, these parasites are 
so close that even molecular biology techniques barely 
differentiate them. At the present time, these two spe-
cies tend to be considered as subspecies of T. brucei; T. 
brucei evansi  and  T. brucei equiperdum have polyphyl-
etic origins, as shown by genomic studies [18, 19, 126]. 
In the Americas, TCZ1 and TCZ2 primers for detecting 
T. cruzi should also be used in addition to primers TBR 
and TVW [127]. Finally, a differential diagnosis for Tryp-
anosoma rangeli may also be necessary in wild mammals 
[128].

Amplifications of the ITS1 of ribosomal DNA have 
been developed to allow the identification of all African 
Trypanosoma spp. in single or mixed infections using one 
single test [129–134], based on the specific weight of the 
PCR products obtained (Fig. 7b). These tests are helpful 
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for screening; however, the sizing the PCR product(s) 
on gels can sometime be unreliable. Consequently, 
sequencing is most often required to confirm species 
identification, a procedure that is not suitable for routine 
diagnosis. Alternatively, ITS1 amplification can be used 
for sample screening and followed by monospecific PCR 
for species identification, when required. Finally, based 
on the highly conserved regions from which the prim-
ers have been designed, amplification of the ITS1 with 
TRYP1 primers allows the detection of all African patho-
genic trypanosomes, as well as of T. lewisi [96, 134, 135] 
and even T. cruzi and Leishmania spp. (S. Ravel, personal 
communication) [136]. Loop-mediated isothermal ampli-
fication (LAMP) was also developed for trypanosome 
diagnosis [137]; however, the limited use of this tech-
nique does not fully validate veterinary usage.

PCR techniques require well-equipped laboratories 
and well-trained technicians. The quality of the results 
depends on the quality and quantity of DNA prepara-
tions and the choice of adequate primers, and the cost 

remains higher than parasitological techniques. How-
ever, depending on the context and the question to be 
answered, PCR techniques offer significant improve-
ment in terms of sensitivity and specificity. The PCR is a 
highly sensitive method and typically provides a two- to 
threefold higher prevalence than parasitological meth-
ods when applied to field samples [6, 29, 138, 139]. In the 
best cases, analytical sensitivity of the PCR test for trypa-
nosomes reaches as low as one to two parasites, or even 
less, per reaction [85, 139]. The sensitivity depends on the 
DNA targeted by the primers (repeated sequence or gene 
vs single gene) and the sample preparation method [140].

The specificity of PCR methods is theoretically very 
high, ranging from the subgenus to subspecies or type 
levels depending on the primer set used. PCR can also 
be used in vectors or in wildlife [141]. The gold stand-
ard PCRs are extremely sensitive. False-positive results 
may occur due to sample contamination with trypano-
some DNA from real positive samples. False-negative 
results may occur when the parasitemia is very low 

a

c

b

d

Fig. 7  Molecular and serological tests for the detection of trypanosomes and trypanosomoses: a Ethidium bromide-stained electrophoresis gel 
of a monospecific PCR; the result can be considered to be positive when a visible PCR product exhibits the specific weight expected (here: lanes 2, 
3, 6–10, 12, 14, 16); otherwise, when the product is non-specific (lane 17) or non-visible (lanes 1, 4, 5, 11, 13, 15), the PCR is negative. Lane 18 is the 
DNA ladder. b Ethidium bromide-stained electrophoresis gel of a multi-specific PCR based on the amplification of the internal transcribed spacer 
1 (ITS1); species-specific results are deduced from the weight of the visible PCR products obtained (here: lanes 1, 12 are the DNA ladder; lanes 2–4 
are T. congolense; lanes 5–7 are Trypanozoon; lane 8 is T. theileri; lane 9 is T. simiae; lanes 10, 11 are T. vivax. c Trypanosoma vivax antibody detection 
ELISA plate; first 2 rows are blanks (A, B), positive controls (C, E, G) and negative controls (D, F, H); all samples are tested in duplicate and appear to be 
positive, doubtful or negative, according to their mean optical density. d Picture of the card of a CATT/T. evansi exhibiting parasite agglutinations in 
the positive control and samples 163 and 017; other samples are considered to be negative
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(< 1–10  trypanosome/ml of blood), which is frequent in 
chronic infections and healthy carriers, when too much 
DNA was used in the PCR reaction or because of remain-
ing inhibiting factors due to extraction of poor quality 
DNA. False-negative results may also be obtained when 
the specificity of the primers is too high, so that not all 
isolates of a particular Trypanosoma species are recog-
nized. For example, in East Africa, the use of primers for 
the detection of the RoTat 1.2 VSG gene of T. evansi has 
undoubtedly left undetected the T. evansi Type B strains 
that are devoid of this gene [33, 142, 143].

LAMP techniques, sometimes promoted as “field 
methods,” are also very promising [144]; however, they 
remain in the hands of those laboratories that imple-
mented their initial development and have never reached 
the stage of practical and widespread use, so they have 
never been really validated [143, 145, 146].

Real-time PCR (RT-PCR) methods have been devel-
oped for T. evansi [147], T. brucei [148] and T. congolense 
[149]; they were applied to hosts and vectors with high 
sensitivity and specificity, but their use has to date been 
very limited, probably due to associations with high tech-
nical skills and equipment and cost. These techniques 
have not yet been validated for routine diagnostic tests. 
Other attempts have been made for T. b. gambiense DNA 
detection, but the results of quantitative RT-PCRs were 
disappointing, with tests exhibiting a low sensitivity 
[150].

Spliced Leader trypanosome RNA (SL-RNA) detec-
tion was recently developed for the diagnosis of living T. 
b. gambiense in humans, but this technique has not been 
evaluated in animals so far [151].

As stated earliers in this review, the detection of patho-
genic trypanosomes may be performed in the vectors 
using the same molecular techniques as used in hosts. 
However, sample preparation must be adapted to the 
insect organs of interest in order to get eliminate any 
PCR inhibitors present in insect samples, such as salivary 
glands, proboscis and midguts [109, 152] or fecal drop 
[153].

Finally, sample collection has been simplified by using 
blood or buffy coats spotted on filter papers [154]; such 
methods are greatly recommended nowadays, especially 
for the international shipment of samples. Many samples 
can be processed simultaneously, making them poten-
tially suitable for large-scale surveys. However, currently, 
the cost and complex technology of PCR analyses are still 
limiting factors for generalized routine use of the test in 
remote enzootic/endemic areas.

Although DNA detection methods exhibit a higher sen-
sitivity and specificity than parasitological methods, they 
are affected by the same limitations. Indeed, (i) a negative 
test cannot ascertain the absence of infection (serological 

tests are better adapted to do so); and (ii) a positive test 
ascertains the presence of a specific DNA taxon, but in 
geographical areas where several pathogenic Trypano-
soma species co-exist, an animal positive to one taxon 
may be carrier of one or several others. Users of molecu-
lar detection methods must be fully aware of these limi-
tations, which are too often overlooked.

Antigen detection methods
In addition to detecting either the parasites themselves, 
or their DNA, antigen detection can also be implemented 
to evidence active infection. ELISAs for antigen detection 
based on monoclonal antibodies, which were developed 
in the 1990s, initially showed promise [155]. However, in 
field evaluations they were found to present a severe lack 
of sensitivity and specificity and, hence, were abandoned 
[6, 156, 157]. Nevertheless, antigen detection methods 
using monoclonal antibodies would be beneficial and 
likely to be suitable for the development of rapid tests; if 
based on cautiously pre-identified trypanosome antigens 
circulating in the bloodstream (constitutive or secreted), 
this avenue of research should be encouraged. Such a 
rapid test could be useful for deciding on treatment, 
probably alongside HCT and Card agglutination tests, 
providing they can be developed in other species than T. 
evansi, to complete the panel of ATAO diagnostic tools. 
For the time being, serological methods for trypanosome 
are focused on antibody detection.

Antibody detection methods based on native antigens
Antibody detection methods can provide evidence of a 
contact between the host and the parasite with very high 
sensitivity. However, due to the persistence of the anti-
bodies in the blood serum after parasite elimination, such 
techniques cannot ascertain active infection. They are 
thus valuable tools in epidemiological surveys and for the 
detection of suspect animals. They exhibit a high speci-
ficity for other genera, such as Anaplasma, Babesia and 
Theileria, among others, but among the Trypanosomati-
dae, the specificity is rather low due to patent cross-reac-
tions, as detailed in a subsequent section.

The OIE validated four main antibody detection tech-
niques for routine use: the indirect fluorescent anti-
body test (IFAT), the whole-cell lysate soluble antigens 
(WCLSA) antibody-detection ELISA, the complement 
fixation test (CFT; used for Dourine) and the Card 
Agglutination Test for Trypanosomes (CATT/T. evansi 
used for Surra). Among these OIE-recommended tests, 
only the latter test is commercially available (Table  1), 
making the availability of trypanosome serological diag-
nostics quite limited. IFAT, CFT and classical ELISAs for 
the diagnosis of trypanosomosis detect immunoglobulin 
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G (IgG), the levels of which are fairly stable during infec-
tion course.

Indirect fluorescent antibody tests
The IFATs for trypanosomes exhibit good sensitivity but 
limited specificity. The main drawbacks of the IFAT is the 
need for sophisticated microscopy, the subjectivity of the 
interpretation, which makes the comparison of results 
quite tricky, and the tiredness of technician’s eyes it gen-
erates [158]. Consequently, the performance of the IFAT 
remains subjective and as such it is not adapted to large-
scale studies. The technique is generally used for individ-
ual diagnosis, as an alternative to ELISA, and mostly for 
Dourine.

Enzyme‑linked immunosorbent assay
The original antibody ELISA for trypanosomoses [159] 
has been further developed for large-scale surveys in 
bovines, buffalos, camels, horses and pigs [160, 161]. The 
standard antigens for ELISA (nowadays called “classical 
ELISA”) are derived from native trypanosome blood-
stream forms produced in laboratory rats and purified by 
diethylaminoethanol (DEAE) anion-exchange chroma-
tography [99]. They include an extensive range of native 
antigens that confer the tests a high sensitivity [6, 160, 
162, 163]. The classical ELISAs recommended by the 
OIE have been standardized for camels, cattle, buffalo, 
elephants, among others [104, 164–166]. The result of an 
ELISA is considered to be positive when the optical den-
sity of the sample is higher than the positive threshold 
previously defined (Fig. 7c).

Using the ELISA, positive seroconversion occurs gen-
erally and, on average, around 10–20 days after infection. 
After a fully curative treatment, negative seroconversion 
has been observed within 3–4 months in young and adult 
animals [167] and after 6 months in older individuals [6, 
168, 169], although some authors claim it might take up 
to 13 months [170]. Based on these data, adequate sam-
pling and proper knowledge of trypanocide use facilitate 
the correct interpretation of the test results; for example, 
a serological test implemented 6 months after treatment 
would confirm treatment efficacy.

Antibody-detection ELISAs have high sensitivity and 
are better suited than parasitological and PCR techniques 
to establish the prevalence of infected animals. In addi-
tion, their genus specificity is high, meaning that infec-
tion with other hemoparasites, such as Theileria theileri, 
Theileria mutans, Babesia divergens or Anaplasma mar-
ginale, do not cause cross-reactions in serological tests 
against pathogenic trypanosomes [159]; even Trypano-
soma theileri, the non-pathogenic Megatrypanum found 
in Bovinae, does not cross-react [171, 172]. However, 
species-specificity among the pathogenic trypanosomes 

is generally low due to strong cross-reactions between 
the main parasites T. vivax, Trypanozoon and T. congo-
lense sensu lato (s.l.) [173].

Immunodiagnostics by ELISA requires expertise and 
relatively expensive and sophisticated equipment, both of 
which are not always readily available. The technique also 
involves the production of native parasites to prepare 
soluble antigens from whole-cell lysate of the trypano-
somes, which are not commercially available. In practice, 
trypanosome antigen production is limited to special-
ized laboratories. At the individual level in the field, in 
terms of test implementation there is a substantial delay 
between the actual sampling and the availability of the 
results. Moreover, a cut-off value must be defined and 
the ELISA adapted, evaluated and validated for each host 
species. All of these factors may present an obstacle to 
accurate interpretation of the results, given the difficulty 
of acquiring reference samples for the various species of 
interest. Nevertheless, the antibody ELISA lends itself to 
a high degree of automation and standardization that is 
suitable for sero-epidemiological studies. After collec-
tion, serum samples can be stored at − 20 °C or blotted 
onto filter papers (then stored as dried serum or blood 
spots) to make the samples more suitable for interna-
tional shipment. Taken together, the antibody ELISA is 
an instrumental tool for large-scale surveys to determine 
the distribution of ATAO (including NTTAT), as well as 
for post-treatment or post-control campaign follow-ups. 
Recent work on lyophilized reagents and serum samples 
has demonstrated that lyophilization is a convenient way 
to store and ship reagents for ELISAs [174], which should 
help considerably in further wide-spread implementation 
of the ELISA technique for trypanosomes in Africa.

Based on in  vivo-produced parasites, the classical 
ELISA is difficult to standardize for high throughput, and 
this aspect needs improvement. Quality and standardi-
zation of the native antigens for ELISAs could be signifi-
cantly enhanced through the production of the parasite 
in vitro. WCLSA prepared this way will guarantee a high 
sensitivity due to the rich panel of native antigens they 
exhibit and the lower degradation occurring during prep-
aration. This method will allow high standardization and 
reproducibility of the antigens produced and also solve 
the ethical problem of using living animals for parasite 
production.

Agglutination tests
Agglutination tests have been developed for trypanoso-
mosis detection; however, most have been abandoned 
due to poor standardization, with the exception of the 
CATT for T. evansi (CATT/T. evansi), which is commer-
cially available from the Institute of Tropical Medicine, 
Antwerp, Belgium [175, 176]. The antigen of this CATT 
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consists of fixed and stained T. evansi Rode Trypanozoon 
antigen type (RoTat) 1.2 parasites produced in rats. The 
test mainly detects IgMs, which are early-circulating 
antibodies. IgMs are pentavalent immunoglobulins pre-
senting very high antigen binding affinity; one advan-
tage of these IgMs is that they are prone to form lattices 
with the antigen. The CATT is carried out on white plas-
tic cards that are rotated for 5 min at 70 revolutions per 
minute (rpm); the agglutination of stained parasites can 
be observed by reading with the naked eye (Fig.  7d). A 
disadvantage of IgMs is that being phagocytized as 
immune-complexes, their concentration in the serum 
fluctuates over time, thereby being responsible for false 
negative test results [177]. As the IgMs have a short half-
life, they are a good indicator of a recent infection, or at 
least of a recent circulation of trypanosomes in the blood. 
CATT/T. evansi is rather inexpensive, fast, simple and 
can be implemented in the field on any host species. Its 
sensitivity is generally high in equids, buffalo, camels, 
sheep, goat and dogs, with a medium specificity. How-
ever, once again, although genus specificity is high, spe-
cies specificity is limited and cross-reactions with other 
Trypanozoon and with T. vivax have been reported [41]. 
Since both specificity and sensitivity of CATT/T. evansi 
are low in cattle and pigs [95, 96], the test is not adapted 
to large-scale studies of these animals.

A specific CATT/T. brucei gambiense is available for 
diagnostic purposes in humans [178]; however, it has not 
been largely used in animals [26]. Its level of specificity in 
animals has not been determined, but it can be presumed 
to be low because of strong cross-reactions already 
observed among Trypanozoon and between T. brucei and 
other Salivarian trypanosomes [173, 179].

Complement fixation test
The CFT allows the detection of T. equiperdum (Doflein, 
1901) antibodies in both asymptomatic equids and in 
individuals with clinical signs based on the use of crude 
antigens derived from the T. equiperdum OVI strain 
ITMAS 241199C that is adapted to rodents [180]. This 
test has been used to confirm cases of Dourine [181], a 
disease that is considered by the OIE to be non-treatable 
[182]. An inter-laboratory ring trial to evaluate CFT for 
Dourine diagnosis that involved 25 reference laboratories 
for Dourine confirmed the reliability of this method and 
the importance of standardizing critical reagents, includ-
ing the crude antigens and the use of a standard T. equi-
perdum serum across multiple laboratories [92, 183].

Trypanolysis test
The trypanolysis test (TL) assesses the presence of spe-
cific antibodies through exposure to live T. evansi RoTat 
1.2 previously grown in mice [184]. The test has been 

shown to exhibit high specificity, although comparative 
studies are scarce. As for tsetse-transmitted trypano-
somes, other strains, such as LiTat 1.3, 1.5 and 1.6, used 
for detection of T. b. gambiense in humans, can also be 
used for detection of T. b. brucei [29], which tends to 
show a limited specificity. The TL is rarely used for diag-
nosis in animals due to it being highly time consuming 
and costly, with substantial technical constraints and the 
ethical issue of growing parasites in live animals. Experi-
mental studies are needed to accurately determine the 
performance of trypanolysis in cattle infected with differ-
ent Trypanozoon [29].

Antibody detection methods based on purified 
or recombinant antigens
Several attempts have been made to improve the poten-
tial for the standardization of ELISAs through the use of 
purified or recombinant antigens. Some of these target 
the VSG, a strategy that could be limited to clonal para-
sites presenting a highly predominant VAT, such as RoTat 
1.2 [184]. The potential limitations of the tests based on 
VSGs have been recently discussed, with the authors con-
cluding that they cannot be the best tools [33]. Indeed, for 
T. evansi, the ELISA using RoTat 1.2 VSG might be too 
specific to be able to detect all variants of the taxon, since 
T. evansi type B does not express this gene [185], while it 
is absent in some other isolates [142]. Surprisingly, a new 
isolate of T. equiperdum was also recently classified as a 
type B [126]. The reliance on RoTat 1.2 VSG as the basis 
for diagnosis thus undoubtedly means that non-RoTat 
1.2 T. evansi will not be detected [119, 143]. Regarding 
other Trypanosoma spp., Auty et al. [33] concluded that 
“the overall within-species diversity in both T. congolense 
and T. vivax [repertoire] probably means that a ‘catch-all’ 
diagnostic test based on VSGs is unlikely to be successful”.

Attempts at developing diagnostic tests for T. evansi 
using invariant antigens were recently made. Although 
the authors claimed the tests were very sensitive and 
specific, comprehensive evaluation is still needed, and it 
is therefore too early to draw conclusions on their value 
[186].

Other attempts at recombinant antigen-based tech-
niques have been made for the development of rapid 
tests; promising as far as standardization is concerned, 
they generally present a lower sensitivity, but exhibit a 
higher specificity when a highly species-specific antigen 
is selected [86, 87, 187–189]. However, recombinant anti-
gen techniques are generally based on a single molecule 
harboring a very limited epitope diversity; as such, they 
can hardly compete with native antigens in terms of sen-
sitivity. Still, such methods could be helpful to develop 
highly species-specific tests to be used as a second diag-
nosis step. For example, in the case of T. cruzi, such tests 
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could allow the diagnostics after screening to be refined 
with a more sensitive tool based on cross-reactions with 
native antigens of T. evansi [190]. On the other hand, a 
recent study has shown that the sensitivity of recombi-
nant antigen-based ELISA could be markedly enhanced 
by combining several recombinant antigens, which opens 
the door to further improvements [191].

Other tests have been developed or are under develop-
ment to target more specific antigens, such as the RDT 
(rapid diagnosis test) for T. vivax and T. congolense [87]. 
Recently, an antigen capture-ELISA test for T. vivax and 
T. congolense using TvGM6 and TcCB1 proteins as anti-
gens, respectively, has been introduced commercially as 
an RDT (CEVA; Ceva Santé Animale, Libourne, France) 
[82, 87]. It is the only RDT to reach this stage for the 
diagnosis of animal African trypanosomosis (AAT), but 
is still not widely available. In addition, it lacks sensitiv-
ity in very early and late infections, and it has the same 
drawbacks as other antibody-detecting tests in terms of 
specificity as it will also detect recent other than past 
infections, which significantly reduces its relevance for 
treatment decision-making. As the RDT format is pri-
marily relevant for diagnosis at the individual level in the 
field (pen-side test), it is to be feared that only tests based 
on antigen detection will be of real commercial interest.

Finally, RDTs for the detection of the human parasites 
T. b. gambiense were evaluated in animals, while the sen-
sitivity was medium to high, specificity was not satisfy-
ing, with the authors concluding that “the SD BIOLINE 
HAT® is not suitable for screening of  T. b. gambiense in 
domestic livestock” [192, 193].

The OIE-recommended ELISA based on WCLSA 
remains the best tool for antibody detection with optimal 
sensitivity. The improvements required on this technique 
can now be fulfilled, thanks to the use of lyophilized rea-
gents and dry samples, and to the in vitro production of 
most of the ATAO. It can then be expected, in the near 
future, that WCLSA will be prepared from well-stand-
ardized in vitro-produced parasites.

Conclusions on serological diagnosis
Serological methods for trypanosomoses appear useful, 
thanks to their high sensitivity and specificity regard-
ing the pathogenic trypanosomes (T. theileri-infected 
animals do not show seropositivity). However, cross-
reactions are very strong between pathogenic trypano-
somes [173], or even Leishmania, in humans and animals 
[69, 194, 195]. Consequently, routine antibody detec-
tion methods for trypanosomoses are not species spe-
cific. Thus, the seropositivity of an animal to one of the 
antibody detection methods used (T. vivax, T. evansi, 
T. brucei, T. congolense, Leishmania, T. cruzi, etc.) must 
be interpreted as a positivity to one or several of the 

Trypanosoma and/or Leishmania species present in the 
geographical area (see Fig. 5). For example, in the Ameri-
cas, a dog testing seropositive to Leishmania may be—or 
may have been—infected “either or/and” by Leishmania, 
T. evansi and T. cruzi. In Africa, when seropositive to T. 
vivax ELISA, bovines can be considered as “are currently, 
or have been infected”, “either or/and” by T. vivax, Leish-
mania, T. congolense s.l., T. brucei spp. and/or T. evansi. 
Users of serological detection methods should be fully 
aware of this limitation, which is too often overlooked.

Tools for the detection of animal trypanosomes 
in humans
Typical human trypanosomes are T. b. gambiense and 
T. b. rhodesiense in Africa, and T. cruzi in the Americas. 
Their specific diagnosis methods, quite similar to those 
used in animals, is reviewed elsewhere (see “Proper use 
and perspective on diagnosis methods for animal trypa-
nosomoses” [51]). Briefly, they include: (i) clinical sus-
picions; (ii) parasitological techniques (direct blood or 
lymph microscopic examination, HCT and mAECT) 
[196, 197]; and (iii) serological techniques, such as IFAT, 
ELISA, CATT/T. b. gambiense, RDTs and TL specific 
for sleeping sickness [198–202]. With the exception of 
the latter, which exhibits high species specificity, these 
serological tests have low species specificity. However, in 
a given epidemiological setting, where only one patho-
genic trypanosome species or subspecies is expected in 
humans, a genus-specific diagnosis is sufficient for popu-
lation screening. Molecular techniques are also useful in 
conjunction with mAECT to detect T. brucei spp. [203]. 
Therefore, the use of these tools must be tailored to the 
final purpose of the investigation, which may be an epi-
demiological study, blood bank screening or individual 
diagnosis for treatment decision-making or follow-up.

Although humans have innate immunity against most 
animal trypanosomes [204], a few cases of human infec-
tions with animal trypanosomes have been reported. A 
small part was due to T. vivax and T. congolense, but most 
of the confirmed cases were due to T. evansi (agent of the 
Surra in animals) and T. lewisi (parasite of rats transmit-
ted by fleas), which were detected occasionally in Africa, 
but mostly in Asia [12]. In particular, two T. evansi cases 
of febrile episodes were detected by microscope examina-
tion of blood and confirmed by molecular assays in India 
in 2004 [205, 206] and in Vietnam in 2015 [207]. For the 
diagnosis of T. evansi in humans, CATT/T. evansi, ELISA 
T. evansi, parasitological techniques and PCR commonly 
used for animals were applied (with only slight modifica-
tions for ELISA) [207].

For T. lewisi, a dozen cases have been described with 
variable issues: self-cure in some cases, successful treat-
ment using drugs effective for HAT (pentamidine, 
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suramine, melarsoprol) or death [208]. However, recent 
observations demonstrated that none of these trypano-
cides was efficient against a T. lewisi isolated in Thailand 
[209]. Moreover, resistance testing to normal human 
serum reveals that T. lewisi is a potentially underesti-
mated human pathogen [210]. The increase of anthropi-
zation and the presence of invasive rodents dwelling with 
humans in poor living conditions reinforces the hypothe-
sis of in-door contamination of humans by T. lewisi [211].

Pertaining to the diagnosis of T. lewisi in humans, most 
of the known cases have so far been identified by direct 
microscope observation (Fig.  6) and by molecular tech-
niques; specific primers hybridizing inside the ITS1 were 
published to detect T. lewisi DNA [96]. In Thailand, a 
45-day-old infant infected with a T. lewisi-like was indeed 
diagnosed based on the ITS1 sequence [212]. Attempts to 
develop ELISA T. lewisi were recently made with promis-
ing results [213]; however, human reference serum sam-
ples are still lacking for the standardization of such tests.

Conclusions
The diagnosis of trypanosomoses can proceed based on 
evidence of: (i) the parasite itself, with limited sensitiv-
ity and specificity; (ii) its DNA, with higher sensitiv-
ity and potentially high specificity (although limited 
within the Trypanozoon); (iii) immunoglobulins directed 
against more or less specific parasite antigens. The char-
acteristics of these tests must be carefully considered for 
effective application according to the different epidemio-
logical situations. In addition, a comprehensive analysis 
of the proper use of these diagnostic techniques will be 
necessary to adapt recommendations and to support 
the prospects of developing complementary diagnostic 
methods, including rapid tests that could be applied indi-
vidually for decision making in the field.
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