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Abstract 

Background: Among the 18 genera of the Triatominae subfamily, three stand out for their diversity and epidemio‑
logical importance: Triatoma, Panstrongylus, and Rhodnius. Rhodnius includes 21 species that can transmit Trypano-
soma cruzi (the etiological agent of Chagas disease, also known as American trypanosomiasis) and Trypanosoma 
rangeli. The Rhodnius prolixus complex comprises seven species, including Rhodnius marabaensis, Rhodnius prolixus, 
and Rhodnius robustus, which occur in the northern region of Brazil. Since both adults and immatures can carry T. cruzi, 
in this study the five nymphal instars of the three species mentioned were dorsally characterized.

Methods: Using microscopy, morphometrics, and geometric morphometrics, the present work measures and 
describes the morphological characters of the five nymphal instars of R. marabaensis, R. prolixus, and R. robustus.

Results: The study enabled the characterization of all five nymphal instars, as well as the distinction between the 
three species in each of their instars.

Conclusions: The morphological, morphometrics of the head, thorax, and abdomen and geometric morphometrics 
studies of the head enabled the specific distinction of these three species in all five instars.
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Background
Chagas disease is an endemic infection in the Ameri-
cas caused by the protozoan Trypanosoma cruzi (Cha-
gas, 1909) (Kinetoplastida, Trypanosomatidae) [1] and 
transmitted mainly by triatomines [2]. In South America, 
the Amazon region has a large potential to disseminate 
the disease, both for the relevant number of triatomine 
species living there and the difficulties related to vector 

surveillance and control [3]. In addition to the transmis-
sion by feces/urine infected with the protozoan, cases by 
oral transmission occurred due to the ingestion of food 
contaminated with T. cruzi, such as the juices of açaí 
(Euterpe oleracea), bacaba (Oenocarpus bacaba), jaci 
(Attalea butyracea), orange (Citrus sinensis), guava (Psid-
ium guajava), sugarcane, and palm wine [3–5].

All species of Triatominae are potential or proven 
vectors of T. cruzi [6–8]. These species are placed into 
18 genera, including Rhodnius Stål, 1859, which in 
addition to T. cruzi can transmit Trypanosoma rangeli 
Tejera, 1920 [9]. Although there is no evidence that T. 
rangeli is pathogenic to vertebrates, when examining or 
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isolating Trypanosomatidae strains from triatomines, 
it is necessary to identify whether it is T. cruzi or T. 
rangeli [10]. Rhodnius has 21 species [11], of which 10 
are found in northern Brazil: Rhodnius amazonicus 
Almeida, Santos & Sposina, 1973; Rhodnius barretti 
Abad-Franch et  al., 2013; Rhodnius brethesi Matta, 
1919; Rhodnius milesi Carcavallo et al., 2001; Rhodnius 
montenegrensis Rosa et  al., 2012; Rhodnius paraensis 
Sherlock et al., 1977; Rhodnius pictipes Stål, 1872; Rho-
dnius prolixus Stål, 1859; Rhodnius robustus Larrousse, 
1927, and Rhodnius marabaensis Souza et al., 2016 [12, 
13].

Species belonging to Rhodnius present well-defined 
morphological characters that facilitate their identifica-
tion in the Triatominae subfamily, but distinguishing 
them from one another is a complex task [2, 14]. The 
typical morphology of Rhodnius is characterized by the 
position of the antennal tubercle on the apex of the head 
and the absence of phallosome support in the genitalia of 
some species [2, 12, 14]. Their color tends towards dark/
light brown, with spots that can be sharp [2]. Nymphs 
are characterized by an elongated head, antennal tuber-
cles located in the distal one-third or one-fourth of the 
anteocular area, absence of ocelli, and spotted abdomen 
on the back. Median tubercles are located dorsally on the 
central longitudinal line from segment I–X [2, 9, 14–16]. 
Because of the related taxonomic difficulties and its epi-
demiological importance, Rhodnius is widely studied, yet 
its phylogeny has not been clarified and requires new 
studies [11, 17].

The tribe Rhodniini (Rhodnius + Psammolestes Ber-
groth, 1911) consists of a monophyletic group of two 
genera naturally occurring in the Neotropical region 
[18]. Arboreal habits are common in the genus, and most 
are associated with one or more palm species. Among 
the species studied in this work, R. robustus is found in 
Bolivia, Colombia, Ecuador, Peru, and Venezuela, as well 
as northern Brazil [2, 19]. In wild environments it is gen-
erally found in a variety of palm species, its presence hav-
ing also been reported in domiciles and peridomiciles 
[20, 21]. This species is also related to food contamina-
tion and infection of forestry workers [22, 23]. Rhodnius 
robustus is very close to R. montenegrensis, but molecular 
studies have confirmed the specific status of each species 
[24, 25].

Rhodnius marabaensis, described in 2016 from the 
state of Pará, has a straw color, and its dorsal thorax has 
a trapezoidal shape limited by a straw carina. Its lobes 
usually show a black-spot pattern. The larger length of 
the second antennal segment and the keel-shaped head 
apex are two of the main morphological features of adults 
[12]. Recently, R. marabaensis had its specific status vali-
dated by transposable element analysis [25], as well as its 

biological cycle [26]. It is a species found in the wild with 
moderate epidemiological importance [12].

Rhodnius prolixus is considered the most important 
species in the transmission of Chagas disease in Vene-
zuela, Colombia, and Central America [2, 19]. One of the 
factors that contribute to this is its optimal adaptation 
to human dwellings. It is similar to R. robustus, which 
makes the separation between them more difficult [27].

Taking all these considerations into account, this study 
aims to characterize R. marabaensis, R. prolixus, and R. 
robustus both morphologically and morphometrically, 
making it easier to distinguish the five nymphal instars 
of these three species. In addition to the epidemiologi-
cal importance of the five nymphal instars, as they can 
carry T. cruzi and T. rangeli [9], the taxonomic validity of 
the study of their morphological characters must also be 
considered. Although the epidemiological importance of 
R. marabaensis is still unknown on account of its recent 
description, R. prolixus and R. robustus are important 
vectors of Chagas disease in the areas where they occur.

Methods
Specimens
Specimens maintained in the Triatominae Insectarium 
(temperature 24  °C and 63% humidity) at the Faculty of 
Pharmaceutical Sciences of the São Paulo State Univer-
sity (Unesp-Araraquara) (https:// www2. fcfar. unesp. br/# 
!/ triat ominae/) were used. Rhodnius marabaensis spec-
imens (Figs.  1, 2, 3, 4, 5a, b) that originated the colony 

Fig. 1 First‑instar nymphs. Rhodnius marabaensis: a dorsal view, b 
ventral view; R. prolixus: c dorsal view, d ventral view; R. robustus: e 
dorsal view, f ventral view

https://www2.fcfar.unesp.br/#!/triatominae/
https://www2.fcfar.unesp.br/#!/triatominae/
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were collected in the county of Marabá, state of Pará, 
Brazil on May 12, 2014. The founders of the R. prolixus 
colony (Figs. 1, 2, 3, 4, 5c, d) were collected in Venezuela 

on May 23, 1983. The colony of R. robustus (Figs. 1, 2, 3, 
4, 5e–f) originated from specimens collected on January 
13, 2016, in the county of Ouro Preto do Oeste, state of 

Fig. 2 Second‑instar nymphs. R. marabaensis: a dorsal view, b ventral 
view; R. prolixus: c dorsal view, d ventral view; R. robustus: e dorsal 
view, f ventral view

Fig. 3 Third‑instar nymphs. R. marabaensis: a dorsal view, b ventral 
view; R. prolixus: c dorsal view, d ventral view; R. robustus: e dorsal 
view, f ventral view

Fig. 4 Fourth‑instar nymphs. R. marabaensis: a dorsal view, b ventral 
view; R. prolixus: c dorsal view, d ventral view; R. robustus: e dorsal 
view, f ventral view

Fig. 5 Fifth‑instar nymphs. R. marabaensis: a dorsal view, b ventral 
view; R. prolixus: c dorsal view, d ventral view; R. robustus: e dorsal 
view, f ventral view
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Rondônia, Brazil. Nymphs of first, second, third, fourth, 
and fifth instars were taken from the respective colonies 
on the same day they were utilized. First-instar nymphs 
were selected right after egg hatching. Nymphs of second, 
third, fourth, and fifth instars were selected immediately 
after ecdysis (no abdominal distension from feeding). The 
nymphs were only fed (on ducks), every 7 days, to pass 
through the instars. The morphological and morphomet-
ric studies were conducted without verifying the gender 
distinction of the five nymphal instars.

Morphological study
To generate images, five specimens of each of the five 
instars of R. marabaensis, R. prolixus, and R. robustus 
were used. Images of the dorsal sides of the head, thorax, 
and abdomen as well as the complete images of each of 
the five instars from dorsal view were obtained using a 
Leica M205 stereoscopic microscope and Leica Applica-
tion Suite X software.

Morphometric study
Fifteen specimens of first-, second-, third-, fourth-, and 
fifth-instar nymphs of R. marabaensis, R. prolixus, and 
R. robustus were measured using a Leica MZ APO ste-
reoscopic microscope and the Motic Advanced 3.2 plus 
image analysis system.

The total length (TL), head length (HL), thorax length 
(XL), and abdomen length (AL) were measured for 
nymphs of all instars. Following Dujardin et  al. [28], 
interocular (IO), anteocular (AO), and postocular (PO) 
distances were measured, as well as the three visible seg-
ments of the labium. The four antennal segments were 
also measured, according to Rosa et al. [29]. All measure-
ments are expressed in millimeters.

The obtained data were analyzed by descriptive sta-
tistics, using t-tests for mean and standard deviation. 
Analysis of variance (ANOVA) and Tukey’s pairwise 
comparison were performed to evaluate the degree of 
differentiation of the three species using PAST soft-
ware (Additional file 1).

Geometric morphometrics of heads
Geometric morphometrics was used to evaluate vari-
ations in head shape and size using Cartesian reference 
coordinates. Variations among the heads of all nymphal 
instars of the studied species were evaluated. Fifteen 
heads of each instar were selected, and the images were 
obtained using a stereoscopic magnifying glass coupled 
to the Motic Advanced 3.2 plus scanning system. The 
coordinates of the reference points were selected accord-
ing to Bookstein [30]. Four landmarks were adopted for 
the first and second instars and five landmarks for the 
other instars (Additional file  2). All of the landmarks 

are type 1 and were collected and processed using the 
modules available in the tpsDig v.1.18 software [31] and 
digitized using the CLIC package (https:// xyom- clic. eu/ 
the- clic- packa ge/). Then the file with the raw coordinates 
was used for a generalized Procrustes analysis (GPA). 
GPA is a method that allows all the information related to 
size, position, and orientation of previously digitized ana-
tomical frames to be eliminated [31]. The matrix of form 
was held in Euclidean space to generate a set of marks 
known as partial warps [30]. All the additional statistical 
forms were performed using Procrustes residues to ana-
lyze differences in the size and shape of the heads of each 
nymphal instar  (Additional file  3). Procrustes ANOVA 
(p < 0.0001) [32] is used to infer differences between spe-
cies. Procrustes ANOVA is a method for quantifying 
relative amounts of variation at different levels. These 
differences in size were assessed using an isometric esti-
mator defined as centroid size (CS) [33]. Mahalanobis 
distances between pairs of species were calculated for 
measurements of shape and significance was assessed 
using a non-parametric test based on permutations 
(bootstrap, 10,000 replications) using MorphoJ [34]. In 
addition to that, using distance dice from Mahalanobis, 
neighbor-joining trees (NJ) were recovered using PAST 
v.3.25 [35]. To determine the relationships between spe-
cies, canonical variable analysis (CVA) was performed 
using MorphoJ [34]. The CVA was performed associated 
with a resampling method (bootstrap, 10,000 replica-
tions) to build regions of trust in relation to the median 
size of the species center. A factorial map of the first two 
canonical fathers was created using MorphoJ, version 
1.0.7a [34] (Additional file 3).

Results
Morphological description of the five nymphal instars 
of R. marabaensis, R. prolixus, and R. robustus by optical 
microscopy
First instar: the head of the nymphs has a dark-brown 
cuticle covering all its granular extension due to the pres-
ence of tubercles with small setae, whose color is darker 
than that of the cuticle. The maxillary plate and man-
dibular plate showed no significant differences among 
the species. Regarding the postocular area, the species 
shows Y-shaped cephalic sutures (Fig. 6a–c). On the tho-
rax, there are tubercles with setae in the three segments, 
located mainly in the center. The pronotum has a trap-
ezoidal shape and is the segment with larger external 
borders, followed by the metanotum and the mesono-
tum. The three segments are well delimited by the divid-
ing lines, but the line separating the mesonotum from the 
metanotum shows a sinuous protuberance that overlaps 
the metanotum in about one-third of its size (Fig. 6d–f). 
The abdomen of first-instar nymphs has a lighter color 

https://xyom-clic.eu/the-clic-package/
https://xyom-clic.eu/the-clic-package/
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in comparison with the thorax and the head. There are 
many tubercles with setae lighter colored than the cuti-
cle. Connexivum with darker spots along the margin sur-
rounding the abdomen. A lighter median longitudinal 
stripe is evident all over the abdomen (Fig. 6g–i).

Second instar: the general aspects of the head of sec-
ond-instar nymphs are similar to those described for 
first-instar nymphs. However, some differences are 
noticeable, such as the increase in the granulation grade 
and the number of setae in the three species, as well as 
the lighter color of the cuticle (Fig. 7a–c). Tubercles with 
setae are present in the three segments of the thorax, 
located mainly in the central portion. It is not possible 
to quantify the difference in size between the mesono-
tum and the metanotum, but, as in the first instar, the 
metanotum is broad on the sides and narrow in the cen-
tral portion. The three segments are well delimited by 
the dividing lines, but the line separating the mesonotum 

from the metanotum has a sinuous protuberance that 
overlaps the metanotum in about one-third of its size 
(Fig. 7d–f). The abdomen has a median spot lighter than 
the cuticle in the dividing line of each of the urotergites, 
resembling a stripe. The connexival spots are more evi-
dent in this instar (Fig. 7g–i).

Third instar: for the three species, the maxillary plates 
are more rounded and extend until the end of the clypeus. 
Postocular cephalic sutures are also more rounded and 
roughly have a U-shape (Fig. 8a–c). Tubercles with setae 
are present in the three segments of the thorax, dis-
tributed across them. The pronotum has the shape of a 
trapezium and is the segment with the largest external 
borders, followed by the mesonotum and the metano-
tum. The three segments are well delimited by the divid-
ing lines, but the line separating the mesonotum from the 
metanotum has a sinuous protuberance that overlaps the 
metanotum in about one-third of its size (Fig. 8d–f). The 

Fig. 6 Dorsal view of first‑instar nymphs. Head, thorax, and abdomen. a, d, g: R. marabaensis; b, e, h: R. prolixus; c, f, i: R. robustus; cs cephalic suture, 
tu tubercle, ao anteocular distance, po postocular distance, mt metanotum, ms mesonotum, pr pronotum, I–X abdominal segments
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three species possess 2 + 2 dark stripes across the abdo-
men. An increase of spots in the connexivum can also be 
observed. In R. marabaensis abdominal segments III and 
IV are the broadest. The segments widen from segment 
I to III and gradually narrow from segment VI onwards. 
A central stripe of straw color is also easily visible on 
the abdomen of this species, and from the sides there is 
another straw-colored stripe, located between two black 
stripes. These three stripes are arched and have the same 
shape as the abdomen, but they are not continuous, as 
they are interrupted in the intersegmental sutures. In R. 
prolixus and R. robustus the largest abdominal segment is 
the IV (Fig. 8g–i).

Fourth instar: fourth-instar nymphs present some 
peculiar characteristics, such as triangular mandibular 
plate, rounded maxillary plate surpassing the clypeus, and 
a higher granulation grade near the eyes (Fig. 9a–c). The 

three segments of the thorax have tubercles with setae. 
The mesonotum is the largest segment in this instar due 
to the presence of the first pair of wing pads. The second 
pair of wing pads originates from the metanotum. The 
three segments are well delimited by the dividing lines 
(Fig.  9d–f). In all three species the dark stripes on the 
abdomen are more evident, which gives the area a striped 
aspect. In this instar, the connexivum spots become more 
rounded. The central stripe on the abdomen has the same 
aspect as in the third instar and differentiates the three 
species: in R. marabaensis the three side stripes on the 
abdomen, a straw-colored stripe between two black ones 
to the right and left, are similar to what is observed in the 
third instar (Fig. 9g–i).

Fifth instar: in this instar, all three species also have 
a quite visible white stripe on the head (Fig.  10a–c). 
There are tubercles with setae in the three segments of 
the thorax. The posterior pair of wing pads can be seen 

Fig. 7 Dorsal view of second‑instar nymphs. Head, thorax, and abdomen. a, d, g: R. marabaensis; b, e, h: R. prolixus; c, f, i: R. robustus; cs cephalic 
suture, tu tubercle, ao anteocular distance, po postocular distance, mt metanotum, ms mesonotum, pr pronotum, I–X abdominal segments
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overlapping, projecting from the mesonotum through 
the anterior pair, which in turn projects from the mes-
onotum (Fig. 10d–f). It is possible to see only the central 
area of the metanotum as a result of this large overlap-
ping. The anterior pair of wing pads reach the beginning 
of the third urotergite. In this instar, the central line of 
the abdomen retains the characteristics observed in the 
third and fourth instars. In R. marabaensis the three side 
stripes on the right and left (one straw and two black) 
observed in the third and fourth instars are still present. 
There is also an increase in the number of tubercles with 
setae (Fig. 10g–i).

In this study, morphological differences were also 
observed between the three species in their five nymphal 
instars (Table 1). 

Morphometric study of the five nymphal instars of R. 
marabaensis, R. prolixus, and R. robustus
With the acquired data it was possible to calculate the 
mean for each parameter and species, and then compare 
them to evaluate the degree to which the three Rhodnius 
species differ.

In the first and second instars, none of the parameters 
were statistically significant to evaluate the degree of the 
differences among the three Rhodnius species. As for the 
third instar, the parameter of the third segment of the 
antenna (F(2,42) 23.12, P = 1.693) was significant (Table 2). 
In the fourth instar, only the postocular distance stands 
out (F(2,42) 13.64, P = 2.718) (Table 3). Lastly, on the fifth 
instar, just the second segment of the antenna (F(2,42) 
36.32, P = 6.965) (Table  2) made it possible to evaluate 
the degree of the difference between R. marabaensis, R. 
prolixus, and R. robustus. 

Fig. 8 Dorsal view of third‑instar nymphs. Head, thorax, and abdomen. a, d, g: R. marabaensis; b, e, h: R. prolixus; c, f, i: R. robustus; ne neck, cs 
cephalic suture, tu tubercle, at anteniferous tubercle, ge maxillary plate, cl clypeus, ao anteocular distance, po postocular distance, mt metanotum, 
ms mesonotum, pr pronotum, I–X abdominal segments
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Geometric morphometrics of the five nymphal instars of R. 
marabaensis, R. prolixus, and R. robustus
By ontogenetic geometric morphometry of the heads 
of nymphs, it was possible to describe the differences in 
shape and size of the five instars of R. robustus, R. pro-
lixus, and R. marabaensis. CS measures show variabil-
ity in the head size of the species. Furthermore, by the 
isometric measurement of the CS, the size gain among 
immature shapes can be clearly seen (Fig.  11). Analysis 
of the CS shows that differences among the size means 
are significant (p < 0.0001, supplementary material). Rho-
dnius robustus and R. prolixus have larger means than R. 
marabaensis (Fig. 11). Differences can also be explained 
as a percentage of the total variance among groups in 
the eigenvalues (auto values), the percentages being 89% 
for the first instar, 83% for the second, 98% for the third, 
93% for the fourth, and 90% for the fifth. Mahalanobis 

distance was used as a metric estimator. The estima-
tor considers the variations and correlations among 
groups defined a priori and enables pairwise compari-
son. Mahalanobis distances were significant among the 
pairs of the assessed species (p < 0.001, supplementary 
material). Dendrograms were built based on the values 
recovered for Mahalanobis distances and neighbor join-
ing (NJ). The topology is identical for all instars (Fig. 12). 
It was possible to delimit the proximity between R. pro-
lixus and R. marabaensis (Fig.  12). Procrustes ANOVA 
test also recovered significant values, showing shape dif-
ferences among the species (p < 0.0001, supplementary 
material).

The projection of the three species in the space defined 
by canonical axes 1 (CVA1) and 2 (CVA2) provides a 
description of the specified groups in the set of multivari-
ate data. The analyses of the canonical variables resulted 

Fig. 9 Dorsal view of fourth‑instar nymphs. Head, thorax, and abdomen. a, d, g: R. marabaensis; b, e, h: R. prolixus; c, f, i: R. robustus; ne neck, ju 
mandibular plate, ge maxillary plate, cl clypeus, ao anteocular distance, po postocular distance, mt metanotum, ms mesonotum, pr pronotum, I–X 
abdominal segments
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in 10 variables and explain 100% of the discrimina-
tion among the species (Fig. 13). The first two variables 
(CVA1 and CVA2) generated the following percentages: 
85.2% and 22.49% for the first instar; 47.76% and 21.48% 
for the second; 97.1% and 3% for the third; 92.8% and 
3% for the fourth; and 85.2% and 22.49% for the fifth 
(Fig. 13). The grouping in the space of the canonical axis 
shows an overlapping relationship between R. prolixus, 
R. robustus, and R. marabaensis in the first and fourth 
instar; however, the separation of populations in the sec-
ond, third, and fifth instars is clear. R. marabaensis is the 
species that was best separated in the CVA analysis.

Discussion
A striking feature of Triatominae is that males, females, 
and nymphs of all instars can transmit T. cruzi if infected 
[36, 37]. In several field collections carried out between 

1989 and 2021 by Rosa et al. [unpublished data], a higher 
prevalence of nymphs than adults was observed. Thus, 
studies regarding the specific identification of nym-
phal instars become necessary, which is the objective of 
this study. Therefore, studies about nymphal instars not 
only have taxonomic and phylogenetic interest, but also 
have epidemiological importance. Specifically, about 
the genus Rhodnius, the following works can be men-
tioned: Mascarenhas [38], which studied the five instars 
of R. brethesi; Ponsoni et  al. [39] and Marconato et  al. 
[40], which carried out a biometric study of nymphs of 
R. neglectus Lent, 1954 and R. prolixus; and Santos [41], 
which described nymphs of the five instars of Rhodnius 
colombiensis Meija, Galvão & Jurberg, 1999, Rhodnius 
ecuadoriensis Lent & León, 1958, R. milesi, and Rhodnius 
stali Lent, Jurberg & Galvão, 1993.

Fig. 10 Dorsal view of fifth‑instar nymphs. Head, thorax, and abdomen. a, d, g: R. marabaensis; b, e, h: R. prolixus; c, f, i: R. robustus; ne neck, ju 
mandibular plate, ge maxillary plate, cl clypeus, ac anteclypeus, ao anteocular distance, po postocular distance, mt metanotum, ms mesonotum, pr 
pronotum, I–X abdominal segments
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Morphological characters are useful tools for taxo-
nomic and systematic studies in Triatominae, in addition 
to being useful for epidemiological surveillance. The mor-
phological analyses showed the separation of the three 

species by characters observed on the head, thorax, and 
abdomen shape. This made it possible to separate them 
in all five nymphal instars and to characterize for the first 
time the development instars of R. marabaensis. In their 

Table 2 Mean and standard deviation of the antennal and labium segments of three species of Rhodnius 

Means with different superscripts at each site are significantly different from each other (one-way ANOVA followed by a Tukey test). In bold, we present statistically 
significant measurements for all three comparisons in Tukey’s pairwise test for differentiation of the species. Mean in millimeters

Seg segment

Instars Species Characters

Antenna Labium

1st seg 2nd seg 3rd seg 4th seg 1st seg 2nd seg 3rd seg

R. marabaensis 0.14 ± 0.02A 0.36 ± 0.02A 0.69 ± 0.03A 0.64 ± 0.03A 0.17 ± 0.01A 0.52 ± 0.02A 0.29 ± 0.01A

First R. prolixus 0.13 ± 0.01A 0.43 ± 0.02B 0.73 ± 0.03B 0.62 ± 0.03A 0.17 ± 0.01AB 0.54 ± 0.02BC 0.28 ± 0.01AC

R. robustus 0.13 ± 0.01A 0.37 ± 0.02A 0.68 ± 0.03A 0.63 ± 0.05A 0.16 ± 0.01AC 0.53 ± 0.03AC 0.27 ± 0.03BC

R. marabaensis 0.17 ± 0.01A 0.60 ± 0.03A 0.94 ± 0.03A 0.83 ± 0.06A 0.24 ± 0.02A 0.86 ± 0.03A 0.34 ± 0.01A

Second R. prolixus 0.17 ± 0.01AB 0.68 ± 0.03B 0.95 ± 0.05A 0.78 ± 0.05A 0.26 ± 0.01B 0.86 ± 0.02A 0.37 ± 0.01B

R. robustus 0.16 ± 0.01AC 0.59 ± 0.04A 0.93 ± 0.05A 0.79 ± 0.05A 0.24 ± 0.01A 0.81 ± 0.04B 0.35 ± 0.02A

R. marabaensis 0.22 ± 0.01A 0.99 ± 0.05A 1.29 ± 0.05A 1.05 ± 0.08A 0.38 ± 0.03A 1.25 ± 0.08A 0.43 ± 0.02A

Third R. prolixus 0.22 ± 0.01A 0.94 ± 0.03B 1.16 ± 0.05B 0.88 ± 0.08B 0.35 ± 0.03B 1.21 ± 0.07AB 0.45 ± 0.02A

R. robustus 0.22 ± 0.01A 0.99 ± 0.03A 1.24 ± 0.05C 0.95 ± 0.10B 0.39 ± 0.01A 1.29 ± 0.10AC 0.44 ± 0.03A

R. marabaensis 0.30 ± 0.01A 1.64 ± 0.15A 1.73 ± 0.14A 1.38 ± 0.16A 0.55 ± 0.04A 2.17 ± 0.15A 0.63 ± 0.05A

Fourth R. prolixus 0.29 ± 0.02A 1.39 ± 0.09B 1.46 ± 0.13B 1.12 ± 0.08B 0.58 ± 0.07AB 1.95 ± 0.07B 0.64 ± 0.05A

R. robustus 0.32 ± 0.01B 1.65 ± 0.10A 1.67 ± 0.10A 1.31 ± 0.09A 0.52 ± 0.06AC 1.87 ± 0.08B 0.54 ± 0.06B

R. marabaensis 0.41 ± 0.02A 2.71 ± 0.13A 2.36 ± 0.09A 1.60 ± 0.23A 0.73 ± 0.05A 3.10 ± 0.15A 0.79 ± 0.04A

Fifth R. prolixus 0.40 ± 0.01A 2.17 ± 0.10B 1.90 ± 0.15B 1.37 ± 0.12BC 0.74 ± 0.05AC 2.66 ± 0.06B 0.75 ± 0.07AB

R. robustus 0.40 ± 0.02A 2.48 ± 0.24C 2.19 ± 0.29A 1.47 ± 0.21AC 0.79 ± 0.05BC 3.15 ± 0.15A 0.83 ± 0.03AC

Table 3 Mean and standard deviation of the parameters of the three species of Rhodnius 

Means with different superscripts at each site are significantly different from each other (one-way ANOVA followed by a Tukey test). In bold, we present statistically 
significant measurements for all three comparisons in Tukey’s pairwise test for differentiation of the species. Mean in millimeters

TL total length, HL head length, XL thorax length, AL abdomen length, IO interocular distance, AO anteocular distance, PO postocular distance

Instars Species Characters

TL HL XL AL IO AO PO

R. marabaensis 2.55 ± 0.08A 0.87 ± 0.02A 0.38 ± 0.01A 1.17 ± 0.07A 0.30 ± 0.01A 0.52 ± 0.02A 0.22 ± 0.02A

First R. prolixus 2.66 ± 0.14AB 0.89 ± 0.03AB 0.37 ± 0.02A 1.29 ± 0.10B 0.29 ± 0.02A 0.55 ± 0.03B 0.21 ± 0.01B

R. robustus 2.51 ± 0.15AC 0.85 ± 0.02AC 0.56 ± 0.02A 1.09 ± 0.11A 0.29 ± 0.03A 0.49 ± 0.03A 0.23 ± 0.02A

R. marabaensis 4.49 ± 0.38A 1.24 ± 0.03A 0.65 ± 0.03A 2.22 ± 0.14A 0.36 ± 0.01A 0.81 ± 0.02A 0.26 ± 0.02A

Second R. prolixus 4.56 ± 0.33AB 1.27 ± 0.04AB 0.68 ± 0.04AB 2.42 ± 0.19B 0.37 ± 0.02A 0.83 ± 0.03AB 0.26 ± 0.01A

R. robustus 4.22 ± 0.36AC 1.20 ± 0.07AC 0.63 ± 0.05AC 2.11 ± 0.22A 0.34 ± 0.02B 0.78 ± 0.06AC 0.25 ± 0.02A

R. marabaensis 6.53 ± 0.30A 1.77 ± 0.07A 0.96 ± 0.05A 3.21 ± 0.20A 0.43 ± 0.03A 1.13 ± 0.05A 0.37 ± 0.02A

Third R. prolixus 6.63 ± 0.26AC 1.62 ± 0.05B 0.99 ± 0.04AC 3.45 ± 0.34A 0.45 ± 0.02AC 1.16 ± 0.03A 0.33 ± 0.02B

R. robustus 6.84 ± 0.39B 1.81 ± 0.09A 1.02 ± 0.06BC 3.44 ± 0.19A 0.46 ± 0.02BC 1.16 ± 0.06A 0.33 ± 0.02B

R. marabaensis 10.19 ± 0.46A 2.74 ± 0.16A 1.78 ± 0.12A 5.13 ± 0.34A 0.63 ± 0.03A 1.94 ± 0.12A 0.51 ± 0.03A

Fourth R. prolixus 10.51 ± 0.40A 2.60 ± 0.09BC 1.78 ± 0.08A 5.31 ± 0.28A 0.65 ± 0.02A 1.84 ± 0.06B 0.47 ± 0.02B

R. robustus 10.57 ± 0.54A 2.69 ± 0.12AC 1.83 ± 0.08A 5.31 ± 0.44A 0.65 ± 0.03A 1.93 ± 0.08A 0.49 ± 0.02C

R. marabaensis 13.63 ± 0.50A 3.88 ± 0.19A 2.95 ± 0.15A 7.34 ± 0.40A 0.82 ± 0.04A 2.72 ± 0.12A 0.67 ± 0.05A

Fifth R. prolixus 13.33 ± 0.40A 3.57 ± 0.16B 2.86 ± 0.13AB 7.31 ± 0.39A 0.82 ± 0.03AC 2.48 ± 0.11B 0.59 ± 0.02B

R. robustus 13.39 ± 0.70A 3.94 ± 0.19A 3.01 ± 0.16AC 7.39 ± 0.49A 0.86 ± 0.03BC 2.73 ± 0.14A 0.65 ± 0.02A
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Fig. 11 Geometric morphometry‑based boxplot of centroid sizes (in pixels) among R. marabaensis, R. prolixus, and R. robustus. The thick black bar 
shows the standard error. a first instar; b second instar; c third instar; d fourth instar; e fifth instar

Fig. 12 Neighbor‑joining (NJ) tree generated from the measurements of Mahalanobis for the five nymphal instars of R. marabaensis, R. prolixus, and 
R. robustus (boot number = 100). a first instar; b second instar; c third instar; d fourth instar; e fifth instar
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chapter about nymphal instars, Lent and Wygodzinsky 
[2] mentioned that R. prolixus and R. robustus do not 
have sub median tubercles or aggregations of granules 
along the midline, but such characters were observed in 
all five nymphal instars of those species, as well as in R. 
marabaensis. Rosa et al. [37], studying first- and second-
instar nymphs of Triatoma wygodzinskyi Lent, 1951, dis-
tinguished the two instars by morphological characters 
of the thorax. Thus, by scanning electronic microscopy, 
they observed the absence of collar, glabrous areas, and 
tubercles in the first instar of T. wygodzinskyi, which were 
present in the second instar. Nevertheless, the differen-
tiation among third, fourth, and fifth instars of R. mara-
baensis, R. prolixus, and R. robustus was made using the 
same characters observed by Rosa et al. [37] in nymphs of 
the previously mentioned instars of T. wygodzinskyi, i.e., 
the formation and conformation of the two pairs of wing 
pads located on the thorax. Although the ventral surface 
was not described, it is very likely that in future studies, 
new differential characters between the three species will 
be added to those already described in this work.

In this study, the results of the morphometry of char-
acters from the abdomen, antenna, head, labium, and 

thorax showed little discrimination between the three 
species. In general, the compared averages are small or 
not significant, and the morphometric study is not suit-
able for identification. However, R. marabaensis had its 
nymphs characterized morphometrically and morpho-
logically for the first time.

The relative length of the four antennal segments in R. 
marabaensis showed the same pattern for the first three 
instars, another for the fourth instar, and a third pattern 
for the fifth instar, whereas R. prolixus and R. robustus 
showed the same pattern for the first and second instars, 
another for the third and fourth instars, and a third one 
for the fifth instar. Santos [41], measuring R. colombien-
sis, R. ecuadoriensis, and R. stali, found two patterns of 
relative length for antennal segments of the five nym-
phal instars. For R. milesi, the author found three pat-
terns, one for the first and second instars, another for 
the fourth and fifth instars, and a third one for the third 
instar, hence different patterns from the ones observed in 
R. marabaensis, R. prolixus, and R. robustus.

Rosa et  al. [42] carried out a morphometric study of 
the four antennal segments of nymphs of the five instars 
and adults of Panstrongylus megistus (Burmeister, 1835), 

Fig. 13 Scatter plots of the canonical variate analysis (CVA) of the grouped matrices for geometric morphometric of heads. The scores of the first 
canonical variable (CVA1) are on the x‑axis and the scores for the second canonical variable (CVA2) are on the y‑axis. The ellipses represent the 
confidence for means limits of each population (probability 0.5). (R. marabaensis—black ellipses; R. prolixus—red ellipses; R. robustus—blue ellipses). 
a first instar; b second instar; c third instar; d fourth instar; e fifth instar
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R. neglectus, R. prolixus, and Triatoma vitticeps (Stål, 
1859). The patterns identified in R. neglectus and R. pro-
lixus were the same as those found for R. prolixus and 
R. robustus in this work. Rosa et  al. [29] measured the 
antennal segments of Triatoma rubrovaria (Blanchard, 
1843) and found patterns different from R. marabaensis, 
R. prolixus, and R. robustus, but similar to those observed 
in P. megistus by Rosa et al. [42]. However, in relation to 
the relative length of the four antennal segments, it is not 
possible to differentiate the studied species. The different 
results were described for R. colombiensis, R. ecuadorien-
sis, R. milesi, R. stali [41], and R. neglectus [42], T. rubro-
varia [29], P. megistus, and T. vitticeps [42]. Furthermore, 
our data show that R. prolixus and R. robustus are like R. 
neglectus [42] and can be distinguished from R. colombi-
ensis, R. ecuadoriensis, R. milesi, and R. stali [41] as well 
as T. rubrovaria [29], P. megistus, and T. vitticeps [42] for 
this characteristic.

Geometric morphometry enables the evaluation of 
the variation in shape in relation to causal effects [43]. 
The technique allows us to quantify biological forms 
and discuss the evolution of phenetic patterns [34]. The 
technique is used in paleontological, anthropological, 
ecological, zoological, and botanical studies [30, 34]. In 
triatomines, geometric morphometry is used to assess 
the shape and size variables of hemelytra [44, 45], heads 
[13, 46], and eggs [47]. It is also used for ontogenetic 
studies [48–50].

Recently two subcomplexes of the genus Triatoma 
Laporte, 1832 were studied using geometric morpho-
metrics, which indicated the potential of the technique 
to study specimens that are phylogenetically close [44, 
46]. Geometric morphometrics allowed the differences 
in head shape and size of the five nymphal instars to 
be described. In relation to the CS, all values obtained 
were significant and enabled the differentiation of the 
three species in the five nymphal instars. Variation was 
observed among the instars, but considering the general 
aspect, R. robustus was easily characterized by the geo-
metric profile of the heads of nymphs. The second and 
fourth instar showed less discrimination potential, i.e., 
only approximated size means were recovered.

The metric estimator of Mahalanobis distance was used 
to recover NJ dendrograms, where it is possible to visu-
alize that in all evaluated instars R. robustus is distant, 
whilst R. prolixus and R. marabaensis form a single clade. 
However, CVA ellipses showed that in the first and sec-
ond instars, R. marabaensis and R. robustus remain close, 
while groups are clearly separated in the third, fourth, 
and fifth instars. Regarding the shape, the values of the 
Procrustes ANOVA test revealed differences among the 
cephalic capsules, enabling discrimination. It was shown 
that the multivariate morphometric technique is more 

efficient for discriminating against the studied species 
when confronted with linear morphometric data.

Conclusion
In this study, the morphological and morphometric dif-
ferences in three Rhodnius species were evaluated. New 
data were also provided for R. marabaensis. Furthermore, 
it was shown that the morphology of the head (third, 
fourth, and fifth), thorax (second and fifth instar), and 
abdomen (first, second, third, and fifth instar) are use-
ful in discriminating the studied species. Through mor-
phometric analysis of the head, it was verified that the 
postocular distance of the fourth instar and the lengths 
of the antennal segments of the third and fifth instars 
distinguish the three species. Lastly, geometric morpho-
metry proved to be useful for these species. The size and 
shape variables clearly show the differences between R. 
marabaensis, R. prolixus, and R. robustus.
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