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Abstract 

Background:  The fast-declining clinical efficacy of dihydroartemisinin-piperaquine (DHA-PPQ) in Cambodia is a 
warning of the underlying westward dissemination of piperaquine resistance in the Greater Mekong Subregion 
(GMS). Mutations in the Plasmodium falciparum Kelch 13-propeller (PfK13) and the P. falciparum chloroquine resistance 
transporter (PfCRT), as well as plasmepsin 2/3 gene amplification, have been discovered as molecular markers for pre-
dicting DHA-PPQ treatment failure. Determining whether these genetic variations of P. falciparum are linked to DHA-
PPQ resistance is critical, especially along the China–Myanmar (CM) border, where PPQ has been utilized for decades.

Methods:  A total of 173 P. falciparum samples of dried blood spots (DBS) were collected along the CM border 
between 2007 and 2010, the Thailand–Cambodia (TC) border between 2009 and 2013, and the Thailand–Myanmar 
(TM) border between 2012 and 2014. PCR and sequencing were used to identified PfCRT mutations, while qPCR was 
used to determine the copy number of plasmepsin 2/3. The prevalence of DHA-PPQ resistance in three locations was 
investigated using data paired with K13 mutations.

Results:  Three fragments of the pfcrt gene were amplified for all 173 samples, and seven SNPs were identified (M74I, 
N75E/D, K76T, H97L, I218F, A220S, I356L). No new PfCRT mutations conferring resistance to PPQ (T93S, H97Y, F145I, 
M343L, and G353V) were discovered, except for one mutant I218F identified in the TM border (2.27%, 1/44). Addition-
ally, mutant H97L was found in the TC, TM, and CM borders at 3.57% (1/28), 6.82% (3/44), and 1% (1/101), respectively. 
A substantial K13 C580Y variant prevalence was found in the TC and TM border, accounting for 64.29% (18/28) and 
43.18% (19/44), respectively, while only 1% (1/101) was found in the CM border. The K13 F446I variant was only identi-
fied and found to reach a high level (28.71%, 29/101) in the CM border. Furthermore, 10.71% (3/28) of TC isolates and 
2.27% (1/44) of TM isolates carried more than one copy of plasmepsin 2/3 and K13 C580Y variant, while no plasmepsin 
2/3 amplification was identified in the CM isolates.

Conclusions:  Compared with the P. falciparum samples collected from the TC and TM borders, fewer parasites carried 
plasmepsin 2/3 amplification and novel PfCRT variants, while more parasites carried predominant K13 mutations at 
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Background
Malaria is a major public health issue that affects the 
entire world. In 2019, there were still an estimated 229 
million malaria cases worldwide [1]. Artemisinin-based 
combination therapies (ACTs), which combine a fast-
acting, rapidly eliminated artemisinin (ART) derivative 
with a longer-acting partner drug with a longer half-life, 
have been used as first-line treatment for uncompli-
cated Plasmodium falciparum malaria throughout the 
world [2] and have exerted significant effects on reducing 
the incidence of malaria and malaria-related death [3]. 
Clinical ART resistance, originally identified in western 
Cambodia [4–6] in 2008, was subsequently observed in 
other regions of the nation and throughout the Greater 
Mekong Subregion (GMS) countries [4, 5, 7], owing to 
the spread and independent emergence of ART-resistant 
parasites [7–13]. The occurrence and dissemination of 
ART resistance in P. falciparum pose a challenge to the 
GMS’s malaria control and elimination goals. Although 
the ART resistance increased, the partner drugs of ACTs 
were capable of eradicating parasites despite the reduced 
response to ART. However, around a decade after ACTs 
were introduced, clinical resistance to some widely used 
ACTs (e.g., artesunate-mefloquine and dihydroarte-
misinin-piperaquine [DHA-PPQ]) appeared in Cambo-
dia [14–18]. Because of increasing PPQ resistance, the 
rate of complete therapeutic failure in patients receiving 
DHA-PPQ has increased significantly in multiple areas in 
the eastern GMS (e.g., Cambodia, northeastern Thailand, 
and Vietnam) since 2013 [14, 16, 19–22], necessitating 
the use of novel ACTs and utilization of triple ACTs [23].

K13 mutations have been identified as molecular 
markers of partial ART resistance in P. falciparum [24]. 
Within the GMS, substantial geographic variation exists 
in both the patterns of K13 variants and their prevalence 
[12, 24–28], indicating diverse drug use histories as well 
as multiple evolutionary origins of ART-resistant P. fal-
ciparum [29]. Over 200 non-synonymous  K13  variants 
have been discovered up to now, nine of which (F446I, 
N458Y, M476I, Y493H, R539T, I543T, P553L, R561H, 
and C580Y) have been associated with ART resistance 
[30]. In the eastern GMS, the primary K13 variant is 
C580Y, whereas, in the western GMS, the most wide-
spread K13 variant is F446I [25, 26, 28, 31]. Additionally, 
genome-wide association studies (GWAS) demonstrated 
that copy number amplification of the aspartic proteinase 
genes plasmepsin 2 and plasmepsin 3 on chromosome 

14 served as a useful gene biomarker for predicting clini-
cal PPQ resistance [32, 33]. Genetic epidemiology stud-
ies have revealed that a haplotype involving the K13 
C580Y variant (called KEL1) and a haplotype involving 
a plasmepsin 2/3 amplification (called PLA1) have suc-
cessfully merged to generate a multidrug-resistant co-
lineage which has spread throughout the eastern GMS 
[20, 34]. Consequently, piperaquine resistance emerged 
in Cambodia mainly developed on a genetic background 
of K13 C580Y mutation [35]. Intriguingly, with the emer-
gence of PPQ resistance in Cambodia, some novel PfCRT 
variants (H97Y, F145I, M343L, and G353V) evolved in 
a Dd2 PfCRT background (74I, 75E, 76  T, 220S, 271E, 
326S, 356 T, and 371I) [36], all of which were confirmed 
via genetic studies as conferring resistance to PPQ [37]. 
These novel PfCRT variants can serve as molecular mark-
ers mediating PPQ resistance.

PPQ was initially utilized as an alternative to chloro-
quine (CQ) as the first-line therapy for CQ-resistant  P. 
falciparum in the 1970s and has been used for a long 
time in China [38]. Resistance to PPQ was first docu-
mented in Yunnan province in the 1990s [39, 40]. Cure 
rates for a cumulative dose of 25 mg/kg PPQ declined to 
33% in the early 1990s [41]. In 2005, China approved the 
use of DHA-PPQ combination therapy for the treatment 
of falciparum malaria. Unlike in Cambodia, where the 
clinical efficacy of DHA-PPQ has been quickly declining, 
DHA-PPQ was still remarkably effective for treating P. 
falciparum malaria in the China–Myanmar (CM) border, 
according to recent studies [42, 43].

Hence, in the present study, we evaluated the potential 
molecular markers related to DHA-PPQ resistance of 
P. falciparum along the CM border, including the novel 
mutations in the pfcrt gene and the plasmepsin 2/3 copy 
number variation (CNV). The K13 variants were also 
evaluated, as described in our previous study [28]. Addi-
tionally, P. falciparum isolates collected from the Thai-
land–Cambodia (TC) and Thailand–Myanmar (TM) 
borders were also investigated to gain a better under-
standing of these candidate molecular markers of DHA-
PPQ resistance in distinct border areas.

Methods
Sample collection
Three P. falciparum endemic regions were sampled: 
Lazan valley (n = 101, 2007–2010) along the CM border, 
Kanchanaburi (n = 41, 2012–2014) and Ranong (n = 3, 

position F446I, in the CM border. Clear evidence of DHA-PPQ resistance associated with candidate markers was not 
found in this border region suggesting a further evaluation of these markers and continuous surveillance is warranted.
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2012–2014) along the TM border, and Trat (n = 19, 
2009–2013) and Srisaket (n = 9, 2009–2013) along the 
TC border. The isolates were collected from symptomatic 
malaria patients who were microscopically positive for 
P. falciparum. Dried blood spots (DBS) containing 200–
300 μL of peripheral blood were collected on filter paper. 
Informed consent was acquired from the patients, and 
all experiments that followed relevant guidelines were 
approved by the Internal Review Board of Naval Medical 
University.

Molecular markers of malaria drug resistance
Genomic DNA was isolated from DBS samples by using 
the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany). 
Three pfcrt (PF3D7_0709000) fragments (fragment-1: 
285–854 base pairs [bp], fragment-2: 1080–1379 bp, frag-
ment-3: 2141–2430  bp) were amplified by semi-nested 
polymerase chain reaction (PCR) to cover potential drug 
resistance-associated mutations (the expected amplicon 
sizes are 570  bp, 300  bp, and 290  bp). The primers and 
PCR conditions are listed in Additional file 1: Table S1a. 
The PCR products were analyzed by 1.5% agarose gel 
electrophoresis stained with GoldView (Solarbio, Bei-
jing, China) under UV transillumination. The sequencing 
reaction proceeded in both directions using an ABI Big-
Dye Terminator Kit (Applied Biosystems, Thermo Fisher 
Scientific, Waltham, MA, USA). Further analysis was 
conducted with the assistance of an ABI Prism 3500xL 
Genetic Analyzer (Applied Biosystems, Thermo Fisher 
Scientific) in Shanghai (Sangon Biotech).

Copy number variation assay
Real-time quantitative PCR (qPCR) was utilized to deter-
mine the copy numbers of the pfpm2 (PF3D7 1408000) 
and pfpm3 (PF3D7 1408100) genes on genomic DNA, 
as previously described [33, 44], and was repeated twice. 
The P. falciparum 3D7 clone was used as a parallel 1 copy 
control and the P. falciparum β-tubulin (PF3D7_1008700) 
gene with a single copy as the internal non-duplicated 
standard. The primer sequences for  pfpm2, pfpm3, and 
internal standard of  pfβ-tubulin  are shown in Addi-
tional file  1: Table  S1b.  The 2−ΔΔCT  method of relative 
quantification (CT  indicates cycle threshold) was used 
and adapted to determine the copy numbers of the plas-
mepsin 2 and plasmepsin 3 genes, using the formula 
ΔΔCT = (CTarget − CTβ-tubulin) sample − (CTarget − CTβ-
tubulin) 3D7. All reactions were run in triplicate. Copy 
numbers were considered increased (> 1) when the aver-
age of triplicate was above 1.6.

Data analysis
The multiple sequence alignment of the pfcrt gene was 
conducted in MEGA-X [45], compared with reference 

sequences (PF3D7_0709000) from the PlasmoDB data-
base (http://​www.​plasm​odb.​org). The manual adjustment 
was conducted by using BioEdit V7.0.9, if required [46]. 
Gaps were excluded from the analysis and characters 
were unweighted. Aligned sequences were formatted into 
a nexus alignment via DnaSP v.5.0 [47], and were used to 
create a median-joining network in Network 10.2 [48]. 
Fisher’s exact test was performed to assess the difference 
in the frequency of mutations or CNVs between borders 
using Statistical Product and Service Solutions (SPSS) 
software (version 21.0 for Windows). P-values < 0.05 were 
considered statistically significant.

Results
Prevalence of molecular markers of resistance
To determine the prevalence of molecular markers of 
drug resistance, a total of 173 P. falciparum samples 
were successfully tested from the three border areas. 
We first investigated the prevalence of 14 PfCRT muta-
tions including C72S, M74I, N75E/D, K76T, A220S, and 
I356L conferring resistance to CQ, as well as T93S, H97L, 
C101F, F145I, I218F, M343L, C350R, and G353V associ-
ated with PPQ resistance. A high prevalence of 74I-75E-
76T/220S-356L mutations haplotype was observed in the 
TC, TM, and CM borders, accounting for 92.86% (26/28), 
97.73% (43/44), and 93.07% (94/101), respectively. In 
contrast to previous studies [37, 49, 50], new PfCRT 
mutations conferring resistance to PPQ (e.g., H97Y, 
F145I, M343L, I218F, and G353V) were not identified in 
the current study, except for one (2.27%) of 44 infections 
harboring the I218F mutation in the TM border region. 
Additionally, the H97L mutation was detected at a fre-
quency of 3.57% (1/28), 6.82% (3/44), and 1% (1/101) in 
the TC, TM, and CM borders, respectively (Fig. 1) (Addi-
tional file 2: Figure S1, Additional file 3: Table S2, Addi-
tional file 4: Table S3).

Following that, the status of plasmepsin 2/3 amplifica-
tion was determined, and real-time PCR analysis revealed 
that 10.71% (3/28) of TC isolates and 2.27% (1/44) of TM 
isolates possessed more than one copy of plasmepsin 2/3. 
By contrast, there was no evidence of plasmepsin 2/3 
amplification in the CM border (Fig. 1) (Additional file 2: 
Figure S1, Additional file  3: Table  S2, Additional file  4: 
Table S3).

Then, in accordance with our previous study [28], we 
analyzed the K13 mutations in these isolates collected 
from the three border areas. The C580Y mutation was 
identified at a higher prevalence of 64.29% (18/28) and 
43.18% (19/44) in the TC and TM borders, respectively, 
whereas it was identified at a lower prevalence of 1% 
(1/101) in the CM border. Additionally, the F446I muta-
tion was detected at a high rate of 28.71% (29/101) in the 
CM border, but not in the TM or TC borders. Notably, 

http://www.plasmodb.org
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the four isolates with plasmepsin 2/3 amplifications also 
carried K13 C580Y mutations, which are known to con-
fer resistance to both DHA and PPQ. Among them, one 
isolate in the TM border (T67) was observed to carry a 
PfCRT I218F mutation associated with PPQ resistance 
(Fig.  1) (Additional file  2: Figure S1, Additional file  3: 
Table S2, Additional file 4: Table S3).

Fisher’s exact test revealed significant differences in 
the frequency of specific K13 mutations including F446I, 
Y493H, G538V, P574L, and C580Y (P < 0.05), as well 
as CNVs of pm 2/3 (P < 0.05), among the three border 
regions. In comparison, slight differences were found 
in only one PfCRT mutation at H97L (P = 0.081) (Addi-
tional file 3: Table S2).

Phylogeny
In this study, the chloroquine-resistant haplotype 
“CVIET/SL” was associated with six PfCRT mutations 
conferring resistance to CQ. These mutations included 
C72S, M74I, N75E, K76T, A220S, and I356L (Fig.  2a). 
Based on this haplotype, the “CVIET/SL/F446I” haplo-
type with the K13 mutation F446I arose and accounted 
for 30.85% of the CM population, whereas the “CVIET/
SL/C580Y” haplotype with the C580Y mutation arose 
and accounted for 69.23% of the TC population and 
44.19% of the TM population, respectively. Addition-
ally, 3.45% of the haplotype “CVIET/SL/F446I” in the 
CM population and 5.56% of the “CVIET/SL/C580Y” 
haplotype in the TC population carried the CRT muta-
tion H97L. In the TC population, 15.79% of the “CVIET/

SL/C580Y” haplotype carried H97L, while 5.26% carried 
I218F (Fig. 2a).

To conduct a thorough comparison of the three bor-
der regions, we used 14 SNPs from the pfcrt gene and 15 
SNPs from the pfk13 gene to generate 173 new nucleo-
tide sequences (Additional file  5: Table  S4). Based on 
these 173 sequences, a median-joining network was 
constructed to depict the distribution pattern exhibited 
by 26 haplotypes (Fig.  2b) (Additional file  6: Table  S5). 
Three major haplotypes were identified among them, 
namely haplotypes 1, 2, and 14. Haplotype 1 was desig-
nated “CQR-PPQW-ART​W” while haplotype 2 was desig-
nated “CQR-PPQW-ART​F446I”. Haplotype 1 represented 
the chloroquine-resistant haplotype “CVIET/SL,” while 
haplotype 2 represented the “CVIET/SL” haplotype with 
the K13 mutation F446I (CVIET/SL/F446I). In addition, 
haplotype 14 was designated “CQR-PPQW-ART​C580Y” to 
represent the “CVIET/SL” haplotype with the K13 muta-
tion C580Y (CVIET/SL/C580Y). None of the three major 
haplotypes carried the PfCRT mutations associated with 
PPQ resistance.

Within haplotype 14, three isolates (collected from the 
TC border), TC-9, TC-10, and TC-13, carried both the 
K13 C580Y variant and the plasmepsin 2/3 amplification 
but lacked any PfCRT mutations associated with PPQ 
resistance. In comparison, haplotype 25 (CVIET/SL/
C580Y/I218F) descended from haplotype 14 and was the 
only one co-lineage to carry the K13 C580Y variant, the 
pfpm 2/3 amplification, and the PfCRT I218F mutation, 
all of which were associated with DHA-PPQ resistance 

Fig. 1  The prevalence of 14 PfCRT mutations, 15 K13 mutations, and CNVs of plasmepsin 2/3 in different border regions. CRT mutations associated 
with CQ and PPQ resistance and K13 mutations associated with ART resistance are displayed in different dashed boxes. CM China–Myanmar border 
(yellow circles), TM Thailand–Myanmar border (green circles), TC Thailand–Cambodia border (red circles)
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in the TM border region (Fig.  2b) (Additional file  6: 
Table S5).

Discussion
As the GMS strives to eradicate malaria, the intensity of 
drug selection increases, resulting in rapid adaptation of 
multidrug-resistant (MDR) parasite populations in the 
diminishing residual parasites with various genetic back-
grounds [24, 51]. This situation provides an unparalleled 
opportunity to study the evolution of drug resistance, 
as vital experience regarding the eventual eradication 
of malaria can be gained. Given that the effectiveness of 
ACTs is dependent on fast-acting ART derivates, as well 
as long-acting partner drugs, the resistance to ART may 
lead to the elimination of a higher proportion of parasites 
with partner drugs, increasing the risk of partner drug 
resistance, which may result in clinical failures of ACTs 
[52].

Evaluation of candidate markers‑K13 variant 
and plasmepsin 2/3 CNVs
In Cambodia, after the introduction of DHA-PPQ, ACT 
failure rates increased significantly, which was associ-
ated with an increase in the prevalence of parasites car-
rying the K13 C580Y variant and plasmepsin 2/3 CNVs 
[19]. The emergence of the DHA-PPQ resistance may 
reveal a two-stage selection process in western Cambo-
dia. Initially, the spread of ART resistance resulted in the 

restriction of parasite genetic diversity, with the majority 
of parasites harboring K13 variants (e.g., C580Y), and the 
subsequent emergence of PPQ resistance based on those 
genetic backgrounds [35, 36]. Following that, parasite lin-
eages carrying the K13 C580Y variant and plasmepsin 2/3 
CNVs spread quickly throughout eastern GMS within a 
short period, resembling a hard selective sweep [20, 53]. 
The present study discovered a high prevalence of the 
C580Y mutation along the TC and TM borders, which 
increased significantly (33.33% in 2009–2010, 55.56% in 
2011–2012, and 84.62% in 2013) along the TC border, 
near northwest Cambodia (Additional file 7: Figure S2a). 
Four of these C580Y mutation isolates contained multi-
ple copies of plasmepsin 2/3; three were discovered on 
the TC border (23.08% in 2013), while one was discov-
ered on the TM border (5.88% in 2013) (Additional file 7: 
Figure S2b). These findings corroborated previous retro-
spective genetic studies conducted in Southeast Asia [34, 
53]. Though plasmepsin 2/3 copy number was previously 
reported to be associated with PPQ resistance and served 
as a helpful molecular marker for predicting DHA-PPQ 
clinical failures in eastern GMS [20, 22, 34, 54], genetic 
inactivation and overexpression of plasmepsin 2/3 genes 
in the 3D7 background produced inconsistent results [55, 
56]. Disrupting plasmepsin 2/3 increased parasite sensi-
tivity to PPQ but not to other antimalarials [55], whereas 
overexpression of these enzymes had no effect on para-
site susceptibility to PPQ, CQ, and artesunate [56]. Thus, 

Fig. 2  a Pie chart of CQ-, ART-, and PPQ-resistant haplotypes and their relationships. CVIET/SL, CQ-resistant haplotype; CVIET/SL/F446I, major 
ART-resistant type in CM; CVIET/SL/C580Y, major ART-resistant type in TC and TM; CVIET/SL/F446I/H97L, possible PPQ-resistant type in CM; CVIET/SL/
C580Y/I218F, CVIET/SL/C580Y/H97L, possible PPQ-resistant type in TC and TM. b Haplotype network based on 14 single-nucleotide polymorphisms 
(SNPs) of pfcrt and 15 SNPs of pfkelch13 in this study. Each observed haplotype is indicated by a filled circle, sized according to its frequency and 
colored according to the border region represented. Haplotype relationships are indicated by lines; mutational steps between haplotypes are 
represented by the number of lines. CM China–Myanmar border, TM Thailand–Myanmar border, TC Thailand–Cambodia border, R resistant, W 
wild-type
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the role of plasmepsin 2/3 copy number in PPQ resist-
ance may be genetically determined [52].

Plasmodium falciparum isolates from the CM borders 
possessed the predominant  K13 F446I mutation, which 
was similar to that found in parasites from northern 
Myanmar [25, 26]. According to Zhang’s study, the fre-
quency of F446I variant increased gradually from 2007 
to 2013 [57], reaching 17.6% in 2007, 21.1% in 2008, 7.1% 
in 2009, 33.3% in 2010–2012, and 62.5% in 2013. Simi-
larly, in the current study, the prevalence of the C580Y 
mutation was as low as 1% (1/101) in the CM border. In 
comparison, this region had a higher prevalence of F446I 
(28.71%), which increased significantly from 2007 to 2010 
(15.79% in 2007, 25% in 2008, 40.00% in 2009, and 36.40% 
in 2010) (Additional file  3: Tables S2) (Additional file 7: 
Figure S2a). Inserting the F446I variant into K13 resulted 
in an increase in ring survival rates detected using 
RSA0–3 h, indicating that this variant might be associated 
with ART resistance [58]. Additionally, this variant was 
related to increased PPQ IC50, IC90, and AUC results in 
contrast to the wild-type (WT) parasites, implying that 
F446I may represent the K13 background mutations in 
the CM border region where PPQ resistance develops 
[52], similar to the C580Y mutation in Cambodia. Si et al. 
discovered that 5.8% of the 120 parasites obtained within 
the CM borders had PSA (PPQ survival assay) values 
greater than 10% (survival rate cutoff), confirming the 
parasites’ PPQ resistance in this area. However, similar 
to the findings in this paper, no plasmepsin 2/3 amplifi-
cation was detected (Additional file 7: Figure S2b), cast-
ing doubt on the utility of plasmepsin 2/3 CNVs for PPQ 
resistance monitoring beyond the eastern GMS [52].

Evaluation of candidate markers‑novel PfCRT variants
Population genomics studies demonstrated that the 
DHA-PPQ-resistant P. falciparum KEL1/PLA1 co-lin-
eage with the K13 C580Y variant and plasmepsin 2/3 
amplification originated in western Cambodia and spread 
rapidly in eastern GMS [20, 53]. Numerous subgroups 
of KEL1/PLA1 co-lineage background parasites have 
developed new PfCRT mutations [53]. These new PfCRT 
variants (T93S, H97Y, F145I, I218F, M343L, and G353V) 
were identified in parasites collected from Cambodia 
[36, 37, 50], with genetic evidence revealing that they are 
capable of mediating DHA-PPQ resistance without plas-
mepsin 2/3 amplification [37]. In the present study, only 
one isolate with the K13 C580Y variant and plasmepsin 
2/3 amplification from the TM border (in 2013) car-
ried the PfCRT I218F mutation (Hap 25), which shared 
genetic characteristics with the DHA-PPQ-resistant iso-
lates from eastern GMS (Additional file  7: Figure S2c). 
The absence of new PfCRT mutations could be explained 
by the short time span used to collect samples in this 

study, as new PfCRT mutations became more preva-
lent in 2016–2017 [53]. Interestingly, five isolates with 
the PfCRT H97L mutation have been identified, three 
from the TC borders (in 2014) based on the “CVIET/SL/
C580Y” haplotype (Hap 22), one from the CM border (in 
2010) based on the “CVIET/SL/F446I” haplotype (Hap 
18), and one from the TM border (in 2011–2012) based 
on the “CVIET/SL” haplotype (Hap 26) (Additional file 7: 
Figure S2c). Nevertheless, none of these isolates harbored 
more than one copy of plasmepsin 2/3. According to Si’s 
study, no novel PfCRT variants (H97Y, F145I, M343L, or 
G353V) were detected in P. falciparum isolates from the 
CM border region. However, they discovered that one 
isolate harbored the H97L variant from the CM border 
exhibiting a significantly increased CQ IC50 value, as well 
as increased PPQ IC50, IC90, PSA, AUC values, in com-
parison to the parasite harboring the Dd2 haplotype pfcrt 
[52]. Nonetheless, this variant was detected in only one 
parasite in Cambodia during an ACT efficacy study, and 
it was not associated with decreased PPQ sensitivity [50]. 
Additional research is needed to determine whether the 
PfCRT H97L mutation is associated with PPQ resistance.

Previous studies conducted in the CM border revealed 
that DHA-PPQ was still remarkably effective in treating 
falciparum malaria between 2007 and 2013 and that the 
sensitivity of P. falciparum to DHA-PPQ had not changed 
significantly in this area [42, 43]. Coinciding with the 
established sustained clinical efficacy of DHA-PPQ in 
the CM border area, Si’s study confirmed that clear evi-
dence of PPQ resistance in association with these molec-
ular markers was not found in isolates collected from 
this region between 2007 to 2016 [52]. Additionally, the 
fluctuating susceptibility to PPQ over time indicates that 
resistance to PPQ occurred one or more times but did 
not spread widely. It would be intriguing to determine 
if this parasite population evolved as a result of strong 
selection via frequent and long-term use of DHA-PPQ in 
this border region or due to parasites dissemination from 
other regions within the GMS.

Conclusion
The present work evaluated candidate DHA-PPQ 
resistance biomarkers in P. falciparum isolates from 
the CM, TM, and TC borders using the pfkelch13 and 
pfcrt genes, as well as plasmepsin 2/3 CNVs. In com-
parison to P. falciparum parasites collected from the 
TC and TM borders, fewer P. falciparum parasites pos-
sessed plasmepsin 2/3 amplification and novel PfCRT 
variants, while more samples carried predominant 
K13 mutations at position F446I, along the CM border. 
Because of a lack of phenotypic or DHA-PPQ suscep-
tibility data, clear evidence of DHA-PPQ resistance 
associated with these candidate markers was not found 
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in parasites from the CM border region. Further evalu-
ation of these markers and continuous surveillance is 
warranted.
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