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Abstract 

Background:  Mosquito control is currently the main tool available to contain the spread of several arboviruses 
in Brazil. We have evaluated the association between entomological surveys of female adult Aedes aegypti and the 
Breteau index (BI) in space and time in a hyperendemic area, and compared the human resources costs required to 
measure each of these indicators.

Methods:  Entomological surveys were conducted between 2016 and 2019 in Vila Toninho, a neighborhood in the 
city of São José do Rio Preto, Brazil. Monthly records of collected mosquito specimens were made and then grouped 
by season.

Results:  Our findings showed that adult and immature mosquitoes are more related in time than in space, possibly 
due to differences in their habitats or in climate variables. Bayesian temporal modeling revealed that an increase in 
1 standard deviation in the BI was associated with a 27% increase in the number of adult female mosquitoes when 
adjusted for climatic conditions. The cost of entomological surveys of adult mosquitoes was found to be 83% lower 
than the cost of determining the BI when covering the same geographic area.

Conclusions:  For fine-scale assessments, a simple measure of adult Ae. aegypti abundance may be more realistic 
than aquatic indicators, but the adult indices are not necessarily the only reliable measure. Surveying adult female 
mosquitoes has significant potential for optimizing vector control strategies because, unlike the BI, this tool provides 
an effective indicator for micro-areas within an urban region. It should be noted that the results of the present study 
may be due to specific features of of the study area, and future studies should analyze whether the patterns found in 
the study neighborhood are also found in other regions.
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Background
Aedes aegypti is an invasive arboviral vector that trans-
mits diseases with substantial global impact [1, 2] and 
which predominantly occupies urban and suburban areas 
associated with human populations [3, 4]. In Brazil, this 
mosquito is the primary vector of the viruses that cause 
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dengue fever, chikungunya, Zika and urban yellow fever 
[5–10], and its presence has been reported in 5172 of the 
country’s 5494 municipalities [11].

Characterized by daytime blood-feeding behavior, 
female Ae. aegypti mosquitoes mainly lay their eggs in 
artificial containers where water collects and persists for 
many days [3, 12–14]. The presence of Ae. aegypti is also 
closely related to poor sanitation conditions and a lack 
of residual waste recycling facilities, which are typical 
of urban areas experiencing disorderly expansion. These 
two variables are considered to be significantly responsi-
ble for outbreaks of vector-borne diseases [15]. In Brazil, 
the main measure adopted for mosquito control is the 
elimination of habitats for immature stages [16]. Aedes 
aegypti abundance is also highly influenced by local envi-
ronmental conditions that support larval development, 
resting sites and food and host access, especially when 
these conditions are all present within the 100-m flight 
range [17, 18].

Entomological surveillance, vector control and case 
monitoring are currently the only tools available to con-
tain the dissemination of arboviruses. The most frequent 
indices to measure the abundance of Ae. aegypti are the 
block-level, quantitative indicators known as the Ste-
gomyia indices, which evaluate immature forms of the 
mosquito under study (larvae and pupae). Nonetheless, 
questions remain regarding the ability of the Breteau 
index (BI), the house index or the container index to pro-
vide information on the production of adult mosquitoes 
[19–23] and, consequently, on the accuracy of these indi-
cators to assess the real risk of arbovirus infection. BI is 
the relationship between the number of positive recipi-
ents and the number of properties surveyed; the house 
index is the ratio between the number of positive proper-
ties and the number of properties surveyed (percentage 
of houses positive for larvae); and the container index is 
the relationship between the type of positive container 
and the number of positive containers surveyed (number 
of positive containers per 100 houses) [49]. A promising 
alternative to monitoring vector infestation and arbovi-
rus occurrence is the use of traps to collect adult mos-
quitoes. Several studies have shown that measuring the 
abundance of adult specimens can lead to the risk of 
arbovirus transmission being estimated with better pre-
cision [19, 24, 25] because adult females are the only cat-
egory of mosquito involved in virus transmission.

In light of this situation, in this study we evaluated the 
association between surveying female adult Ae. aegypti 
and the BI over space and time in a hyperendemic area. 
We modeled the number of adult females in space and 
time to create vector infestation maps and also compared 
the cost of human resources required to collect adult 
mosquitoes to the cost of collecting the data required to 

determine the BI. We have interpreted the results to pro-
mote more effective risk-based arbovirus surveillance.

Methods
Study area
This study was conducted in a neighborhood in the city 
of São José do Rio Preto, São Paulo State, Brazil between 
2015 and 2019 [38, 41] as part of a larger cohort study on 
arbovirus occurrence in humans and vectors approved 
by the São Paulo Research Foundation (FAPESP; Grant 
Number 2013/21719-3). Re-introduction of Ae. aegypti 
mosquitoes into the municipality occurred in 1985 
[42], and the first autochthonous case of dengue fever 
was confirmed in 1990. The study neighborhood, Vila 
Toninho (Fig.  1), is largely urban and is located in the 
southeastern area of the city. It has approximately 5600 
inhabitants (density: 4800 per km2) [43] and 1940 house-
holds. Vila Toninho is located on the outskirts of São 
José do Rio Preto, and its socioeconomic indicators 
are poorer than those of the city as a whole. The mean 
income of heads of households in Vila Toninho is 1.9-fold 
that of the monthly minimum wage in Brazil, and 15.3% 
of households have ≥ 5 residents. Comparative values 
for the entire municipality are a mean income of 5.7-fold 
the monthly minimum wage, and 11.5% of households 
with ≥ 5 residents, respectively [43]. The study area has 
an undulating terrain and is characterized by dry winters 
with moderate temperatures (average: 21.9  °C) and wet 
summers with moderately high temperatures (average: 
27.7 °C) [44].

Data sources and entomological surveys
The procedures followed were based on Parra et al. [25]. 
Adult mosquitoes were captured using 30 BG Mosqui-
tito™ traps (Biogents AG, Regensburg, Germany) that 
were positioned between December 2015 and February 
2019. Traps were located outside of residences in the 
Vila Toninho neighborhood, close to plant pots and out 
of direct exposure to sunlight and rain, at preselected 
households that had shaded areas; collections were made 
24  h after deployment. Traps were also installed in 30 
houses, and the mosquitoes collected after 24 h; then the 
traps were redeployed in the same month but in 30 dif-
ferent houses. This process was performed monthly at 
the same households over the course of the study, which 
produced data from up to 60 households each month. 
The data from one trap were removed from the analyses 
due to a lack of consistency in the data, which meant that 
the final calculations are based on 59 traps. The Carte-
sian coordinates of these houses and individual traps 
(Data: WGS-84 and SIRGAS 2000) were obtained using 
the Global Positioning System (GPS). We attempted to 
cover the entire residential area of the neighborhood 
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and distributed the traps according to the mosquito’s 
flight radius [17, 18, 26], maintaining an average dis-
tance of 149 m between each trap. Mosquitoes captured 
from the traps were identified at the Vector Laboratory 
of the Agency for the Control of Endemic Diseases based 
on taxonomic keys [45, 46]. We targeted adult female 
mosquitoes due their epidemiological importance. Tem-
perature, precipitation and evapotranspiration data 
were obtained from a local database [47]. The modeling 
relied on seven climate variables: average daily precipita-
tion, average minimum temperature, average maximum 
temperature, average temperature, average evapotran-
spiration, absolute minimum temperature and absolute 
maximum temperature. In the space–time analysis, the 
values of the climate variables were considered to be the 
same for all traps in each season. A previous study [38] 
showed that in small areas (such as the Vila Toninho 
neighborhood), there is no significant difference in cli-
mate measurements at each sampling point, as the traps 
are located relatively close to each other. In the temporal 
models, the values of the climate variables were consid-
ered monthly; in the spatiotemporal models, they were 
obtained and calculated by season.

To measure the BI we used a monthly one-stage lar-
val sampling method, with blocks as primary sampling 
units [48]. We obtained a sample size of 600 house-
holds, considering an expected BI of 5.0% and a 95% 
confidence interval of between 2.6% and 7.4%. We 
increased the sample size to 1000 households (600 

divided by 0.6), taking into account that 40% of them 
could be uninhabited or otherwise inaccessible. The 
blocks to be visited monthly were obtained by a ran-
dom drawing with a weight proportional to the number 
of households. The larval survey was carried out on the 
selected blocks, with the exception of houses that were 
uninhabited or to which entry was denied by the resi-
dent [48].

Field agents assessed the number of larvae in all water 
containers present in each household surveyed. For each 
container with mosquito larvae, the agents collected 
a sample in a labeled glass tube that was sent for larval 
identification by the Vector Laboratory of the Agency for 
the Control of Endemic Diseases. To calculate the BI, we 
considered only those containers with Ae. aegypti larvae 
to be positive. The field agents wrote down the addresses 
of the surveyed households, and these were subsequently 
geocoded, which allowed us to obtain their Cartesian 
coordinates. To assess the BI, larval sampling was per-
formed during the first 3 weeks of each month from 
December 2015 to February 2019 and preceding adult 
mosquito sampling, which occurred in the fourth week 
of each month. We adopted this procedure to provide 
the time lag necessary for larvae to develop into adult 
mosquitoes.

The BI is the relationship between the number of posi-
tive recipients and the number of properties surveyed, 
corrected for the result to be expressed as 100 properties 
[49]:

Fig. 1  a Geographic location of São José do Rio Preto in  São Paulo State, Brazil and South America. b Study area: the Vila Toninho neighborhood 
and its location in São José do Rio Preto. c location of the adult mosquito traps in the study area. The maps were built using QGis software 3.16.11 
(https://​www.​qgis.​org/)

https://www.qgis.org/
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In our study area, this number is usually very low, as 
positive recipients are temporary and have very little 
persistence over time. Thus, to achieve a representative 
sample, it was necessary to include a very large number 
of properties, as the vast majority of them would not have 
positive recipients (Additional file  1: Temporal model 
database).

To compare the cost-effectiveness of the two methods 
(one which relied on adult mosquito females and one 
which relied on immature stages), we considered time 
spent, the number of households visited per month and 
the number of field workers required to implement each 
method. To cover 1 month in the Vila Toninho neighbor-
hood, the workers spent the first 3 weeks of each month 
performing the BI method and the last week of the month 
performing the adult survey. We estimated the cost-effec-
tiveness using the “man-day” variable, which was calcu-
lated by multiplying the number of days worked by the 
number of workers and the number of teams required to 
measure each index.

Data analysis
In the temporal analysis, we modeled the number of 
Ae. aegypti adult females taking into consideration only 
a temporal architecture. We evaluated the relationship 
between the total number of adult female mosquitoes 
collected by adult traps in the study area each month 
from December 2015 to February 2019 as a function of 
the BI, as well as for the entire study area and by month. 
We also considered climate as a variable in our models 
and adjusted accordingly to determine the true relation-
ship between the number of adult mosquitoes and the 
BI. Because we modeled a temporal series, the model 
included a temporal random effect (autoregressive corre-
lation of order 1 [AR1]), as supported by Zuur et al. [50]. 
We present the expressions of this model in Additional 
file 2: Model expression. Because the model included cli-
mate variables, we chose the best temporal model using 
the deviance information criterion (DIC) [48].

In order to assess the spatiotemporal association 
between the number of adult mosquitoes and BI, we 
group their values into quarters representing the four 
seasons. This step was included to account for the sea-
sonality of the vector, which presents higher infestation 
rates in the summer months (December to February). 
This aggregation was also necessary for increasing the 
size of the samples to measure BI. We incorporated the 
Cartesian coordinates of the traps and households sur-
veyed in a Geographic Information System. We then cre-
ated 150-m buffers around each trap and considered the 

BI =
Number of positive recipients for Ae. aegypti

Number of properties surveyed
× 100.

household surveyed for the measurement of BI within 
each buffer and during each quarter-year. The distance 
of 150 m was based on the mosquito’s flight radius [17, 
18, 26]. We obtained the BI values by trap and quarter 
considering the number of containers positive for imma-
ture Ae. aegypti and the households surveyed within each 
buffer and quarter.

Adult mosquito modeling based on traps and quarter-
year periods was performed using a model with a spa-
tiotemporal correlation (AR1) in which the dependent 
variable was the number of adult mosquitoes (adults) and 
a Poisson probability distribution was assumed. Initially, 
only an intercept model with a spatial random effect cor-
related temporally, and an independent and identically 
distributed (iid) random effect was considered, as shown 
in Additional file 2.

The spatiotemporal random effects were composed of a 
temporal component and a spatial component. We used 
AR1 as the temporal component. The spatial component 
was defined as the spatial dependence between the loca-
tions where the traps were installed. This was modeled by 
W, the realization of the latent stationary Gaussian field. 
W was obtained from the Euclidean distances between 
the places where the traps were installed and considering 
a Matérn function [51] and stochastic partial differential 
equations. It was represented by a Markovian Gauss-
ian random field [50] built on triangle meshes. The pur-
pose of these spatiotemporal models is to consider that 
the spatial random field can vary over time and to do so 
using AR1 to address their temporal portion [50, 52, 53]. 
We included the independent and identically distributed 
random effect to account for the use of the same house-
holds to install the traps during the study period.

We obtained exponentiated values of the spatial ran-
dom effects for all vertices of the mesh organized by 
quarter-year. In order to obtain a representation of these 
effects in the entire study area, the IDW algorithm (the 
inverse of the distance) was used on each quarter-year 
period to interpolate the values of the random effects for 
a grid of 10,000 points. In each specific location of the 
study area and in each quarter-year, the spatial random 
effects represented how much higher the number of Ae. 
aegypti females was (in the case of values above the unit) 
or how much lower the number of Ae. aegypti females 
was (in the case of values below the unit) than the esti-
mated average number over the entire study period. 
These values were considered in the model, as were the 
respective numbers of adult mosquitoes (also organized 
by buffers and quarter-year periods). After these BI val-
ues were obtained, they were included in the models that 
considered the spatiotemporal and iid random effects. As 
in the temporal models, these models included climate 
variables to more accurately establish the relationship 



Page 5 of 12Parra et al. Parasites & Vectors          (2022) 15:133 	

between the number of adult mosquitoes and the BI, as 
presented in Additional file 2.

The temporal and spatiotemporal models were created 
in a Bayesian context using the integrated nested Laplace 
approximation (INLA) approach [54]. We used non-
informative priors for the fixed effects and priors with 
penalized complexity for the random effects [55].The R 
software (R Core Team 2019; R Foundation for Statisti-
cal Computing, Vienna, Austria) and the R-INLA pack-
age (www.r-​inla.​org) were used to perform the modeling. 
The QGIS software (QGIS Development Team 2021) was 
used to build the maps.

Results
Between December 2015 and February 2019, our traps 
captured 1169 adult Ae. aegypti females in the Vila Ton-
inho neighborhood (Fig. 1). Vila Toninho is a poor neigh-
borhood that has suffered dengue outbreaks for several 
years. In recent years, several epidemiological and ento-
mological studies have been performed there, as have 
educational campaigns to reduce the number of breed-
ing sites in homes. The low number of mosquitoes found 
here is likely the result of these campaigns.

In addition, an average of 1126 households were sam-
pled during the study, and 757 (about 70%) households 
were evaluated each month to search for recipients that 
tested positive for the presence of immature Ae. aegypti 
in order to measure the BI. We missed, on average, 32.8% 
of the residences because they were uninhabited or 
because residents did not allow the field agents to enter. 
This value was lower than the 40.0% considered to be lost 
in our sampling plan. Figure 2 shows the number of adult 
female mosquitoes, the BI and the climate variables over 
the 39 months of the study period. These indicators were 
found to be clearly influenced by both temperature and 

periods of rain and drought. Details on the relationship 
between each specific variable and the number of adult 
mosquitoes is shown in Fig. 3. The values of these vari-
ables are presented in Additional files 1 and 3.

All variables related to temperature, including evapo-
transpiration, were collinear with each other. Thus, for 
modeling, we chose only the one with the best DIC in the 
bivariate models in order to determine whether the posi-
tive relationship between adult mosquito presence and 
the BI remained significant even after adjusting for cli-
mate variables. The final covariables used in the temporal 
models were BI, average daily precipitation and average 
minimum temperature (Table  1). We used standardized 
variables (subtraction of the mean and division by stand-
ard deviation [SD]) and considered an AR1 temporal 
random effect in these temporal models. An increase of 
1 SD in the BI was associated with a 46% increase in the 
number of adult mosquitoes when the results were not 
adjusted for climate variables. After adjusting for climate, 
an increase of 1 SD in the BI was associated with a 27% 
increase in the number of adult female mosquitoes. The 
best temporal model obtained (the lowest DIC) relied on 
the BI and average minimum temperature. The lack of 
significance of rainfall in this model may be due the lack 
of statistical power of the temporal sample size to identify 
a significant relationship with the number of mosquitoes.

All temporal autocorrelation correlograms of the mod-
els presented in Table 1 can be seen in Additional file 4: 
Temporal autocorrelation correlograms and random 
effects. The intercept model presented temporal auto-
correlation in several lags and, after the introduction of 
the AR1 temporal random effect, the autocorrelation 
remained only in lag 1. The same findings occurred with 
the model that we considered to be the best (BI, aver-
age minimum temperature and AR1 temporal random 

Fig. 2  Average daily precipitation (mm), average minimum temperature (°C), number of Aedes aegypti adult females and Breteau index over time. 
Study location was the Vila Toninho neighborhood in São José do Rio Preto, São Paulo State, Brazil, and sampling occured between December 2015 
and February 2019

http://www.r-inla.org
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effect). The exponentiated posterior means of the tempo-
ral random effects of the model with intercept and our 
final model are also presented in Additional file 4. There, 
our final model shows that the temporal autocorrelation 
present in our response variable was well explained until 
December 2017. Nonetheless, from January 2018 onward, 
some temporal autocorrelations remained unexplained.

The objectives of the spatiotemporal modeling 
performed herein were to evaluate the relationship 
between the number of adult female mosquitoes and 
the BI, and to map out the number of mosquitoes in 
space and time, with adjustments for spatial and tem-
poral autocorrelations and climate (Table 2). To achieve 
this, we considered temporally correlated spatial ran-
dom effects (AR1) and an independent and identically 
distributed random effect. The model in which only BI 
was considered exhibited a worse fit than the model in 
which only the intercept and random temporal and spa-
tial effects were applied. The former model found that 
an increase of 1 SD in the BI would be associated with a 
12% increase in the number of adult females. This result 
is weaker than that of the temporal model, in which an 
increase of 1 SD in the BI was associated with a 46% 
increase in the number of females (without adjusting 

for the climate variables). In the models in which the 
BI was adjusted for climate variables, the BI became 
non-significant (Table  2), suggesting that there is no 
relationship in space between the two entomological 
indicators. The database we used for running the spati-
otemporal models is presented in Additional file 3: Spa-
tiotemporal model database.

Figure  4 shows the infestation rates of adult female 
mosquitoes in space and time. The Ae. aegypti adult 
female infestation levels presented in seasons and years 
in these maps accompany their temporal trend (Fig. 2). In 
addition to identifying this temporal trend, we can also 
use the maps presented in Fig. 4 to distinguish between 
the levels of adult infestation in different small local areas 
within the Vila Toninho neighborhood.

The cost-effectiveness of these two entomological 
indices was also considered. Table  3 summarizes the 
main information on the composition of field teams, the 
time required and the number of households visited per 
month. Measuring the BI was found to require threefold 
more time than conducting the surveys of adult mosqui-
toes—when surveying covered the same area (the Vila 
Toninho neighborhood). The cost of entomological sur-
veys of adult mosquitoes was also found to be 83% lower 

Fig. 3  Scatterplots with locally weighted smoothing lines showing the relationship between climate variables and adult Ae. aegypti females in the 
Vila Toninho neighborhood of São José do Rio Preto between October 2015 and February 2019. Abbreviations: Avg, average; BI, Breteau index. The 
graphs were built using R Core Team software 1.3.1093 (https://​www.R-​proje​ct.​org)

https://www.R-project.org
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than the cost of determining the BI over the same geo-
graphical area.

Discussion
The principal finding of this study is that adult female 
mosquitoes and the BI are related temporally and that 
there is a weakened relationship in space. This divergence 
between two entomological indicators in space may be 
due to either mosquito larvae, pupae and adults requir-
ing specific habitat characteristics or because of the exist-
ence of indoor breeding sites. Getis et  al. [26] reported 
relevant divergences in the spatial composition of adult 
mosquito populations compared to that of immature 
populations. Several other factors, including high lar-
val mortality, the brief lifespan of larvae and pupae and 
a short data collection period could result in immature 
abundance measurements that do not always correspond 
in space with the biologically relevant adult estimators 
[26, 27]. In terms of block-level indicators, aggregating 
household data may skew the calculation if the distribu-
tion of immature counts were to be concentrated in only 
a few households. Block-level estimators, such as the 
BI and the house index, the latter categorizing contain-
ers or households as “infested” if any larvae or pupae are 
found, may not represent the contribution of container 
productivity. Pupae-per-person and pupae-per-hectare 
measurements are sensitive to bias from inaccuracies in 
population data or area data, as well as to sampling error 
caused by the short duration of the pupal life stage [28].

The Ae. aegypti populations in the Vila Toninho neigh-
borhood differed significantly between seasons, similar 
to findings reported in other regions [25, 27, 33]. We 
argue that it is possible to precisely estimate the infes-
tation of adult female mosquitoes in small intra-urban 
areas by optimizing control and surveillance measures. 
Unlike traditional measurements, which are recorded 
at the city or neighborhood levels, the major strength 
of adult female mosquito surveys is the resulting higher 
resolution in time and space [34]. In our study, we ana-
lyzed an average of 59 traps (adults) and 757 houses (BI). 
Although BI apparently has a higher spatial resolution 
because of its requirement that more houses be visited, 
it is a block-level indicator. Its value is usually very low, 
as positive recipients are temporary and have very little 
persistence over time. Thus, a highly representative sam-
ple must include many properties, as the vast majority of 
these will not have positive recipients.

On the other hand, the collection of adult mosquitoes 
does not require substantial sampling effort for the same 
geographic area, since the individuals are winged and can 
travel a given flight radius to the traps. A large number 
of low-cost traps can be used in a longitudinal monitor-
ing survey. Depending on operational needs, the index 

Table 1  Posterior mean fixed effects and 95% confidence 
intervals for the number of adult Aedes aegypti females in 
temporal modeling in the Vila Toninho neighborhood of São José 
do Rio Preto, São Paulo State, Brazil

AR1, Temporal random effect; BI, Breteau index; CI, confidence interval; DIC, 
deviance information criterion; Min Temp, average minimum temperature; 
Precip, average daily precipitation

*Best DIC

Model Covariate Mean 95% CI DIC

Intercept 26.12 24.54–27.73 711.9

Intercept + AR1 21.80 10.34–40.63 257.1

BI + AR1 Intercept 20.56 10.88–34.13 255.3

BI 1.46 1.22–1.72

Min Temp + AR1 Intercept 20.01 14.76–25.76 255.9

Min Temp 1.78 1.43–2.16

Precip + AR1 Intercept 22.23 10.14–42.66 258.0

Precip 1.16 0.95–1.40

BI + Min Temp + AR1 Intercept 19.78 12.85–27.28 254.9*

BI 1.27 1.06–1.50

Min Temp 1.51 1.19–1.89

BI + Precip + AR1 Intercept 21.11 9.73–38.20 256.6

BI 1.46 1.24–1.71

Precip 1.17 0.99–1.35

BI + Min Temp + Precip + AR1 Intercept 19.86 12.16–28.68 255.8

BI 1.29 1.07–1.53

Min Temp 1.44 1.11–1.84

Precip 1.09 0.92–1.26

Table 2  Posterior mean fixed effects and 95% CI for the 
number of adult Ae. aegypti females in spatiotemporal modeling 
performed on the Vila Toninho neighborhood

RE, Random effects

*Best DIC

Model Covariate Mean 95% CI DIC

Intercept 1.33 1.25–1.41 2991.2

Intercept + RE 0.87 0.70–1.07 2264.9

BI + RE Intercept 0.87 0.70–1.06 2266.7

BI 1.12 1.00–1.24

Min temp + RE Intercept 0.82 0.69–0.96 2230.6

Min temp 1.71 1.52–1.91

Precip + RE Intercept 0.86 0.69–1.06 2238.8

Precip 1.53 1.35–1.73

BI + min temp + RE Intercept 0.82 0.69–0.95 2232.2

BI 0.99 0.89–1.09

Min temp 1.72 1.52–1.94

BI + Precip + RE Intercept 0.88 0.70–1.08 2235.2

BI 1.07 0.96–1.18

Precip 1.51 1.34–1.71

BI + min temp + precip + RE Intercept 0.82 0.68–0.97 2225.4*

BI 0.99 0.89–1.09

Min temp 1.58 1.36–1.83

Precip 1.16 1.00–1.33
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Fig. 4  Posterior means of the spatial random effects for the spatiotemporal modeling of adult Ae. aegypti females per season and year in the Vila 
Toninho neighborhood. The maps were built using R Core Team software 1.3.1093 (https://​www.R-​proje​ct.​org)

https://www.R-project.org
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can be estimated at different spatial scales. Data can be 
aggregated to evaluate the Ae. aegypti abundance in the 
country or analyzed separately to estimate the population 
within a predefined region [34]. Some studies have shown 
that surveillance of adult Aedes mosquitoes would there-
fore be more suitable for arbovirus risk assessment than 
measures of immature stages [25, 34] since the associa-
tion between larval indices and dengue transmission has 
yet to be proven satisfactorily [35]. Despite reductions 
in infestation levels in the winter, a sufficient number of 
mosquitoes survive to preserve the residual population 
until propitious climatic conditions occur the follow-
ing spring; this phenomenon could maintain the cases of 
dengue, Zika and chikungunya in the region even during 
the coldest and driest period of the year, as observed in 
other regions [36].

Regarding the temporal models, an increase of 1 SD in 
BI was associated with a 46% increase in the number of 
female mosquitoes. When we adjusted for temperature 
or for temperature and precipitation, this value decreased 
to 27% (or 29%, respectively) but remained significant. 
This finding suggests that there is a relationship between 
adult mosquitoes and the BI that is independent of the 
climate. However, the spatiotemporal model revealed a 
lower correlation between the two entomological indica-
tors: the regression coefficient decreased and remained at 
the limit of significance (mean: 1.12; 95% CI: 1.00–1.24). 
When we adjusted for climate variables, the BI lost its 
significance. The seasonal variations in the region influ-
enced adults and immatures in the same way, so some 
correlation between them was found only over time, but 
not in space. Eisen et  al. [29] showed a positive linear 
relationship between water temperature and the devel-
opmental rate of Ae. aegypti larvae between 15  °C and 
30  °C. Seasonal temperatures between 20  °C and 31  °C 
can modify the metabolic rate of mosquitoes, shorten 
the period of larval development and optimize foraging 
and egg-laying behavior, thus leading to higher mosquito 
infestation when suitable immature habitats are available 
[30–32]. Therefore, both adult and larval abundances 
should be associated with each other over time.

Our results show that calculating the larval entomo-
logical index is more expensive than using adult traps 
because the BI methodology requires relatively more 

field agents and more time to cover the same geographic 
area. The cost in man-days to perform an entomologi-
cal survey of adult mosquitoes is 83% lower than the 
cost required to determine the BI. Although the costs of 
traps (about US$100 each) and batteries (US$20 each) 
also have to be considered, given the large difference in 
productivity, this additional cost would be offset in the 
medium term. For example, if the annual budget were to 
be US$10,000, and the cost in man-days to collect adult 
mosquitoes is 83% less than that to determine the BI, 
then only US$1700 would need to be spent on field work-
ers. Even if the cost of each trap were to be added to the 
budget, together with the cost of its respective battery 
(100 + 20 = US$ 120), and 60 traps were needed to cover 
the area, the cost would be US$8900. This strategy would 
be cost-effective because traps and batteries only need 
to be acquired once. Thus, in upcoming years money 
from the budget would only be spent on field workers, 
which would be much lower that the amount needed for 
the BI measure. The great advantage to capturing adult 
mosquitoes is that, unlike the BI or similar indices, this 
type of survey allows for a local assessment of the infesta-
tion. Only a few households are tested when the aim is to 
measure the BI, and this index is then taken to be repre-
sentative of a larger area. There is an incorrect but com-
monly held belief that adult mosquito measurement is 
time-consuming, laborious and/costly [35]. For this rea-
son, a large majority of studies have focused on immature 
forms of the mosquito, but immature forms of mosqui-
toes may not be the most efficient indicator for assessing 
disease risk [27, 35].

The strengths of our study include the 4-year surveil-
lance period, the emphasis on adult female mosquitoes, 
the consideration of climate variables in the model, and 
the spatiotemporal approach. The models used were in 
accordance with the basic assumptions of regression 
modeling since they explicitly incorporated parameters 
representative of the spatial and temporal autocorrela-
tion present in the response variables. Our study also has 
limitations in terms of the results of our temporal and 
spatiotemporal models. The results consider the remain-
ing temporal autocorrelation of the residuals in lag 1, 
and the temporal autocorrelation remained unexplained 
from January 2018 onward due to covariates not being 

Table 3  Differences in cost-effectiveness between two entomological indices (the BI and adult mosquito surveying via specimen 
capture) applied to cover the same area: the Vila Toninho neighborhood

a The man-day was calculated by multiplying the number of days worked by the number of workers and the number of teams required to measure each index

Entomological index Composition of field teams Time required to perform each 
method per month

Number of households visited 
per month

Man-daysa

Breteau index 1 driver and 3 field workers 3 weeks 757 households 120

Adult survey 1 driver and 1 field worker 1 week 59 households 20
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included in our final temporal model. We found patterns 
in adult mosquito abundance rates that persisted over 
time, and these patterns may be explained by covariates 
not included in our model. Consequently, future studies 
should add geographic, socioeconomic and other climate 
variables to these models, such as land cover acquired via 
satellite images [37, 38] and El Niño Southern Oscillation 
data, for example. There is also the question of repre-
sentativity and comparability in pre-selecting houses for 
installing adult traps. There was no such pre-selection of 
houses for methods for determining the BI. The intrin-
sic characteristic of the BI method is the random choice 
of properties in a block. The adult traps also had their 
share of randomness, as they were installed on those 
properties that residents allowed, and not strictly on 
those that were chosen a priori. Another possible limita-
tion is that the spatiotemporal model couldn not be used 
monthly because the number of mosquitoes caught per 
month was very small, as was the monthly BI of houses 
in the buffers. We therefore decided to pool the seasons 
to increase this number. Although the acuity of the two 
methods is different, we believe that it would not change 
the final relation between both indexes, since the months 
within each season in the study area present very similar 
characteristics in relation to climate variables.

The general expectation was that the abundance rates 
of larvae and adults would be related in space, but we did 
not find this association. It is worth mentioning that the 
results of the present study may be due to specific fea-
tures of the study area, and future studies should analyze 
whether the patterns found in the study neighborhood 
are maintained in other regions. It is possible that Vila 
Toninho is particularly heterogeneous in terms of its 
land use and that the mosquito population is changing 
on a much finer spatial scale was measured in the pre-
sent study. Another possibility is that indoor habitats (or 
other habitat types not recorded in the BI) are serving as 
habitats for immatures. A larger set of complex data with 
different approaches is needed to determine whether the 
temporal and spatiotemporal relationships found in the 
present study are consistent with findings reported from 
other areas [39]. Algorithms using artificial intelligence 
and deep learning have shown promising results when 
dealing with big data and could be tested on infestation 
data from both adult and immature mosquitoes [40].

Conclusions
Adult and immature Ae. aegypti mosquitoes were 
found to be more closely related in time than in space. 
The temporal relationship between both indicators 
persisted even when the findings were adjusted for cli-
mate variables, and this consistency may be related to 
the biology of the mosquito vector in its different life 

stages. Bayesian temporal modeling revealed that an 
increase in 1 SD in the BI was associated with a 27% 
increase in the number of adult female mosquitoes 
when adjusted for climatic conditions. However, the 
relationship determined between adults and immatures 
in space was not significant and may have resulted from 
differences in their habitats. Aedes aegypti populations 
in the neighborhood studied in the present study were 
found to vary by season; however, even surveys carried 
out in winter revealed sufficient numbers of mosquitoes 
to sustain the residual population until environmental 
conditions become favorable in the spring. Calculating 
the larval entomological index was found to be more 
expensive than using adult traps, since the BI method 
requires relatively more field agents and more time to 
cover the same geographic area. Our results have rel-
evant implications for Ae. aegypti mosquito control 
in Brazil. This study provides evidence that estimat-
ing adult mosquito infestation may be the best option, 
in terms of cost, efficacy and the ability to achieve a 
higher resolution in time and space. It is worth men-
tioning that the results reported here may be due to 
specific features of the study area, and future studies 
should analyze whether the patterns found in the study 
neighborhood are maintained in other regions. Further 
work is now needed to apply the associations identified 
to larger areas and to consider them in different socio-
economic contexts.
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