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Abstract 

Background: In the eco‑epidemiological context of Japanese encephalitis (JE), geo‑environmental features influ‑
ence the spatial spread of the vector (Culex tritaeniorhynchus, Giles 1901) density, vector infection, and JE cases.

Methods: In Liyi County, Shanxi Province, China, the spatial autocorrelation of mosquito vector density, vector 
infection indices, and JE cases were investigated at the pigsty and village scales. The map and Enhanced Thematic 
Mapper (ETM) remote sensing databases on township JE cases and geo‑environmental features were combined in a 
Geographic Information System (GIS), and the connections among these variables were analyzed with regression and 
spatial analyses.

Results: At the pigsty level, the vector density but not the infection index of the vector was spatially autocorrelated. 
For the pigsty vector density, the cotton field area was positively related, whereas the road length and the distance 
between pigsties and gullies were negatively related. In addition, the vector infection index was correlated with the 
pigsty vector density (PVD) and the number of pigs. At the village level, the vector density, vector infection index, 
and number of JE cases were not spatially autocorrelated. In the study area, the geo‑environmental features, vector 
density, vector infection index, and JE case number comprised the Geo‑Environment‑Vector‑JE (GEVJ) intercorrelation 
net system. In this system, pig abundance and cotton area were positive factors influencing the vector density first. 
Second, the infection index was primarily influenced by the vector density. Lastly, the JE case number was determined 
by the vector infection index and the wheat area.

Conclusions: This study provided quantitative associations among geo‑environmental features, vectors, and the inci‑
dence of JE in study sties, one typical northern Chinese JE epidemiological area without rice cultivation. The results 
highlighted the importance of using a diverse range of environmental management methods to control mosquito 
disease vectors and provided useful information for improving the control of vector mosquitoes and reducing the 
incidence of JE in the northern Chinese agricultural context.
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Background
Japanese encephalitis (JE) is a major mosquito-borne dis-
ease transmitted among humans, pigs, and birds by insect 
bites [1]. Culex tritaeniorhynchus (Giles, 1901) is con-
sidered a key vector of JE in northern China [2], and its 
larvae can be found in rice paddies, ponds, channels, and 
other sites with clear water as well as large water bodies 
[3]. Without successful antiviral treatment for viral infec-
tion, JE fatality rate can reach 30%, and half of the survi-
vors have to face lifetime neuropsychiatric damage [4, 5]. 
In China, JE is currently the most broadly distributed and 
dangerous mosquito-borne disease [6, 7]. Particularly in 
the study area, which is located in northern China, JE is 
considered the most important mosquito-borne disease 
and poses a significant threat to public health [8]. Thanks 
to safe and effective vaccines specific for JE, excellent 
childhood vaccination programs can reduce the infection 
rate and financial burden in JE epidemic countries.

Although immunization has previously kept the inci-
dence of JE in this region comparatively low [9], the 
incidence of the disease has increased [10]. Particularly 
in 2006, an outbreak of JE in Liyi County, Shanxi Prov-
ince, attracted widespread national interest because this 
disease was thought to have been effectively controlled 
in the region [10]. Previous research has shown that the 
spatial distribution of mosquito vectors and the JE virus 
are associated [11, 12]. Their spatial distribution appears 
to be determined by various geo-environmental features, 
mosquito density, and infection rate [13–15]. Thus, the 
outbreak of JE in Liyi County, Shanxi Province, in 2016 
led us to wonder about the relationship between geo-
environmental features and JE cases as well as their vec-
tors and which factors could contribute to the relapse of 
JE.

The 3S technology, including geographic information 
systems (GIS), remote sensing (RS), and global position-
ing systems (GPS), is widely used in vector-borne disease 
epidemiology research [16, 17]. With the advantage of 
being a large-scale, real-time, and accurate 3S technol-
ogy, researchers can discover the connection between 
vector-borne disease (JEV, for example) and geo-environ-
mental features [18]. In this study, GPS was used to locate 
the pigsties, RS was used to identify and quantify the geo-
environmental features, and GIS was used to construct 
the spatial datasets of the vector and geo-environmental 
features. Consequently, we attempted to determine the 
spatial distribution characteristics and infection rate of 
Cx. tritaeniorhynchus in Liyi County, Shanxi Province, 
China, and the relationship between these and local 

geo-environmental features by combining spatial analy-
sis, 3S methods, and regression.

In China, the JE cases were linked to the geo-environ-
mental features [19, 20], and the vector distribution map 
coincided with areas of high JE incidence [21], which 
emphasized the association of the geo-environmental 
features with JE vectors as well as JE cases. In this study, 
we present the results of the analysis on the spatial 
dependence among the geo-environmental features, Cx. 
tritaeniorhynchus density, and JE infection rate in vil-
lages in northern China. From an epidemiological stand-
point, the results in the present paper could provide an 
environmental-ecological explanation for the outbreak of 
JE cases in Shanxi Province. Furthermore, this study pro-
vides clues for reducing the incidence of JE in this region.

Methods
Study site
Liyi County is part of Yuncheng prefecture, which is 
located in southern Shanxi Province. The major subsist-
ence crops in this region are corn and wheat, and the 
major commercial crops are vegetables, orchards, and 
cotton. In 2006, almost half the JE cases in Liyi County 
were in Yuncheng prefecture [22]. We selected four dis-
tricts in Liyi County as study sites, and 54% (33/61) of all 
the JE cases recorded in Liyi County between 2005 and 
2009 were in these districts (Fig. 1).

Mosquito trapping in pigsties
The four districts selected as study area were first further 
subdivided into 24 × 4  km2 subareas (Fig. 2). In each sub-
area, one village was then randomly selected as a study 
site, giving a total of 24 study sites. Additionally, three 
or four pigsties in each village were selected as mosquito 
surveillance positions. Finally, we had 93 pigsties for vec-
tor investigation.

In Liyi County, the Cx. tritaeniorhynchus population 
density peaks in June, July, and August. Therefore, mos-
quitoes were trapped continuously over a 7-day period 
in the middle of months with peak vector abundance 
(June–August) from 2010 to 2011. Mosquitoes were 
trapped with light traps (LTS-M02B Chinese CDC light 
220  V/50HZ 24  W, Wuhan Lucky Star Environmental 
Protection Technology Co., Ltd., Hubei, China) in 93 
pigsties distributed throughout the 24 village study sites. 
Inside each pigsty, one light trap was hung 1.5-m height 
from the floor, and the light was turned on at 7:00 p.m. 
and off at 7:00 a.m. daily. On bad weather days, trapping 
was postponed one more day. Every day, the mosquito 
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samples were collected and transported to the laboratory 
for later identification, and the trapped female mosqui-
toes were identified by morphology and counted.

Calculation of mosquito density and infection index
The mosquito density (N) was calculated from the light 
trap density as follows:

 where MN is the number of trapped mosquitoes, and LN 
is the number of light traps. The vector densities of the 
pigsty (PVD) and the village (VVD) were determined at 
the pigsty and village scales, respectively.

Reverse transcription polymerase chain reactions (RT-
PCRs) were performed on mosquito batches to deter-
mine the proportion of mosquitoes infected with the JE 

N = MN/LN

virus. The infection index was calculated according to the 
method described by [23]

where Ni is the average mosquito density and P̂i is the 
estimated infection rate of the mosquito population [24]. 
The pigsty vector infection indices of the (PVII) and the 
village (VVII) were also determined at the pigsty and vil-
lage scale, respectively.

JE epidemic in village sites
Baseline data on the incidence of JE in the 24 study vil-
lages over the 5-year period from 2005 to 2009 were 
acquired from the Liyi County Centers for Disease Con-
trol (CDC). These data included detailed information on 
each JE case, such as the name, sex, age, village, and diag-
nostic procedure, and they were incorporated into the 
GIS spatial vector database by attaching them to each vil-
lage’s location. The JE case number of villages (VJC) was 
deduced from the JE epidemic datasets.

GPS, RS, and GIS analysis of the study site image dataset
The location of each sampled pigsty was determined 
by GPS (Trimble GeoXT 2005, Sunnyvale, CA) before 
trapping. The Enhanced Thematic Mapper (ETM) sat-
ellite images (LandSat ETM 2009-9-27 with 15-m 
resolution) covering Liyi County were ordered from 
EarthView Image Inc. (Beijing, China), which also took 
responsibility for correcting the scan line error on the 
ETM images that minimized the error for remote sens-
ing as much as possible. The numbers of pigsties and 
vegetation, such as wheat, orchards, cotton, corn, and 

VI =
∑

i=species

NiP̂i

Fig. 1 Frequency of Japanese encephalitis cases at the district level in LiYi County, Shanxi Province, China

Fig. 2 Map of Liyi County, Shanxi, China showing study area and the 
locations of villages chosen as study‑sites
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vegetables, were regarded as geo-environmental fea-
tures that could potentially affect the mosquito density. 
First, we investigated the environment around each 
pigsty and village and recorded the vegetation type, 
position, and living stage for the field period. Then, the 
ETM images were classified with ENVI 4.7 (ESRI, Red-
lands, CA) using unsupervised classification method-
ISODATA (number of classes: maximum 20, minimum 
10; maximum iteration: 5; change threshold%: 5.00).

Some geographic factors, such as rivers, roads, and 
gullies, could also potentially affect mosquito abun-
dance in pigsties. The vectorization of these factors was 
performed in ArcGIS10.0 (ESRI, Redlands, CA) based 
on the Liyi county road transport map.

Extraction of spatial factors
On the ETM image of each study site, a 1-km circular 
buffer around each pigsty and village was drawn in Arc-
GIS using the Buffer tool in the Arc Toolbox. The veg-
etation and geographic factors inside each buffer circle 
(around the pigsty and village) were then generated 
through spatial extraction with the HawthsTools (v3.x) 
extension (Beyer, H L, 2004). With HawthsTools, the 
resulting polygonal factor area was then extracted with 
the “Polygon in Polygon Analysis” tool, while the line 
cause length was finished using the “Sum Line Lengths 
in Polygons” tool. The distances from the pigsties to the 
land cover and geographic factors were measured in 
ArcGIS with the Near tool in Arc Toolbox.

Geo‑environmental features for analysis
The geo-environmental features that were potentially 
correlated with the abundance of vectors, the vector 
infection index, and the village Japanese encephalitis 
case number in the study area are pictured in Fig.  3. 
The major geo-environmental features included the 
cotton area [area-area of the features within a 1  km 
buffer around the village (pigsties)], corn area, orchard 
area, vegetable area, and wheat area. The geographic 
features were the river length [length-length of features 
within a 1  km buffer around the villages (pigsties)], 
road length, gully distance [distance-distance between 
villages (pigsties) and features], road distance, river dis-
tance, Xiangjie (division line of districts) distance, and 
Yellow River distance. Lastly, the pig number (growing 
pig number) was also counted because of its important 
host role in JE transmission. We performed the study 
at the pigsty and village scales, considering the spatial 
scale influence of the geo-environmental features on 
the local vector and the epidemiology of JE (see Addi-
tional file 1: Table S1).

Statistical analysis scales and significance threshold
The spatial autocorrelation and regression analyses were 
conducted at the pigsty and village scales, respectively. 
All statistical analyses were performed using R version 
3.4.4 (R Core Team, 2018). Statistical significance was set 
at P < 0.05. The Bonferroni correction was applied when 
required in the evaluation of multiple comparison results.

Distribution and correlative test of the variable
First, the variables of the geo-environmental features 
were normalized using BOX-COX transformation in R. 
Then, the one-sample Kolmogorov-Smirnov test was per-
formed to detect the statistical distribution of the vector 
variables (PVD, PVII, VVD and VVII) and the JE case 
number (VJC); if they obeyed the normalization distribu-
tion, the Pearson correlative analysis and linear regres-
sion model were used; otherwise, the Spearman rank 
correlative analysis and generalized linear regression 
model were employed.

Spatial autocorrelation detection
The univariate Moran’s test (Queen Contiguity Weight 
was used) in GeoDa (095i) (GeoDa Center for Geospatial 
Analysis and Computation, Tempe, AZ) was first used 
to detect the spatial autocorrelation of PVD, PVII, VVD, 
VVII, and VJC by Moran index calculation. Second, the 
inference for the Moran index was based on a random 
permutation procedure in GeoDa with 999 rounds. If the 
P-value of the permutations was < 5%, then the spatial 
autocorrelation was statistically significant; otherwise, 
the spatial distribution was random. If significant spatial 
autocorrelation was detected, the relationship between 
the dependent variable and geo-environmental features 

Fig. 3 Geo‑environmental features potentially correlated with the 
vector density, vector infection index, and Japanese encephalitis 
cases at the scales of pigsty and village. PVD pigsty vector density; PVII 
pigsty vector infection index; VVD village vector density; VVII village 
vector infection index; VJC village Japanese encephalitis case number
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(covariates) was analyzed using the spatial regression 
package within GeoDa. If not, this type of analysis was 
conducted using a linear model or generalized linear 
model (Poisson GLM) in the R system [25], according 
to the statistical distribution test (Kolmogorov-Smirnov 
test).

Spatial regression
If spatial autocorrelation was detected for the vector 
variables and JE case number, the ordinary least squares 
(OLS) model, spatial lag model (SLM), and spatial error 
model (SEM) were applied simultaneously, and the 
P-values of the OLS (F test), spatial lag model (Lagrange 
multiplier test), and spatial error model (Lagrange mul-
tiplier test) were compared to confirm whether spatial 
regression is necessary. Furthermore, a comparison of 
the Akaike information criterion (AIC) value between 
the spatial lag model and spatial error model was used to 
diagnose which spatial model would be more fitted for 
the spatial regression analysis.

Once the spatial regression model was determined, the 
independent variables correlated to the dependent vari-
able were included in the spatial regression model with 
diversity variable combinations. The model with the 
lowest AIC value was considered the most appropriate 
model, and an AIC value difference of < 2 between the 
two models suggested that there was no significant differ-
ence in explanatory power of two models.

Linear and generalized linear model regression
Using the linear regression model [with lm () function in 
R system], the correlated features of the dependent varia-
bles were included in the model in a stepwise way, which 
could exclude possible collinearity in the dependent vari-
ables and result in the most explanatory model.

In the generalized linear model regression [with glm 
() function in R system], the independent variables cor-
related to the dependent variable were included in the 
regression model with diversity variable combinations, 
excluding possible collinearity among the dependent 
variables. The model with the lowest AIC value was con-
sidered the most appropriate model, and the AIC value 
difference was < 2 between the two models, suggesting 
that there was no significant difference in their explana-
tory power.

Results
Surveillance data
In 93 pigsties of 24 villages, 13,492 mosquitoes were 
captured by light traps, including Cx. tritaeniorhynchus, 
Cx. pipens pallens (Coquillett, 1898), Anopheles sinensis 
(Wiedemann, 1928), Armigerini subalbatus (Coquillett, 
1898), Aedes dorsalis (Meigen, 1830), and Ae. Albopictus 

(Skuse, 1894). The number and percentage of these spe-
cies were ranked as Cx. tritaeniorhynchus (6462, 47.90%), 
Cx. pipens pallens (6252, 46.34%), An. sinensis (386, 
2.86%), Ar. subalbatus (225, 1.67%), Ae. dorsalis (120, 
0.98%), and Ae. Albopictus (47, 0.53%).

Regression analysis of PVD and selected 
geo‑environmental features
As shown by the regression results in Geoda (see Addi-
tional file  1: Table  S2), the P-value of OLS was > 0.05, 
and the P-values of both the Lagrange multiplier (lag) 
test and Lagrange multiplier (error) test were < 0.05. In 
addition, the AIC value of the robust LM (error) test was 
significantly smaller than that of the robust LM (lag) test. 
Finally, the Moran index and its random permutation test 
showed that there was significant spatial autocorrela-
tion in the PVD (see Additional file 1: Table S3, Fig. S1). 
Consequently, the spatial error model provided a better 
approximation of the PVD.

As shown by spatial error regression model results, 
the cotton area (P = 0.002), gully distance (P = 0.027), 
and road length (P = 0.027) were significant coefficients 
with the PVD in the context of the spatial error regres-
sion model, without intercorrelation among them. Thus, 
these three factors were introduced into the spatial error 
regression model in a stepwise fashion, which resulted in 
seven models (see Additional file  1: Model S0.1–Model 
S0.7). Following a spatial error regression analysis on 
these seven models and comparing the AIC value, the 
AIC values of models 0.3, 0.5, and 0.7 were significantly 
smaller than those of model 0.1, 0.2, 0.4, and 0.6.

Among models 0.3, 0.5, and 0.7, model 0.7 provided 
a full explanation of the link between the geo-environ-
mental features and the PVD, and the test of heteroske-
dasticity (Breusch-Pagan test, P = 0.54) and spatial error 
dependence (likelihood ratio test of P = 0.04)  also sug-
gested that model 0.7 performed better than model 0.3 
and 0.5. According to model 0.7, the cotton area corre-
lated positively with the PVD (coefficient = 1.45 e−004) 
with 95% confidence intervals (1.36 e−004, 1.54 e−004) 
and the gully distance (coefficient = −  0.014) with 95% 
confidence intervals (−  0.0161, −  0.0136); road length 
(coefficient = −  0.041) with 95% confidence intervals 
(− 0.044, − 0.036) correlated negatively to the PVD at a 
significant level.

Generalized linear model (GLM) regression analysis of PVII
The PVII followed the Poisson distribution and dis-
played non-significant spatial autocorrelation (see Addi-
tional file  1: Table  S3, Fig. S2). So, the PVD (P = 0.007) 
and pig number (P = 0.043) were selected by Spearman 
rank analysis and introduced into the Poisson regression 
model in a stepwise way, which resulted in three models 
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(see Additional file  1: Model S1.1–Model S1.3). Follow-
ing a GLM regression analysis on these three models and 
comparing the AIC value, model 1.3 had a significantly 
smaller value than models 1.1 and 1.2. Subsequently, 
a Poisson GLM was conducted on model 1.3, and its 
results are listed in Table  1. Based on the GLM regres-
sion results, model 1.3 fit our data well and was signifi-
cantly different from the model with only one intercept 
(likelihood ratio chi-square = 20.213, P < 0.001), and the 
PVD (P < 0.001) and pig number (P < 0.001) were all sig-
nificantly and positively correlated with the PVII.

Linear regression analysis of the vector density of villages 
(VVD) and geo‑environmental features
At the village level, the village vector density (VVD) fol-
lowed the normal distribution and displayed non-sig-
nificant spatial autocorrelation (see Additional file  1: 
Table  S3, Fig. S3), and the cotton area (P = 0.019) and 
pig number (P = 0.024) were significantly associated 
with VVD. Consequently, the cotton area and pig num-
ber were incorporated into the linear regression analysis 
of the relationship between the vector density and geo-
environmental features (Table  2). The analysis of vari-
ance (ANOVA) results for the linear regression model 
(Table 2) indicated an F value of 6.06 (P = 0.009), which 

indicated that the linear regression model significantly 
accounts for the linear relationship from the actual trap 
data. In addition, the model coefficients (Table 2) showed 
a significant, positive relation among the cotton area 
(P = 0.036), pig number (P = 0.046), and VVD.

Generalized linear regression on the village vector 
infection index (VVII) and geo‑environmental features
The VVII obeyed the Poisson distribution and displayed 
non-significant spatial autocorrelation (see Additional 
file 1: Table S3, Fig. S4). Thus, the VVD (P < 0.001), river 
length (P = 0.021), and pig number (P = 0.031) were 
selected and involved in the GLM regression model in 
a stepwise way, which resulted in five models (see Addi-
tional file 1: Model S2.1–Model S2.5). Note that the pig 
number and VVD could not be input into the model at 
the same time because of the significant intercorrelation 
between the VVD and pig number.

Following the GLM regression analysis on these five 
models and comparing the AIC value, model 2.1 had a 
significantly lower AIC than model 2.2, 2.3, 2.4, and 2.5. 
Subsequently, the results of Poisson GLM on model 2.1 
are listed in Table  3. In Table  3,  model 2.1 fitted our 
data well and significantly different from the model with 
only one intercept (likelihood ratio chi-square = 11.13, 

Table 1 Results of Poisson regression in model 1.3

Factor Coefficient 95% confidence intervals Hypothesis test Model omnibus test

Lower limit Upper limit Wald chi‑square Sig Likelihood ratio chi‑square Sig

Intercept − 1.937 − 3.197 − 0.677 9.077 0.003 20.213 < 0.001

PVD 0.01 0.006 0.014 22.628 < 0.001

Pig number 0.015 0.007 0.022 12.916 < 0.001

Table 2 Linear regression model analysis on the vector density and geo‑environmental features

Factor Pearson correlation Coefficient analysis t Sig ANOVA model

Correlation Sig Coefficients 95% confidence intervals F Sig

Lower limit Upper limit

(Constant) Na Na 1.392 0.612 2.172 3.721 0.001 6.06 0.009

Pig number 0.469 0.024 0.013 0.00023 0.025 2.13 0.046

Cotton area 0.486 0.019 4.35e−006 0.00 e−006 8.0e−006 2.25 0.036

Table 3 Results of Poisson regression in model 2.1

Factor Coefficient 95% confidence intervals Hypothesis test Model omnibus test

Lower limit Upper limit Wald chi‑square Sig Likelihood ratio chi‑Square Sig

Intercept − 6.36 − 8.583 − 4.137 31.439 < 0.001 11.13 0.001

VVD 1.448 0.928 1.968 29.79 < 0.001
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P < 0.001), and the VVD (P < 0.001) was significantly and 
positively related to the VVII.

Because of the lower P value of Moran’s index test of 
VVII (pseudo-P-value = 0.084), we also performed the 
diagnostics for spatial dependence test on spatial lag 
regression and spatial error regression model on VVII. 
Both the probability of LM [Lagrange multiplier (lag), 
P = 0.774] test and LM [Lagrange multiplier (error), 
P = 0.736] were significantly bigger than 0.05, which con-
firmed that the spatial regression was not appropriate for 
VVII.

Generalized linear regression on village JE cases 
and geo‑environmental features
The VJC obeyed Poisson distribution and displayed non-
significant spatial autocorrelation (see Additional file  1: 
Table S3, Fig. S5). Thus, the VVII (P = 0.026), wheat area 
(P = 0.031), Xiangjie distance (P = 0.027), and pig number 
(P = 0.024) were introduced into the Poisson regression 
model in a stepwise way, which resulted in four models 
(see Additional file 1: Model S3.1–Model S3.4).

Following a GLM regression analysis on these five 
models and comparing the AIC value, model 3.2 had a 
significantly lower AIC value than models 3.1, 3.3, and 
3.4. Subsequently, the results of Poisson GLM on model 
3.2 are listed in Table 4. In Table 4, model 3.2 fit our data 
well and was significantly different from the model with 
only one intercept (likelihood ratio chi-square = 9.429, 
P < 0.001), and the VVD (P < 0.001) and wheat area 
(P < 0.001) were positively and significantly associated 
with the VJC.

Correlation net among geo‑environmental features, 
vector density, vector infection index, and JE case number 
at the pigsty and village levels
In the study area, there was a net correlation among the 
geo-environmental features, vector density, vector infec-
tion index, and JE case number at the pigsty as well as the 
village level. At the pigsty scale, the geographic features 
(gully distance and road length) were first related to the 
PVD and thus indirectly related to PVII (gully distance 
and road length were discarded because of their correla-
tion with the PVD); moreover, the cotton area was related 
to the PVD and then the PVII (cotton area was discarded 

because of its correlation with the PVD); in addition, the 
pig number was directly related to the PVII. On the vil-
lage scale, the geo-environmental features (cotton area 
and pig number) were first related to the VVD, then to 
the VVII, and finally to the VJC (the cotton area and pig 
number were discarded because of their correlation with 
the VVD); in addition, the wheat area was directly related 
to the VJC. Overall, there was a JE epidemiological inter-
relation net in the study area, as shown in Fig. 4.

Discussion
In northern China, the present study uncovered that 
arid crop growth could also affect the mosquito vec-
tor population and JE cases. Generally, rice cultivation 
is considered a major factor that influences the spread 
of JE in southern China [26, 27]. In northern China, 
arid crops are predominantly grown because of the 
shortage of water particularly at our study site. The pri-
mary crops include cotton, wheat, corn, orchard, and 
some vegetables. Because of water shortages, this type 
of agricultural pattern provides few breeding sites for 
mosquitoes [28], and there is no previous study that 
mentions the association among arid crop growth, JE 
cases, and vector density. Our results were the first to 
our knowledge to indicate that the JE vector density at 

Table 4 Results of Poisson regression in model 3.2

Factor Coefficient 95% confidence intervals Hypothesis test Model omnibus test

Lower limit Upper limit Wald chi‑square Sig Likelihood ratio chi‑square Sig

Intercept − 1.170 − 1.817 − 0.523 12.571 < 0.001 9.429 0.009

VVII 1.345 0.633 2.056 13.724 < 0.001

Wheat area 0.6 0.318 0.881 17.436 < 0.001

Fig. 4 Correlation network diagram on geo‑environmental features, 
vector density, vector infection index, and Japanese encephalitis case 
number at the scales of pigsty and village. PVD pigsty vector density; 
PVII pigsty vector infection index; VVD village vector density; VVII 
village vector infection index; VJC village Japanese encephalitis case 
number
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the pigsty and village levels was positively correlated 
with the cotton farming area. In our study area, cot-
ton farmers usually water their cotton fields by periodic 
flooding, which creates abundant favorable breeding 
sites for JE vector mosquitoes, the larvae of which are 
often found in cotton fields [29]. Thus, cotton irriga-
tion methods may explain the positive association 
between cotton farming and vector density. However, 
the positive connection between the wheat growing 
area and the JE cases at the village scale was difficult 
to explain here. We suspected that it could be an arti-
fact of a positive relation between wheat production 
and pig farming, and further investigation is necessary. 
Although rice cultivation is considered a major factor 
contributing to epidemiology of JE in southern China 
[26, 27], the relationship between geo-environmental 
features and JE in northern China has not previously 
been determined. Therefore, the study also verified the 
association of crop growth with the mosquito vector 
population and JE epidemiology. Moreover, Liyi County 
is part of a major cotton production area and JE epi-
demic county in Shanxi Province [30, 31]. The present 
article not only provided the first information to our 
knowledge on the potential causal factors of JE cases 
in a non-rice-growing area of northern China but also 
suggested that irrigation management in cotton fields 
could be as important for JE control in this region as 
rice irrigation management in southern China.

In this study, the pig number per pigsty was positively 
related to the vector density in the villages (VVD) and the 
vector infection index in the pigsty (PVI). Pigs are major 
hosts of Cx. tritaeniorhynchus and are a key reserve host 
of the JE virus [32], and the close relationship among the 
pig numbers and vector density [33] and vector infec-
tion rate [33], and the number of human JE cases [34] 
has been documented in many studies. Generally, the pig 
is the preferred host of Cx. tritaeniorhynchus [35], so it 
would be expected that the density of this mosquito in 
pigsties would be positively correlated with that of pigs. 
In this study, there was a positive connection between the 
pig numbers and vector density together with the vec-
tor infection index, confirming the importance of pigs 
in the JE transmission process. Our study site is located 
in the northern dry-farming region of China where 
no rice is grown; thus, our results may suggest that pig 
farming plays a key role in the incidence of JE in this 
region. Regarding the key risk of JE infection in pigs, 
special management considerations should be applied 
to decrease the infection rate among local people in Liyi 
County. The management choices used to reduce the 
incidence of JE in northern China could include the pig-
sty location, placing mosquito control devices in pigsties, 

immunizing pigs against JE, and JE virus surveillance in 
pigs.

In addition to the geo-environmental features (e.g., 
the growing crop and pig), the geographic features dis-
played a relation to the vector density. The gully, which 
originated from soil erosion caused by seasonal floods, 
is a typical geographic feature of the Loess Plateau in the 
northern part of China [36]. In general, the gully could 
flood in summer and be dry in winter [36]. Thus, floods 
in gullies could be viewed as a major water source in 
summer when mosquito vectors are prevalent in local 
areas. In this study, the vector density in the pigsty was 
negatively correlated with the distance of the pigsty from 
the gully. Although no previous study has confirmed the 
relationship between the PVD and the gully, the depend-
ence between the PVD and gully here would be reason-
able if the gully was considered a water flood in summer. 
As shown by other studies, the distance from the rice 
field was negative relative to the JE vector density in the 
rice growing area [37], and the JE vector density was also 
negatively dependent on the distance from the water 
flood in southern China [38]. In this study, our results 
hinted that seasonally flooding gullies could be the key 
geo-environmental feature affecting the local JE vector 
population. Therefore, the gully should be considered an 
important breeding source for vector mosquitoes to be 
investigated, and the corresponding management meas-
ures should be applied to the gully to decrease the vector 
density by  slowing down the gully erosion or eliminating 
the gully.

The road length was negatively related to the vector 
density in the pigsties here. In this study, the road was 
located in a 1-km buffer area around the pigsty; thus, 
the road length was the same as the road density in a 
1-km buffer area around the pigsty. Generally, the den-
sity of roads ranked as high risk for the spread of West 
Nile Virus (WNV) in Mississippi, USA [39]; moreover, 
the road net also affects the spatial distribution of den-
gue vector mosquito species [40] and malaria risk [41]. 
However, the present investigation seemed to show the 
opposite effect of road in the above references setting, in 
which the negative association between the PVD and the 
road length implied that the higher the road density was, 
the lower the vector density in the local area. Why? The 
environmental and socioeconomic background in the 
local region provided answers for this result. In the study 
area, the higher road density around the pigsties indi-
cated that the site was closer to downtown areas where 
there were fewer pigs and fewer cotton areas around 
the pigsty because local people depended primarily on 
vegetables and orchards for their economic interests. In 
addition, a closer downtown area indicates a higher liv-
ing status and sanitary rank for the local people, which 
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could also decrease the breeding sites for mosquito vec-
tors. Overall, the negative relation of the vector density to 
road density was consistent with the ecoepidemiology of 
JE and its vector.

In this study, the geographic features, geo-environmen-
tal features, vector density, vector infection index, and 
JE case number comprised the GEVJ [geography-envi-
ronment-vector (density and infection index)-JE (cases)] 
intercorrelation net in the study area. The number of JE 
cases is influenced by the vector density, vector infec-
tion index, human-vector interaction rate, and level of 
immunization [42–44]. In addition, the vector density, 
vector infection index, and number of JE cases are the 
key aspects of the JE transmission cycle, and the spatial 
distribution of these three parameters effectively charac-
terizes the local JE epidemiology [45, 46]. In this study, 
the mosquito vector density, vector infection index, and 
JE cases were interrelated and determined by the geo-
environmental features through the correlated net in 
the study area. This study not only demonstrated that 
there was an association among the vector density, vec-
tor infection index, and JE cases, as in previous studies, 
but it also shed light on the relationship between the geo-
environmental features and JE epidemiological factors, 
including the vector density, vector infection index, and 
JE cases.

Apparently, model 1.3 and model 2.1 did not add new 
knowledge because the vector infection indices (PVII 
and VVII)  depended respectively on the vector density 
(PVD and VVD) by the definition of VI. However, these 
two models confirm the vector density influence on the 
vector infection and quantitated the relationship between 
VII and VD, which could aid the control of JE epidemi-
ology. Moreover, this article constructed an interrelated 
net covering the JE epidemiological factors and geo-
environmental features, which would assist local disease 
control staff in decreasing the JE transmission risk in the 
study area. For example, the local residents could relocate 
pigsties to decrease the vector density according to the 
spatial associations of vector density with the geo-envi-
ronmental features, which would result in a lower vec-
tor density, vector infection index, and human infection 
cases successively.

Conclusion
This study was the first quantitative analysis on the 
association among geo-environmental features, vector 
density, vector infection index, and incidence of JE in 
northern China, which could help understand and con-
trol the epidemiology of JE in northern China. First, 
environmental management, e.g., cotton irrigation 
management as well as slowing down or eliminating 

the gully, could be applied to decrease mosquito vec-
tor density. Second, selecting pigsty location, placing 
mosquito control devices in pigsties, immunizing pigs 
against JE, and JE virus surveillance in pigs should also 
be used, considering the key role of pig. Finally, regres-
sion models among various geo-environmental factors, 
the vector density, vector infection index, and number 
of JE cases provided a useful predictive tool to aid JE 
epidemiology control in the study area.
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