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Abstract 

Background:  Brazilian spotted fever (BSF), the most lethal tick-borne disease in the Western Hemisphere, is caused 
by the bacterium Rickettsia rickettsii and transmitted by the bite of Amblyomma sculptum. Capybaras are considered 
primary hosts of this tick and amplifier hosts of R. rickettsii, generating new infected lineages of A. sculptum in BSF-
endemic areas. To define a possible treatment regimen for controlling the tick A. sculptum in capybaras, the aim of this 
study was to establish an effective fluazuron (FLU) dose to control A. sculptum larvae in artificially infested guinea pigs.

Methods:  In Study I (pharmacokinetic and pharmacodynamic analysis), 24 guinea pigs were divided into four equal 
groups: control group (CG; untreated) and treated groups receiving FLU administered by gavage in three doses: 
G1—1 mg/kg, G2—5 mg/kg and G3—10 mg/kg, once a day for 15 days (d0 to d + 14). Blood samples were col-
lected from the animals of the treated groups before and at d + 1, + 2, + 4, + 7, + 15 and + 21. The guinea pigs were 
artificially infested at d + 7 with A. sculptum larvae, and specimens were recovered at d + 11 to d + 14 and kept in a 
climatized chamber for 14 days. In Study II (evaluation of pharmacokinetic parameters), one group of eight animals 
received FLU administered by gavage in a single dose of 10 mg/kg, and blood samples were collected before and 
on day 0 (8 h after treatment), + 1, + 4, + 7, + 15, + 21 and + 28 after single FLU administration. FLU was analyzed in 
plasma samples by high-performance liquid chromatography with ultraviolet detection.

Results:  FLU plasma concentrations increased quickly, indicating rapid absorption, and decreased slowly. Some 
larvae from all treated groups exhibited morphological and behavioral changes. FLU interfered in molting, and the 
efficacy obtained was 100% for all treated groups.

Conclusions:  The results offer promising perspectives for the development of a palatable feed cube containing FLU 
for free-living capybaras to control A. sculptum and also to prevent BSF in areas where capybaras have been shown to 
play a primary role.
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Background
Amblyomma sculptum belongs to a complex of five other 
tick species, of which it has the widest distribution in 
Brazil [1]. This arthropod species has low parasitic speci-
ficity, mainly in immature stages, being able to infest 
several vertebrate host species, including humans as 
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accidental hosts. However, capybaras, tapirs and horses 
are considered its preferred hosts [2].

A factor that contributes to the excessive infestation of 
these ticks in the environment is the population imbal-
ance of capybaras in certain areas, haing an ecological 
and public health impact [3]. Capybaras are the larg-
est living rodent [4] and have the capacity to adapt to 
anthropic habitats, with important reproductive poten-
tial. They also live in large groups and do not have preda-
tors. These factors have led to a considerable increase in 
the population density of capybaras, and consequently of 
ticks [5].

Brazilian Spotted Fever (BSF) is an infectious disease 
with high case fatality risk, caused by the bacterium Rick-
ettsia rickettsii [6] and transmitted through the bite of 
ticks, mainly A. sculptum [7].

To obtain effectiveness in controlling BSF, the con-
trol of ticks such as A. sculptum is necessary to reduce 
their number in both animals and the environment. The 
immature stages of ticks (especially larvae) are more 
sensitive to chemical control measures than adults [8]. 
Therefore, reducing the presence of ticks in the immature 
phase is more effective than controlling the number of 
adult ticks. Furthermore, the correct use of acaricides in 
livestock is necessary to control environments infested by 
A. sculptum, since the concomitant presence of wild ani-
mals such as small mammals is common. The major issue 
in that case is that these wild animals can act as hosts of 
ticks in the immature stages, becoming keepers and dis-
persers of these arthropods in the environment [9].

Despite the severity of BSF, some in vitro studies have 
been published on the efficacy of A. sculptum control 
[10–12], and they have not been reported in in  vivo 
studies.

The main chemical groups for tick control applied on 
hosts are carbamates, organophosphates, amidines, pyre-
throids, macrocyclic lactones and phenylpyrazoles [13]. 
Fluazuron (FLU) belongs to a class of insect growth reg-
ulators (IGRs), and it is a chitin synthesis inhibitor [14]. 
FLU acts by interfering with molting and hatching [15] 
and is widely used to control Rhipicephalus microplus on 
cattle [16–18].

Few studies have described the oral administration 
of FLU to control ectoparasite in animals. For example, 
it was considered viable to control Sarcoptes scabei in 
pigs [19]. In addition, the administration of FLU in feed 
cubes proved to be viable for the control of fleas on wild 
rodents [20, 21].

To enable future development of feed cubes containing 
fluazuron for the control of the tick A. sculptum in capy-
baras, the aim of this study was to establish the bioavail-
ability and the effective dose of FLU administered orally 

for the control of A. sculptum larvae using artificially 
infested guinea pigs (Cavia porcellus).

Methods
Animals
Thirty-two clinically healthy guinea pigs (16 males 
and 16 females), 6–8  months old, weighing 0.6–1  kg, 
were included in the study. The animals had not been 
treated with ectoparasiticides in the 3 months before 
treatment. All animals were housed individually in 
cages whose dimensions were 0.60  m (height) × 1.2  m 
(width) × 0.60 m (depth), placed on a masonry floor, with 
supply of freshwater ad  libitum and dry feed for guinea 
pigs twice a day, according to the weight and need of 
each individual. The temperature of the room where the 
animals were kept was controlled by air conditioning, 
keeping it at 21 ± 1 °C. Also, environmental enrichment 
measures were adopted to reduce stress caused by the 
confinement and management necessary to conduct the 
study.

Groups and treatment
Two studies were carried out, as follows:

Study I: This study aimed to determine the influence 
of FLU doses on plasma concentrations and efficacy. For 
pharmacokinetic and pharmacodynamic (PK/PD) analy-
sis, 24 animals were divided into four groups (six ani-
mals/group): control group (CG;  untreated) and groups 
1 (G1), 2 (G2) and 3 (G3), receiving FLU administered 
by gavage in three doses, G1—1  mg/kg body weight, 
G2—5  mg/kg body weight and G3—10  mg/kg body 
weight, once a day for 15 days (d0 to d + 14). The guinea 
pigs were randomized by sex and weight. A decreasing 
list for each sex was prepared with the weight of each 
animal. Then the animals were divided into four groups 
(CG, G1, G2 and G3), and a lottery was conducted from 
the heaviest to the lightest animal, allocating one in each 
group, and so on, until attaining six replicates in the four 
groups, with three males and three females in each group.

Study II: This study aimed to perform descriptive 
pharmacokinetics. Determination of the pharmacoki-
netic parameters of FLU was obtained by evaluating the 
single-dose, compartmental model study. For evaluation 
of pharmacokinetic parameters, one group with eight 
animals received FLU administered by gavage at a single 
dose of 10 mg/kg.

Pharmacokinetic analysis
Study I: Blood was collected from the animals of G1, 
G2 and G3 in heparin tubes by jugular venipunc-
ture before and after the first treatment with FLU on 
days + 1, + 2, + 4, + 7, + 15 and + 21.
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Study II: Blood samples were collected before and 
on days 0 (8  h after treatment), + 1, + 4, + 7, + 15, + 21 
and + 28 after administration of a single FLU dose.

In both studies the plasma was obtained by centrifuga-
tion at 756 g for 10 min at 4 °C and was stored at − 20 °C 
until analysis.

Pharmacokinetic parameters were determined using 
the PK solver program (Microsoft Excel®, Redmond, 
WA, USA), using the non-compartmental model of 
extravascular administration. All PK parameters were 
calculated using the individual plasma concentration ver-
sus time data. The maximum measured concentration 
for a particular animal (Cmax) and the time from dosing 
to the maximum concentration (Tmax) were measured 
individually. The area under the curve from zero to last 
time t (AUC0-t) was calculated using the linear trapezoi-
dal method and extrapolated to infinity (AUC0-∞).

Results are expressed as arithmetic mean ± standard 
deviation (SD). Data were statistically analyzed by one-
way ANOVA followed by the Tukey test for multiple 
comparisons using GraphPad Prism 6.0 with 95% signifi-
cance (p ≤ 0.05).

Analytical procedures
The plasma concentrations of FLU were analyzed by 
high-performance liquid chromatography (HPLC) with 
ultraviolet detection and solid-phase extraction (SPE) 
according to the procedure described by Ferreira et  al. 
[22], adapted and optimized for guinea pig plasma. 
Plasma samples were subjected to SPE clean-up using 
Discovery 18-LT extraction cartridges (500  mg, 3  ml) 
(Supelco, USA) connected to a Visiprep SPE vacuum 
manifold (Supelco, USA), using acetonitrile as eluent sol-
vent. The eluate was evaporated to dryness and recon-
stituted in 100 μl acetonitrile. The chromatographic 
separation was performed using a C18 column (Kro-
masil, 3.5 µm; 4.6 × 100 mm; Tedia, Rio de Janeiro, Bra-
zil), preceded by a C18 guard column (Kromasil, 3.5 µm; 
4.6 × 10  mm; Tedia, Rio de Janeiro, Brazil), both main-
tained at 25  °C. The mobile phase consisted of acetoni-
trile: water (80:20, v/v) with a flow rate of 1.0 ml/min. The 
UV wavelength was set at 260 nm, and the injection vol-
ume was 20 µl.

Efficacy studies
The larvae of A. sculptum used in the experiment were 
obtained from colonies maintained in rabbits in the Lab-
oratory for Experimental Chemotherapy in Veterinary 
Parasitology of Federal Rural University of Rio de Janeiro.

To evaluate whether FLU could interfere with the ecdy-
sis of engorged A. sculptum larvae, the guinea pigs of the 
treated groups received FLU by gavage at three different 
doses once a day on experimental days 0 to 14 (Study I).

On d + 6, a calico bag was attached on the back [23] of 
each animal (including the treated group) with Unna’s 
paste [24] and adhesive plaster. All guinea pigs (tick-
bite naïve) were infested with approximately 1000 unfed 
A. sculptum larvae on d + 7 (the number of larvae used 
for infestation process was not determined by individual 
counting but taken from egg mass weights, with a count 
of eggs by gram, whereas the egg hatching percentage 
was pre-determined).

The first observation was performed after 24  h, the 
period needed for larval attachment. Daily, from d + 8 
to d + 14, the calico bags were inspected and naturally 
detached engorged ticks were collected, counted and 
immediately transferred to an incubator at 27 ºC and 85% 
RH, where they were kept. After this, all ticks were evalu-
ated and counted as alive or dead.

Statistical analysis of the number of engorged larvae 
detached was performed regarding data normality, using 
the Shapiro-Wilk test, between the experimental groups.

The average percentage data of molting from engorged 
larvae to nymph were used to determine whether there 
was a significant difference using ANOVA (a criterion) 
between the experimental groups. In all analyses a signif-
icance percentage ≥ 95% was considered. Analyses were 
performed using the statistical program BioEstat 5.3 [25, 
26].

Results
Pharmacokinetic analysis
Clinically, no adverse reactions were observed in any of 
the guinea pigs treated with FLU administered by gavage. 
In all experimental groups, plasma concentrations of FLU 
were quantified at all post-treatment sampling times.

The mean values of FLU plasma concentration of each 
group (Study I) are shown in Table 1.

Daily dose administrations for 15 days generated con-
centrations of FLU in plasma ranging from 50.87 to 
400.67 ng.ml−1 at the lowest dose (1 mg/kg), from 164.44 
to 509.99  ng.ml−1 at the medium dose (5  mg/kg) and 
from 293.84 to 701.43 ng.ml−1 at the highest dose (10 mg/
kg). The lowest dose presented lowest concentration val-
ues in plasma compared with medium and highest dose, 
since the statistical analyses showed significant difference 
(p < 0,005) at the first day of evaluation (Day + 1). How-
ever, for medium and highest doses, although increasing 
the dose resulted in an increase of FLU plasma concen-
tration, multiple doses (once a day for 15  days) did not 
lead to an increase of FLU concentrations over the course 
of treatment at both doses—no significant differences 
were observed between the evaluation days.

In Study II, the FLU plasma concentration versus time 
curves after single treatment are shown in Fig. 1. FLU 
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plasma concentrations increased quickly, indicating 
rapid absorption, reaching Cmax of 356.55 ± 133.75 ng/
ml at 0.77 ± 0.35 days (Tmax), with absorption intervals 
(AUC0-t) of 2327.99 ± 673.39, ng/ml*d, and slow elimi-
nation with t1/2 of 6.94 ± 1.47 (Table 2).

Efficacy studies
All data regarding efficacy can be seen in Table 3. The 
ticks detached from d + 11 to d + 14, and the means 
of recovery values of engorged specimens were 266.8 
(± 54.6) for CG, 419.2 (± 276.0) for G1, 427.2 (± 244.6) 
for G2 and 371.3 (± 203.1) for G3 (Table 3).

The results showed that the data had nonparametric 
distribution. Data were log10 transformed for normali-
zation. The Shapiro-Wilk test was used, noting that the 
data reached a normal distribution. Later, ANOVA (a 
criterion) was used to compare the mean number of 
engorged larvae recovered between the experimental 
groups. The results showed no significant difference 
(p = 0.8123) for engorged larvae detached.

Immediately after detachment, some larvae from all 
treated groups, mainly G3, although alive, exhibited 
morphological and behavioral changes, such as stunted 
size, elliptical shape, fragile integument and lethargy.

The mean molting percentage for the control group 
was 92.4% (± 7), while for all treated groups it was 
0 (100% efficacy). There was a significant difference 
between the mean molting percentage of the control 
group and the three medicated groups (p < 0.0001).

After the molting period, all larvae from the treated 
groups were shriveled and darker. In the control group, 
no morphological or behavioral alterations were 
observed.

Discussion
In this study, we chose the guinea pig (C. porcellus), 
a close relative of the capybaras (Hydrochaeris hydro-
chaeris), as the experimental model. Both belong to the 
Caviidae family and have similar behavior and physi-
ology [27]. These preliminary tests were conducted in 
guinea pigs because of the facility of handling, since 
they are smaller and more docile than capybaras.

Fluazuron has been used in the control of the tick 
Rhipicephalus microplus [16–18], but few controlled 

Table 1  Mean ± SD of plasma concentration of fluazuron (ng.ml−1) in guinea pigs treated orally in multiple doses with doses of 1 mg/
kg, 5 mg/kg and 10 mg/kg during the treatment period

a values of G1 differ from G2 and G3 in all evaluation days (significance level of 5%)
b values of G2 and G3 do not differ from each other in all evaluation days; on the average line of G1 +2, +4 and +15 do not differ from each other (significance level of 
5%)
c on the average line of G1 +7, +15 and +21 do not differ from each other (significance level of 5%)

Groups Evaluation days

Day + 1 Day + 2 Day + 4 Day + 7 Day + 15 Day + 21

G1 (1 mg/kg) 50.87 ± 3.55a 298,99 ± 141.45a,b 400.67 ± 160.53a,b 98.12 ± 19.89a,c 157.83 ± 102.64a,b,c 52.29 ± 29.43a,c

G2 (5 mg/kg) 164.44 ± 9.78b 226.96 ± 110.04b 509.99 ± 366.23b 250.20 ± 79.95b 348.37 ± 158.47b 161.40 ± 66.62b

G3 (10 mg/kg) 377.77 ± 46.62b 525.00 ± 38.50b 701.43 ± 423.42b 519.02 ± 273.33b 499.73 ± 220.76b 293.84 ± 151.17b

Fig. 1  Mean ± SD plasma concentration of fluazuron following orally 
administration of fluazuron (10 mg/kg) to guinea pigs (n = 8)

Table 2  Pharmacokinetic parameters of fluazuron following 
orally administration of fluazuron (10  mg/kg) to guinea pigs 
(n = 8)

tmax time to reach peak plasma concentration, Cmax peak plasma 
concentration, AUC​ area under the (zero moment) curve from time 0 to the 
last detectable concentration, t1/2 terminal half-life, AUC​ area under the (zero 
moment) curve from time 0 to infinity

Pharmacokinetic parameters Arithmetic mean ± SD

Cmax (ng/ml) 356.55 ± 133.75

tmax (d) 0.77 ± 0.35

AUC​0-t (ng.d/ml) 2327.99 ± 673.39

AUC​0-∞ (ng.d/ml) 2768.13 ± 708.61

t½ (d) 6.94 ± 1.47
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studies are available on the control of heteroxenous 
ticks, and in all cases the drug was applied topically 
[28–30].

No statistical difference in the count of detached 
engorged larvae between the groups was observed. 
However, despite this absence of the knockdown effect 
of FLU used as an acaricide, 14  days after engorged 
larvae incubation, all larvae from treated groups were 
dead. Furthermore, the engorged larvae, mainly from 
G3, exhibited morphological and behavioral changes. 
Oliveira et  al. [28], in a study of rabbits treated with 
different doses of FLU (1.25 to 150 mg/kg, poured on) 
to control R. sanguineus, observed the same morpho-
logical and behavioral changes in engorged nymphs in 
groups that received doses of 10  mg/kg. Probably the 
continued use and the route (oral instead of topical) of 
FLU applied to the animals of this study influenced the 
alterations observed even in the group receiving the 
lowest dose (1 mg/kg).

To determine whether there was a residual effect of 
FLU, other infestations of the same animals would be 
necessary, but since there are several studies proving that 
guinea pigs acquire resistance to ticks after a first infesta-
tion [31–35], we chose not to infest the animals again.

Data obtained from Study I showed an increase in 
plasma concentration of FLU with increasing dose on 
day + 1. However, from day + 4 until the last day of 
evaluation (+ 21), mean plasma concentrations did 
not differ significantly between groups. Efficacy results 
showed that even the lowest dose achieved 100% effi-
cacy against larval molting. These results can allow 

choice of a dose between 1 and 10 mg/kg (orally) in fur-
ther studies to control A. sculptum on capybaras.

In Study I, on d + 7, G1 had plasma FLU concentration 
of 98.12 ng.ml−1 (± 19.89), similar to the result of Study 
II on the same experimental day (d + 7). Since in the mul-
tiple dose study (Study I), 100% efficacy was obtained 
against conclusion of molting at plasma concentrations 
of FLU close to 100  ng.ml−1, perhaps treatment every 
7  days with oral FLU dose of 10  mg/kg would be suffi-
cient to control A. sculptum in guinea pigs and possibly 
in capybaras as well.

Pasay et  al. [19] administered FLU orally for 7 days 
(10  mg/kg/day) to control S. scabei infestation in three 
pigs and achieved plasma peaks of 300–800  ng.ml−1 
on day 7, similar to the result observed in Study I, with 
average of 701.43 ng.ml−1 on day 4 (plasma peak) in ani-
mals treated with 10 mg/kg/day. Although those authors 
did not calculate the pharmacokinetic parameters, we 
observed the same behavior, with rapid absorption and 
slow elimination until no detection on day 28.

The use of FLU as ectoparasiticide and its pharma-
cokinetic parameters were described by Lopes et al. [18] 
and Ferreira et  al. [22] for pour-on formulations in cat-
tle (2.5 mg/kg, single dose). However, according to Flajs 
and Grabnar [36], although the comparison of pharma-
cokinetic parameters between different species and with 
different administration routes is not recommended, it is 
still possible to compare the average time when levels of 
the drug can be detected in the blood plasma.

Table 3  Evaluation of detached and molting process of engorged larvae of Amblyomma sculptum recovered from artificially infested 
guinea pigs for control and fluazuron treated groups (at 1, 5 and 10 mg/kg)

a In column of engorged lavae detached the groups do not differ from each other (p=0.8123) and in thecolumn of nymphs that have molted (%) the control group 
differ from the treated groups (p<0.0001)
b n column of nymphs that have molted (%) the treated groups do not differ from each other

CG Control group, G1 1 mg/kg, G2 5 mg/kg, G3 10 mg/kg
* Normal morphology and behavior
** Engorged larvae shriveled and darker
1 Arithmetic mean
2 Minimum and maximum values

Group N of engorged larvae 
detached

Larvicidal efficacy (%) N of nymphs that have 
molted

Nymphs that have molted 
(%)

Molting 
process 
inhibition (%)

CG 266.81 ± 54.6a* – 247.01 ± 55.1 92.41 ± 7.0a –

(189–359)2 (176–330)2 (77.5–99.2)2

G1 419.21 ± 276.0a** 0 01 01, b 100

(132–777)2 (0)2 (0)2

G2 427.21 ± 244.6a** 0 01 01, b 100

(227–788)2 (0) 2 (0)2

G3 371.31 ± 203.1a** 0 01 01, b 100

(101–598)2 (0) 2 (0)1, 2
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In Study II, we observed the same pattern of quick 
absorption and slow elimination of FLU as reported by 
Lopes et al. [18] and Ferreira et al. [22].

No data exist on effective systemic FLU dosages for 
the control of A. sculptum in guinea pigs or capybaras, 
and there are only a few studies in which FLU was given 
orally to animals for control of fleas [20, 21], mites [19] 
and ticks [20]. The latter research group conducted a field 
trial of FLU in woodrats against fleas and ticks, but it did 
not reduce tick counts during a year of evaluation, with 
doses from 1 to 40 mg/kg given in feed cubes. However, 
the authors attributed the absence of count reduction to 
the extended life cycle of the species of ticks in the stud-
ied area (e.g. Ixodes pacificus can take as long as 3 years 
to complete its life cycle). It is possible that in a con-
trolled study, the authors would have observed the results 
they expected.

The population imbalance of capybaras in certain areas 
is indicated as the main cause of excessive tick infesta-
tion, causing an important ecological impact, with risk to 
public health due to the transmission of the bacterium R. 
rickettsii by the tick A. sculptum. All attempts to control 
tick infestations in environments where there are capyba-
ras have been based on either removing these animals or 
placing fences around areas frequented by capybaras in 
an attempt to isolate them from people who visit parks 
[37] or placing horses treated with ectoparasiticides in 
those areas (acting as traps) [38].

However, the results obtained have shown that the 
control of spotted fever is highly complex because of the 
many factors involved, requiring strategic control [39]. 
Therefore, actions are needed to enable population con-
trol of capybaras, environmental control of the evolution-
ary forms of A. sculptum, isolation of the most critical 
areas of parks to minimize human contact with ticks and, 
last but not least, the search for tools that enable tick 
control at the time they are parasitizing capybaras.

The topical application of products with acaricidal 
effect on capybaras is unfeasible because of the need to 
capture these animals and the fact they remain in the 
water for many hours. Based on the satisfactory results 
obtained in this study, combined with methods already 
employed to control ticks in free-living rodents, our 
results allow future tests with the use of fluazuron in par-
affin blocks (feed cubes) to control the tick A. sculptum 
in capybaras.

Conclusions
The results of this study indicate that the plasma avail-
ability of FLU administered orally in guinea pigs is 
effective against engorged A. sculptum larvae, bringing 
perspectives for the development of palatable feed cubes 
containing FLU for control of A. sculptum on free-living 

capybaras and also to prevent BSF in areas where capyba-
ras have been shown to play a primary role.
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