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Abstract 

Background:  Japanese encephalitis virus (JEV) is the principal cause of mosquito-borne encephalitis in human pop‑
ulations within Asia. If introduced into new geographic areas, it could have further implications for public and animal 
health. However, potential mosquito vectors for virus transmission have not been fully investigated. The Asian tiger 
mosquito, Aedes albopictus, has emerged in Europe and is now expanding its geographical range into more northerly 
latitudes. Culex quinquefasciatus, although absent from Europe, has been detected in Turkey, a country with territory in 
Europe, and could act as a vector for JEV in other regions. To assess the risk of these invasive species acting as vectors 
for JEV and therefore potentially contributing to its geographical expansion, we have investigated the vector compe‑
tence of Ae. albopictus and Cx. quinquefasciatus.

Methods:  Two colonised lines of Ae. albopictus (Italy and Spain) and a line of Cx. quinquefasciatus (Tanzania) were 
compared for susceptibility to infection by oral feeding with JEV strain SA-14, genotype III at 106 PFU/ml and main‑
tained at 25 °C. Specimens were processed at 7 and 14 days post-inoculation (dpi). Rates of infection, dissemination 
and transmission were assessed through detection of viral RNA by real-time polymerase chain reaction (RT-PCR) in 
mosquito body, legs and saliva, respectively, at each time point. Where possible, infection and dissemination were 
confirmed by immunohistochemical (IHC) detection of the JEV envelope protein.

Results:  Aedes albopictus from Italy showed no susceptibility to infection with JEV strain SA-14. Conversely, Ae. albop-
ictus colonised in Spain was susceptible and 100% of infected mosquitoes that were subjected to saliva screening 
expressed viral RNA at 14 dpi. Culex quinquefasciatus was highly susceptible to infection as early as 7 dpi and 50% of 
infected mosquitoes that were subjected to saliva screening expressed viral RNA at 14 dpi. Infection and dissemina‑
tion were confirmed in Cx. quinquefasciatus by IHC detection of JEV envelope protein in both the mid-gut and salivary 
glands.

Conclusions:  Aedes albopictus from two different locations in Europe range from being susceptible to JEV and capa‑
ble of transmission through to being resistant. Culex quinquefasciatus also appears highly susceptible; therefore, both 
species could potentially act as vectors for JEV and facilitate the emergence of JEV into new regions.
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Background
Flaviviruses have a global distribution and many species 
can be transmitted by arthropods such mosquitoes, ticks 
and sandflies [1, 2]. Japanese encephalitis virus (JEV) 
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(Family Flaviviridae, Genus Flavivirus) is the main aetio-
logical agent for human viral encephalitis in the Far East 
and Southeast Asia. The World Health Organisation esti-
mates that there are 68,000 clinical cases every year, but 
that over 3 billion people are at risk of exposure in Asia. 
Five genotypes are currently recognised, all endemic in 
Asia [3, 4].

Japanese encephalitis virus is maintained in an enzootic 
cycle between mosquito vectors and avian hosts, espe-
cially wading birds [5], although recent infection stud-
ies have demonstrated that domestic birds and pigs can 
act as amplifying hosts for JEV [6]. Some mosquito spe-
cies can act as bridge vectors transmitting the virus to 
humans and livestock. Humans and other mammals such 
as horses are considered dead-end hosts due to low lev-
els of viraemia, although recent studies have shown that 
pig-to-pig transmission can occur by the oronasal infec-
tion route [5, 7]. Due to a combination of climate change, 
movement of people and livestock, migratory birds, and 
the introduction of invasive vectors into new areas, geo-
graphic expansion of JEV into Europe could occur in the 
future [8, 9].

Culex tritaeniorhynchus is the main mosquito vector of 
JEV in regions where JEV is endemic, but other species, 
particularly within the genus Culex, can act as vectors 
[3, 10]. In Europe, Cx. tritaeniorhynchus has only been 
reported in Greece [11], and JEV RNA has been detected 
in a pool of Cx. pipiens in northern Italy [12], although 
this has not been associated with infection in either 
humans or swine. Recent experimental studies have dem-
onstrated the competence of European populations of 
mosquitoes to transmit JEV, including Cx. pipiens from 
the UK and France, as well as Culiseta annulata and 
Aedes detritus from the UK [13–15]. Vector competence 
studies carried out by de Wispelaere et  al. [16] demon-
strated that a French population of the invasive species 
Ae. albopictus was vector competent for JEV genotypes 
III and V, and Jansen et al. [17] showed that infected Ae. 
japonicus japonicus from Germany expressed JEV in  
saliva at 14 days post-inoculation (dpi). However, there 
are many unassessed indigenous mosquito vectors with 
endemic European populations that may be able to trans-
mit JEV and facilitate its emergence in the continent. In 
addition, non-native species to Europe have the potential 
to act as JEV vectors. These include Cx. quinquefasciatus, 
which has been found in Turkey [18]. Also, Ae. albopic-
tus and Ae. japonicus japonicus are now distributed in 
several European countries [19, 20]. The detection of Cx. 
quinquefasciatus in Turkey could indicate that this mos-
quito species might expand its geographical range into 
Europe in the near future. Globally, different populations 
of Ae. albopictus have been identified as competent vec-
tors of JEV, including Australia and Taiwan [21–23], and 

Cx. quinquefasciatus in North America [24], Brazil [13], 
India [25] and a colony from Queensland in Australia 
[26] were also competent to transmit JEV. However, other 
studies have shown that wild caught populations of Cx. 
quinquefasciatus from Australia and New Zealand were 
not competent to transmit JEV [26, 27], and two strains 
of Ae. albopictus (Yungho and Liyang, Taichung County) 
were less efficient vectors compared with a strain origi-
nating from Sanhsia (Taipei County) from Taiwan.

Due to the continued risk of invasive mosquito species 
globally, and the potential emergence of JEV into new 
areas [15], this study assessed the vector competence of 
two populations of Ae. albopictus (originating from Italy 
and Spain) and Cx. quinquefasciatus as a control for JEV 
genotype III. In this study, we selected to use JEV geno-
type III to inoculate mosquitoes as it is one of the most 
prevalent JEV genotypes along with genotype I, and it 
is associated with temperate climates [4]. In addition, 
immunohistochemistry (IHC) techniques were utilised to 
assess the presence of JEV antigen in mosquito histologi-
cal sections, which facilitated the visualisation of JEV dis-
tribution within the context of specific mosquito tissues.

Methods
Colonisation of mosquitoes
Laboratory colonies comprised Ae. albopictus (Padua, 
Italy) (year of colonisation unknown and donated by 
Entostudio, Italy), Ae. albopictus (Barcelona, year of colo-
nisation 2009 and donated by Universidad de Zaragoza, 
Spain) and Cx. quinquefasciatus (established at the 
Tropical Pesticides Research Institute (TPRI), Arusha, 
East Tanzania) (year of colonisation at London School 
of Hygiene and Tropical Medicine 2010 and donated by 
London School of Hygiene and Tropical Medicine, UK). 
A colonised line of Cx. quinquefasciatus originating from 
Africa was included for comparison as the species is 
known to be vector competent for JEV. Maintenance of 
Culex and Aedes mosquitoes in an insectary within bios-
ecurity level 3 laboratories followed previously published 
protocols [19, 28].

Virus stocks
Japanese encephalitis virus genotype III (strain SA-14, 
isolated from Cx. pipiens larvae, China 1954) was 
donated by Dr. Jonas Schmidt-Chanasit, Bernhard Nocht 
Institute for Tropical Medicine, Hamburg, Germany). 
Virus stocks were propagated in Vero cells as previously 
described [15, 19, 28]. Briefly, virus was propagated in 
Vero E6 cells in 25  ml of a culture medium consisting 
of Eagles minimal essential medium (E-MEM-Sigma 
Aldrich, UK), with 10% foetal bovine serum (FBS) and 
penicillin-streptomycin-nystatin solution (1% Thermo 
Fisher Scientific) at 37 °C and 5% CO2 for 3 days in T75 
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flasks. Infection of the cell monolayer was confirmed by 
light microscopy to assess the cytopathic effect (CPE).

Assessment of vector competence
Adult females of Ae. albopictus (Italy and Spain) and Cx. 
quinquefasciatus (Tanzania) were tested for their vec-
tor competence for JEV genotype III at 25  °C, which is 
representative of peak summer temperatures in the UK. 
Mosquitoes were provided with an infectious blood 
meal, composed of defibrinated horse blood, adenosine 
5′-triphosphate (final concentration 0.02 mM) and virus 
stock to give a final virus concentration of 1.8 × 106 PFU/
ml  (plaque forming units), using a Hemotek membrane 
feeding system (Hemotek Ltd Accrington, Lancashire, 
UK). Five- to ten-day-old adult female mosquitoes of 
both species were first starved of sucrose for 5 h and then 
allowed to feed on the infectious blood meal (as described 
above) in Bugdorm insect cages of 22 × 22 × 22 cm (Bug-
zarre.co.uk, Suffolk, UK) from 16:00, for a minimum of 
16  h. The following day they were anaesthetised with 
triethylamine (TEA) FlyNap® (Blades Biological Lim-
ited, Edenbridge, UK) and separated into groups of 
blood-fed and non-blood-fed specimens. Only blood-fed 
mosquitoes were used to assess vector competence. For 
the processing of specimens and assessment of vector 
competence (infection, dissemination and transmission 
rates), a modified protocol adapted from [15, 19, 28] was 
followed. The transmission efficiency (TE) was calculated 
only at dpi 14, and it was defined as the number of virus-
positive saliva samples per total number of fed females. 
Briefly, at 7 and 14 dpi, mosquitoes were immobilised at 
− 80 °C for 2 min and held in a plastic pot embedded in 
ice to ensure that they remained immobile during pro-
cessing. Legs and wings were removed, saliva samples 
taken and the bodies, legs and wings, and saliva retained 
at − 80 °C for downstream analysis.

Processing of samples for molecular detection of JEV RNA
The protocol of [15] was used for detection of JEV RNA 
in tissues using previously published primers [29], which 
target and amplify a fragment of the NS1 gene. A sample 
was considered positive for JEV RNA at a cycle thresh-
old (ct) value of 39 or lower, based on validation trials 
of the JEV PCR against positive and negative samples. 
Instead of using a standard to calculate RNA copies per 
mosquito, we opted to use ct values, which would enable 
direct comparison with previous studies [15].

Immunohistochemistry
The presence of JEV antigen in mosquitoes was deter-
mined by immunohistochemistry (IHC) in histologi-
cal sections. All segments of the mosquito, head, thorax 
and abdomen, were examined by light microscopy. A 

sufficient number of blood-fed specimens was available 
to assess by IHC for Cx. quinquefasciatus only. Unfor-
tunately, fewer female Ae. albopictus took an infectious 
blood meal; therefore, the number of mosquitoes availa-
ble for the vector competence experiment was lower, and 
we were not able to retain any specimens for IHC. Briefly, 
12 infected blood-fed and 3 non-infected control female 
mosquitoes were placed in 10% neutral buffered formalin 
for fixation for 48 h. After fixation the wings and extremi-
ties were removed and  the body was placed in sagit-
tal plane prior to routine processing to paraffin blocks. 
Serial 3-μm-thick sections of the  formalin-fixed paraf-
fin-embedded (FFPE)  mosquitoes were cut and placed 
on silane-coated slides (3-trietoxysilyl-propylamine). 
Proteinase enzyme buffer (DAKO, Ely, Cambridgeshire, 
UK) applied for 15 min at 20 °C was used as the antigen 
retrieval method. A mouse monoclonal anti-Flavivirus 
E-glycoprotein antibody (ab155882, Abcam, Cambridge, 
UK) applied at 1 in 50 dilution in Tris-buffered saline 
with 0.05% Tween 20 (TBST, VWR, Leicestershire, UK) 
at 4 °C for 18–20 h (overnight) was used as primary anti-
body to detect JEV. Parallel sections were tested with a 
protein concentration matched mouse immunoglobu-
lin G class 2a (Abcam, Cambridge, UK) as isotype con-
trols to identify any non-specific immunolabelling. Slides 
were then washed in purified water and assembled into 
coverplates for immunolabelling. DAKO mouse EnVi-
sion™ + System, HRP Peroxidase (DAKO, Ely, Cam-
bridgeshire, UK) was used as a secondary antibody and 
incubated for 30 min at 20 °C combined with swine and 
goat immune serum (Vector Laboratories, Peterborough, 
UK). Antibody binding was visualised using the chro-
mogen 3,3′-diaminobenzidine (DAB) + substrate-chro-
mogen, which results in a brown-colored precipitate at 
the antigen site after 10-min incubation. Finally, sections 
were counterstained with Mayer’s haematoxylin (HE) and 
mounted in Distyrene Plasticiser Xylene (DPX) mount-
ing medium (TCS Bioscience, Buckingham, UK) for light 
microscopy. Sections of West Nile virus-infected mouse 
brain and JEV-infected Vero cells were used as positive 
controls for flavivirus immunostaining.

Virus titration
Titrations of both stock virus and virus in the infected 
blood meal were performed by plaque assay as previously 
described [19, 28].

Statistical analysis
The graphical output was carried in the R programme 
(http://​www.R-​proje​ct.​org). A t-test was performed com-
paring the ct values for RT-PCR to measure relative levels 

http://www.R-project.org
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of virus infection between Cx. quinquefasciatus and Ae. 
albopictus.

Results
A total of 81 females (28.9%) from Ae. albopictus origi-
nating from Italy successfully fed following an infectious 
blood meal containing JEV, while 106 females (52.7%) of 
Ae. albopictus originating from Spain fed on the blood-
meal (Table 1). Conversely, only 79 females (37.4%) of Cx. 
quinquefasciatus fed (Table 2). In general, mortality was 
observed between 1 and 2 dpi, then the survival of mos-
quitoes was relatively stable until 6 dpi before declining 
towards 13–14 dpi, which is typical for vector compe-
tence experiments (Additional file 1: Fig. S1).

Virus infection, dissemination and transmission were 
initially determined by RT-PCR. Aedes albopictus origi-
nating from Italy did not show evidence of infection, dis-
semination or transmission at either 7 or 14 dpi (Table 1). 
However, Ae. albopictus originating from Spain did show 
infection at 7 dpi (6%), but neither dissemination nor 
transmission was detected. However, at 14 dpi infec-
tion (17%), dissemination (75%) and transmission (100%, 
n = 3) were detected (Table  1). The overall transmission 
efficiency of Ae. albopictus from Spain at dpi 14 was 
2.83%.

Culex quinquefasciatus showed higher prevalence of 
infection (50%), dissemination (20%) and transmission 
(100%, n = 1) at 7 dpi. In addition, higher prevalence of 
infection (79%), dissemination (17%) and transmission 
(50%, n = 2) were observed at 14 dpi (Table 2). The trans-
mission efficiency of Cx. quinquefasciatus at dpi 14 was 
2.53%.

To compare relative amounts of virus genome in the 
tissue we analysed, the threshold values from each ampli-
fication cycle (ct) were evaluated, in particular at 14 dpi 
(Fig.  1). The ct values detected from Cx. quinquefascia-
tus were significantly lower compared to Ae. albopictus, 
suggesting a higher level of viral RNA detection in these 
samples (t = 2163, P = 0.019).

Cellular distribution of JEV infection in Cx. quinque-
fasciatus was determined by IHC on sections of FFPE 
whole mosquitoes to detect JEV envelope antigen. JEV-
immunolabeled cells were observed in the posterior mid-
gut of seven infected females of Cx. quinquefasciatus 
(Fig.  2; Additional file  2: Fig. S2). Immunolabelling was 
present in clusters of epithelial cells, predominantly cili-
ated pseudostratified intestinal cells, located in the pos-
terior midgut region, as characterised by dark brown 
pigment deposition within the cytoplasm. The levels 
of midgut epithelial cells infection were highly variable 

Table 1  Infection, dissemination and transmission of Aedes albopictus (Italy and Spain) following consumption of a blood meal 
containing Japanese encephalitis virus genotype III

Groups of mosquitoes were maintained at 25 °C for the indicated time periods

Dpi days post-inoculation
a Number of mosquitoes dissected is shown by the denominator

Species Blood meal titre 
(PFU/ml)

Blood feeding rate (%) Dpi 7 (%)a Dpi 14 (%)a

Aedes albopictus, Padua, Italy 1.8 × 106 81/281 (29) Infection (body) 0/19 (0) 0/28 (0)

Dissemination (legs) 0 0

Transmission (saliva) 0 0

Aedes albopictus, Barcelona, Spain 1.8 × 106 106/201 (53) Infection (body) 1/18 (6) 4/24 (17)

Dissemination (legs) 0/1 (0) 3/4 (75)

Transmission (saliva) 0 3/3 (100)

Table 2  Infection, dissemination and transmission of Culex quinquefasciatus following consumption of a blood meal containing 
Japanese encephalitis virus genotype III

Groups of mosquitoes were maintained at 25 °C for the indicated time periods

Dpi days post-inoculation
a Number of mosquitoes dissected is shown by the denominator

Species Blood meal titre 
(PFU/ml)

Blood feeding rate (%) Dpi 7 (%)a Dpi 14 (%)a

Culex quinquefasciatus, Tanzania 1.8 × 106 79/211 (37) Infection (body) 5/10 (50) 23/29 (79)

Dissemination (legs) 1/5 (20) 4/23 (17)

Transmission (saliva) 1/1 (100) 2/4 (50)
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with labelling ranging from a continuous row of cells 
to single cells (Additional file  2: Fig. S2). Positive intra-
cytoplasmatic immunolabelling was observed in the 
salivary gland of one specimen of Cx. quinquefasciatus, 
defined by the presence of secretory masses corroborat-
ing the detection of virus by this and other methods such 
as PCR (Table  2). Isotype control immunolabelled sec-
tions did not show any non-specific staining on infected 
mosquitoes.

Discussion
Our results show that Ae. albopictus originating from 
Spain and a line of Cx. quinquefasciatus originating from 
Tanzania were susceptible to infection by JEV genotype 
III. In addition, our study demonstrates that after 14 days 
at 25 °C, JEV virus was able to disseminate throughout Ae. 
albopictus originating from Spain and Cx. quinquefascia-
tus with viral RNA being detected in saliva by RT-PCR, 
and also in the salivary glands of Cx. quinquefasciatus by 
IHC. This suggests that the studied populations may be 
competent vectors of JEV genotype III under our experi-
mental conditions, corroborating previous findings from 

Fig. 1  Boxplot comparing the cycle threshold (ct) values for 
Ae. albopictus and Cx. quinquefasciatus from RNA extractions of 
specimens infected with Japanese encephalitis virus and maintained 
at 25 °C. Culex quinquefasciatus ct values were significantly lower 
compared to Ae. albopictus, suggesting that quantity of viral RNA was 
higher in these samples. Significance (P < 0.05) denoted by a double 
asterisk (**)

Fig. 2  Japanese encephalitis virus infection at 25 °C of posterior midgut epithelial cells in Cx. quinquefasciatus. a Head (H), thorax (T), abdomen 
(Ab). b Intracytoplasmic immunolabelling in the distal lobes of salivary gland, defined by the presence of secretory masses (SM); intense antigen 
labelling particularly in the basal region of the epithelium (red arrow). c Antigen labelling in the apical ciliated cells (arrow) and basal epithelial cells 
(arrowhead) of the posterior midgut; lumen of the midgut (L). Scale bar: 500 µm (a); 20 µm (b, c)
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populations of Ae. albopictus and Cx. quinquefasciatus 
[13, 16, 21, 23, 24, 26, 30]. Of the mosquito populations 
assessed, Cx. quinquefasciatus appeared the more com-
petent vector for JEV, as expected, demonstrating the 
highest levels of dissemination and transmission, despite 
blood feeding at a lower rate than Ae. albopictus from 
Spain. However, these results demonstrated that a popu-
lation of Ae. albopictus originating from Spain may also 
act as a competent vector for JEV; this is also supported 
by the TE for JEV in both species.

Both Ae. albopictus and Cx. quinquefasciatus are indig-
enous in tropical areas, where temperatures > 30 °C can 
be encountered, and they are well known vectors for 
many arboviruses [24, 31–34]. Although Cx. quinquefas-
ciatus has not yet been detected in Europe and its abil-
ity to successfully transmit JEV in Europe would require 
the establishment of high-density populations, its mor-
phological, ecological and phylogenetic similarity to Cx. 
pipiens and its ability to colonise new areas via ship and 
airline vessels [35] make it a potentially important inva-
sive species for studying the transmission of re-emerging 
zoonotic viruses such as JEV. The origin of Cx. quinque-
fasciatus is thought to be West Africa from where it col-
onised other regions through  trade and migration. The 
species reached the Americas during the 1800s, spread-
ing to Asia and the Pacific via whaling and merchant 
vessels [36, 37]. It is a common species in Africa; thus, 
our finding that the population from Tanzania is a highly 
competent vector for JEV is epidemiologically relevant in 
the event of JEV  spreading in the African continent.

Conversely, Ae. albopictus is now distributed in many 
countries in Europe and the Mediterranean Basin, with 
a few sporadic recorded incursions into more temperate 
regions such as the UK [38]. Several populations of Ae. 
albopictus are considered the main drivers for outbreaks 
of dengue and chikungunya fever in Europe [39]; it is also 
a known secondary vector of Zika virus in Latin America 
[28]. The species has spread rapidly throughout Europe, 
being mainly transported by road vehicles, where it can 
be considered a biting pest together with Ae. japoni-
cus japonicus [40]. In our study, the Italian population 
of Ae. albopictus from Padua, Northern Italy, was not a 
competent vector for JEV genotype III, although it is an 
efficient vector of other arboviruses such as chikungunya 
virus [41]. Previous reports have suggested that the dif-
ferent origins of the Italian Ae. albopictus populations, 
which were introduced separately from different tropi-
cal and subtropical areas over the past 3 decades [41], 
could be the basis for differences in their vector compe-
tence. It is worth noting that the experimental conditions 
in this study maintained constant heat and humidity 
with a 24-h day-night photoperiod, which are standard 
conditions during vector competence studies [15, 19]. 

However, these conditions are not representative of natu-
ral conditions. Given that previous studies suggest that 
temperature appears to be a critical factor for both vec-
tor competence and vector mortality in this experimen-
tal system, we suggest that future studies incorporate 
variation between minimum and maximum tempera-
ture/humidity means to represent what occurs naturally 
[42]. Infection experiments carried out in Cx. pipiens 
have shown that a limiting factor at which this species 
becomes unable to transmit JEV genotype III is tempera-
ture, with higher temperatures (25 °C) causing increased 
mortality in infected mosquitoes compared to mosqui-
toes held at 20 °C [15]. However, no increased mortality 
was observed for Ae. albopictus or Cx. quinquefasciatus 
at 25  °C in the present study, suggesting that under our 
experimental conditions an elevated temperature and 
infection with JEV strain SA-14 did not cause additional 
mosquito mortality. This may be a consequence of the 
mosquito species and virus strain used as both naturally 
encounter higher temperatures than our experimental 
paradigm [3].

The labelling of virus antigen in Cx. quinquefasciatus 
confirmed that at 25 °C, JEV was able to infect the poste-
rior midgut epithelial cells such as ciliated pseudostrati-
fied intestinal cells, which corroborates detection of virus 
in the mosquito body by molecular means. This supports 
a previous study showing that midgut epithelial cells are a 
major site of viral replication [15]. In addition, viral anti-
gen was observed in mid-gut and salivary glands by IHC, 
which demonstrated that at 25 °C and by 14 dpi, the virus 
was able to overcome the midgut barrier and to infect 
secondary organs such as the salivary glands. Previous 
studies found that JEV present in the midgut appeared 
viable by the recovery of live virus in vitro from homog-
enised mosquito bodies [15]. However, it was unclear 
whether the restriction of JEV to the midgut was a result 
of active anti-viral control by the mosquitoes or the lower 
experimental temperature restricting virus replication. 
The authors suggested that an increase in temperature, 
or an increase in the duration of the experiment, could 
potentially trigger further virus replication and escape 
from the midgut; our results suggest that temperature 
may be a contributing factor to full viral dissemination.

Conclusions
Of the mosquito populations studied, there was no evi-
dence that the virus could infect or disseminate within the 
Ae. albopictus line originating from Italy at 25 °C at either 
7 or 14 dpi. By contrast, Ae. albopictus originating from 
Spain and Cx. quinquefasciatus originating from Tanzania 
proved to be susceptible to infection as early as 7 dpi. Dis-
semination occurred in a proportion of infected mosqui-
toes and JEV was detected in the saliva of these mosquitoes. 
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This suggests the potential of these mosquito populations 
to transmit JEV genotype III (strain SA-14). Considering 
that several mosquito species have been shown to be com-
petent vectors for a number of arboviruses, our results con-
tribute to this expanding dataset and indicate that if JEV 
were to emerge in new areas, there would be a number of 
mosquito populations that could facilitate its transmission 
and persistence.
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Additional file 1: Figure S1. Survival of Ae. albopictus (Italy and Spain) 
and Cx. quinquefasciatus (Tanzania) at 25 °C following a blood meal 
containing Japanese encephalitis genotype III over 14 days post-infection; 
DPI, days post-infection.

Additional file 2: Figure S2. Japanese encephalitis virus infection of the 
midgut in seven specimens of Cx. quinquefasciatus maintained at 25 °C. 
(a–e) Strong immunolabelling. (f, g) Moderate immunolabelling . Scale 
bar: 20 µm.
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