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Abstract 

Background:  Ticks are obligate hematophagous arthropods transmitting a wide range of pathogens to humans and 
animals. They also harbor a non-pathogenic microbiota, primarily in the ovaries and the midgut. In the previous study 
on Ixodes ricinus, we used a culture-independent approach and showed a diverse but quantitatively poor midgut bac-
terial microbiome. Our analysis also revealed the absence of a core microbiome, suggesting an environmental origin 
of the tick midgut microbiota.

Methods:  A bacterial analysis of the midgut of adult females collected by flagging from two localities in the Czech 
Republic was performed. Using the culture-independent approach, we tested the hypothesis that the midgut micro-
biome is of the environmental origin. We also cultured indigenous bacteria from the tick midgut and used these to 
feed ticks artificially in an attempt to manipulate the midgut microbiome.

Results:  The midgut showed a very low prevalence and abundance of culturable bacteria, with only 37% of ticks 
positive for bacteria. The culture-independent approach revealed the presence of Borrelia sp., Spiroplasma sp., 
Rickettsia sp., Midichloria sp. and various mainly environmental Gram-positive bacterial taxa. The comparison of ticks 
from two regions revealed that the habitat influenced the midgut bacterial diversity. In addition, the midgut of ticks 
capillary fed with the indigenous Micrococcus luteus (Gram-positive) and Pantoea sp. (Gram-negative) could not be 
colonized due to rapid and effective clearance of both bacterial taxa.

Conclusions:  The midgut microbiome of I. ricinus is diverse but low in abundance, with the exception of tick-borne 
pathogens and symbionts. The environment impacts the diversity of the tick midgut microbiome. Ingested extracel-
lular environmental bacteria are rapidly eliminated and are not able to colonize the gut. We hypothesize that bac-
terial elimination triggered in the midgut of unfed adult females is critical to maintain low microbial levels during 
blood-feeding.
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Background
It is well established that hematophagous arthropods 
harbor an abundant microbiome that is primarily 
located in the gut. Blood is a rich source of nutrients, 
and its injestion can lead to the expansion of the gut 
microbial community by several orders of magnitude 

Open Access

Parasites & Vectors

*Correspondence:  ZUREKLU@vfu.cz

1 Central European Institute of Technology (CEITEC), Center for Infectious 
Diseases and Microbiology, University of Veterinary Sciences, Brno, Czech 
Republic
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-022-05362-z&domain=pdf


Page 2 of 12Guizzo et al. Parasites & Vectors          (2022) 15:248 

[1–4]. An abundant microbial community may play a 
role in the host metabolism, development, nutrition 
and reproduction [5]. Diversity of the gut microbiome 
can be influenced by the habitat, diet, temperature, sex 
and several other factors shaping complex host-micro-
biome interactions [6, 7]. The native gut microbiota 
may also interact with pathogens that arthropods vec-
tor in neutral, detrimental or beneficial relationships. 
Natural or artificially induced detrimental interactions 
have been suggested as a promising strategy to reduce 
the vector competence of blood-feeding arthropods for 
the pathogens they carry [2, 8, 9].

Ticks are obligate hematophagous arthropods that 
feed on a wide range of hosts. They harbor mutualist 
symbionts, commensal microorganisms and human 
and animal pathogens [10–13]. Tick-borne pathogens, 
such as Borrelia sp., typically persist and/or multiply 
in the tick midgut before they are transmitted further 
[14]. While evading host immune responses, pathogens 
interact with non-pathogenic microbes in the midgut, 
and this interaction may impact their colonization and 
transmission [15–17]. Metagenomic studies on the tick 
midgut showed that this organ carries a diverse bacte-
rial community represented by numerous operational 
taxonomic units (OTUs) [18–24]. However, in general, 
the bacterial abundance in the tick midgut is low, espe-
cially when assessed by culturing methods [25–31], 
confirming the lack of a core gut microbiome. In our 
previous studies, we showed that the large microbial 
diversity in the midgut of Ixodes ricinus contrasts with 
a low abundance, declining from 104 bacteria/midgut 
in unfed females to 102 bacteria/midgut in fully fed 
females [32]. Our studies also revealed the absence of 
a core microbiome, indicating an environmental origin 
and a transient nature of the midgut microbiota of I. 
ricinus [32] and Amblyomma americanum [33]. While 
pathogens of most obligate blood-feeders, such as mos-
quitoes and kissing bugs, interact with numerous indig-
enous microbes in the digestive tract [3, 34], the midgut 
of I. ricinus represents an environment with a very 
small microbial community, which reduces any poten-
tial natural detrimental interactions between pathogens 
and indigenous microbiota. However, the manipulation 
of I. ricinus midgut microbiome might be exploited as a 
promising strategy for reducing tick vector competence 
for pathogens [35–37].

In this study, we coupled the culture-independent 
method with the culturing approach and analyzed the 
midgut microbiome of questing females of I. ricinus 
collected from two regions in the Czech Republic. This 
allowed us to test the hypothesis of the environmen-
tal origin of the tick midgut microbiota. In addition, we 
artificially fed adult female ticks with Pantoea sp. and 

Micrococcus luteus isolated from the tick midgut in an 
attempt to manipulate the midgut microbiome.

Methods
Culture‑dependent bacterial quantification 
and identification
Unfed I. ricinus females were collected by flagging on 
grass from an urban park in the city of Brno (n = 38) in 
Southern Moravia, and from a grass forest where there is 
relatively low human activity near the city of Ceske Bude-
jovice (n = 43) in Southern Bohemia, both sites located 
in the Czech Republic. Captured ticks were surface 
sterilized with 0.05% sodium hypochlorite (commercial 
bleach; SAVO brand, Unilever Czech Republic, Prague, 
Czech Republic) for 3 min, followed by 70% ethanol for 
1 min and then three washes in sterile potassium buffered 
saline (PBS) (Sigma-Aldrich, St. Louis, MO, USA) to pre-
vent any body surface contamination [38, 39]. Individual 
whole midguts were dissected out and homogenized in 
200 µl of PBS (Sigma-Aldrich). One half of each homoge-
nate was spread-plated on 5.0% sheep blood-agar (Oxoid, 
Basingstoke, UK) and incubated aerobically at 26  °C for 
72 h. Colony-forming colonies (CFUs) were counted and 
re-calculated into CFUs per tick. Morphologically dis-
tinct colonies were picked and streaked on TSA (Tryp-
tic Soy Agar; Sigma-Aldrich) and incubated at 26 °C for 
identification. The other half of each homogenate was 
kept at−80 °C for further culture-independent analysis.

Bacterial identification was done using matrix-assisted 
laser desorption/ionisation–time-of-flight mass spec-
trometry (MALDI-TOF MS) on the Microflex LT bench-
top MALDI-TOF mass spectrometer (Bruker Daltonik 
GmbH & Co. KG, Bremen, Germany), as described pre-
viously [40]. Briefly, the bacterial culture was placed on 
the MALDI plate, overlaid with 1.0 μl of the matrix solu-
tion containing 10 mg/ml HCCA (a-cyano-4-hydroxycin-
namic acid; Sigma-Aldrich) dissolved in 50% acetonitrile 
(Sigma-Aldrich) and 2.5% trifluoroacetic acid and then 
air-dried. The mass spectra were processed using the 
MALDI Biotyper 3.0 software package (Bruker Optik 
GmbH, Leipzig, Germany) containing 6903 reference 
spectra. Identification was performed according to the 
criteria recommended by the manufacturer.

Culture‑independent bacterial identification
One half of each midgut homogenate was used for 
genomic DNA extraction and isolation using the Pow-
erSoil DNA isolation kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s instructions. To increase 
the specificity of DNA amplification, a pre-PCR was per-
formed using the primer pairs 8F (5′-AGA​GTT​TGA​TCC​
TGG​CTC​AG-3′) and 907R (5′-CCG​TCA​ATTCMTTT​
RAG​TTT-3′) of the 16S ribosomal RNA (rRNA) gene. 
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Illumina library preparation and subsequent sequencing 
were performed as previously described [41]. Briefly, the 
V3-V4 region of the 16S rRNA gene was amplified using 
the primer pairs 341F (5′-CCT​ACG​GGA​GGC​AGCAG-
3′) and 805R (5′-GAC​TAC​HVGGG​TAT​CTA​ATC​C-3′). 
The sequencing library was generated using a two-step-
PCR approach following the Nextera primer design for 
Illumina. Analysis was carried out in two technical rep-
licates. The library was sequenced using the MiSeq Rea-
gent kit v2 (2X250 bp pair-end reads) for the Illumina 
MiSeq platform (Illumina, Inc., San Diego, CA, USA).

Data analysis
All data were analyzed in the R statistical programming 
environment (version 3.6.2; R Foundation for Statistical 
Computing, Vienna, Austria) using packages stats [42], 
phyloseq [43], vegan [44], ape [45] and ggplot2 [46]. The 
erroneous OTUs with low abundance (< 0.005% of total 
abundance) [47] and contaminant OTUs present in the 
sterile water sample (negative control) were removed 
from the OTU data set. The abundance of OTUs was 
used to generate a rarefaction curve for estimating the 
species richness in individual tick midguts. Alpha diver-
sity indices, including species richness, Shannon diver-
sity index and Faith’s phylogenetic diversity (Faith’s PD), 
were estimated in the Vegan (version 2.5-6) and Ape (ver-
sion 5.0) packages [44, 45]. To determine if there were 
significant differences between the group means of tick 
midgut bacterial alpha-diversity between localities (Brno 
and Ceske Budejovice), Wilcoxon rank sum test was 
performed. Bacterial community composition in each 
sample was compared using principal coordinate analy-
sis (PCoA). Briefly, a Bray-Curtis dissimilarity index was 
used to calculate PCoAs, and the first two axes of PCoA 
were plotted to visualize the bacterial community com-
position in each sample using the ggplot2 package [46]. 
Permutational multivariate analysis of variance (Adonis) 
was used to examine if there was a statistical difference in 
bacterial community composition between two localities.

Bacterial OTUs that had same taxonomic lineages were 
grouped at the phylum and genus level. The distribution 
of bacterial phyla in each sample was visualized in a bar 
plot. A Wilcoxon rank sum test was used to determine a 
significant difference in the mean relative abundance of 
each phylum between localities. Difference in the mean 
relative abundance of each genus between two localities 
was also determined by the Wilcoxon rank sum test. Fur-
ther, the prevalence of each of those 50 genera in the two 
localities was also visualized in the heatmap. The abun-
dance of CFUs (log transformed) of cultured bacterial 
genera and the most abundant bacterial relative abun-
dance genera in each sample were visualized in a bar plot. 

All statistical tests with P-value < 0.05 were considered to 
be statistically significant.

Tick capillary feeding
Wild unfed I. ricinus females were glass capillary fed with 
either Pantoea sp. or M. luteus isolated from the tick 
midgut as described above. As a positive control for bac-
terial ingestion, we used Chryseobacterium indologenes 
[48]. Ten females were fed in each experiment for 2 h at 
37 °C in a humid chamber with the bacterial suspension 
of OD600 = 0.1 for M. luteus, Pantoea sp. and C. indolo-
genes. The number of CFUs offered to and ingested by the 
ticks were calculated based on CFU counts in 1.0  µl of 
the bacterial suspension and the conversion of the vol-
ume ingested into microliters of the bacterial suspension, 
respectively. After 2 h of feeding on the bacterial suspen-
sion, ticks were surfaced-sterilized as described above. 
The midgut of ticks fed with M. luteus, Pantoea sp. or 
C. indologenes was dissected out and homogenized indi-
vidually in 120  µl of PBS using sterile pestles. A 100-µl 
aliquot of each homogenate was spread-plated on TSA 
and allowed to grow overnight at 30 °C. Total CFUs were 
counted and recalculated in CFUs per tick midgut. The 
colony morphology was used to distinguish M. luteus, 
Pantoea sp. and C. indologenes from the background of 
other culturable bacteria.

To visualize bacterial cells in the midgut by micros-
copy, ticks were fed with green fluorescent protein 
(GFP)-labeled Escherichia coli DH5α with the plasmid 
pGFPuv (Clontech, Mountain View, CA, USA) or GFP-
labeled Staphylococcus aureus RN6390 strain ALC1743 
with plasmid psk236,  as described above, with an 
OD600 = 1.0. Ticks were then dissected in sterile PBS, 
the dorsal cuticle was carefully removed and the tick 
internal organs were fixed in situ in 4% formaldehyde for 
2.5  h at room temperature. The midgut was transferred 
and mounted in DABCO and examined under the fluo-
rescence microscope (Olympus model BX3 light micro-
scope; Olympus Corp., Tokyo, Japan).

Results
Bacterial community assessed by the culturing approach
The culturing approach for detection of bacteria in the 
midgut of unfed I. ricinus females revealed very low bac-
terial abundance. Of 81 samples, bacterial isolates were 
cultured from 30 (37.0%) ticks, with variable abundance 
that ranged from 2 to 1000 bacteria/midgut (median: 
9). Isolates were representative 20 genera and 32 spe-
cies (Fig.  1). The most abundant (log10 CFU = 3) and 
prevalent was Mycobacteroides salmoniphilum isolated 
from five ticks from Brno only. The second most abun-
dant species was Micrococcus yunnanensis (log10 CFU 
= 3) but isolated from only one tick. Detected taxa also 
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Fig. 1  Bacteria identified by culturing and culture-independent methods in the midgut of individual Ixodes ricinus adult females collected from 
Brno and Ceske Budejovice. Bacterial CFUs were log transformed. Bacterial genera from the culture-independent method are represented by the 
relative abundance (%). Black arrows show an example of the bacterial taxon detected in individual ticks by both methods. Abbreviations: CFU, 
Colony-forming units
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included Bacillus sp., Mycobacterium sp., Staphylococcus 
sp., Staphylococcus epidermidis, M. luteus, Rhodococcus 
sp., Pantoea sp., Pseudomonas sp. and Enterobacter sp. 
(Fig. 1).

Bacterial community assessed by culture‑independent 
approach
In total, 2,569,085 sequence reads were clustered into 
799 OTUs. Of the total sequences, 43.7% (1,123,359) 
sequence reads were from Brno and 56.3% (1,445,726) 
sequence reads were from Ceske Budejovice. The plateau 
of the rarefaction curves indicated sufficient sequenc-
ing depth with an adequate representation of microbial 
communities (Fig.  2). Overall, bacterial species richness 
(observed OTUs) in the individual tick midgut ranged 
from 3 to 54. The Shannon diversity index ranged from 
0.18 to 3.21, and Faith’s PD ranged from 0.28 to 2.16. The 
Shannon diversity index varied non-significantly between 
the two localities (P = 0.071; Fig. 3b). However, both spe-
cies richness (P = 0.002) and Faith’s PD (P = 0.001) were 

significantly different between the two localities (Fig. 3a, 
c). Bacterial community composition in the individual 
tick midgut varied, but there was no significant difference 
between Brno and Ceske Budejovice (Fig. 4).

The most prevalent (98.77% of tick samples) and 
abundant phylum was Proteobacteria (Fig.  5a) followed 
by Firmicutes, Bacteroidetes, Actinobacteria, Spiro-
chetes and Tenericutes (Fig. 5a). The relative abundance 
of those phyla varied across individual tick midguts 
(Fig. 5b). Interestingly, there was a significant difference 
between the mean relative abundance of Proteobacteria 
(P = 0.009), Bacteroidetes (P = 0.003) and Spirochaetes 
(P = 0.021) between two localities.

Overall, using the culture-independent method, we 
detected a total of 205 genera. Among these, several gen-
era had a relatively high abundance and prevalence, such 
as Borrelia (22.8% of total sequences, in 24.7% of ticks), 
Spiroplasma (12.2%, in 18.5% of ticks), Rickettsia (8.2%, 
in 13.6% of ticks), Streptococcus (5.1%, in 37.0% of ticks), 
Staphylococcus (2.8%, in 43.2% of ticks), Midichloria 

Fig. 2  Rarefaction curves of 16S rDNA sequences in the midgut of Ixodes ricinus 
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(1.2%, in 44.4% of ticks), Ralstonia (1.2%, in 46.9% of 
ticks), Pelomonas (1.2%, in 37.0% of ticks) and Achro-
mobacter (0.6%, in 38.3% of ticks). The 50 most abun-
dant genera represented 88.72% (2,279,269 sequence 
reads) of all sequences (Fig. 6; Additional file 1: Table S1). 
The abundance of genus Borrelia varied significantly 
(P = 0.02) between Brno (38.8% ticks) and Ceske Bude-
jovice (13.9% ticks) (Fig.  6). Also, Midichloria sp. was 
highly prevalent (50% of ticks in Brno, and 40% of ticks 
in Ceske Budejovice, Fig. 6), but with low abundance in 
both localities.

Common bacterial genera in both culture 
and non‑cultured methods
We detected several genera using both the culture and 
culture-independent methods, including Bacillus, Staph-
ylococcus, Streptomyces, Micrococcus, Rhodococcus, 

Mycobacterium, Pseudomonas and Enterobacter (Fig. 1). 
The relative abundance of the most common genera 
detected by the culture-independent method was very 
low (Bacillus [mean abundance {m.a.}]: 1.7%; range: 
0–71.6% per tick), Enterobacter (m.a: 0.03%; range: 
0–1.8% per tick), Micrococcus (m.a: 0.3%; range: 0–63.0% 
per tick), Mycobacterium (m.a: 0.4%; range: 0–64.6% per 
tick), Pseudomonas (m.a: 0.21%; range: 0–13.5% per tick), 
Rhodococcus (m.a: 0.02%; range: 0–1.4% per tick), Staph-
ylococcus (m.a: 2.8%; range: 0–52.9% per tick) and Strep-
tomyces (m.a: 0.04%; range: 0–5.1% per tick)].

Several bacterial taxa, including Borrelia (abundance 
range: 0–99.3% per tick), Rickettsia (abundance range: 
0–92.6% per tick), Spiroplasma (abundance range: 
0–91.8% per tick) and Midichloria (abundance range: 
0–17.5% per tick) were detected, as expected, by the 
culture-independent method only, with a comparatively 
high prevalence in both localities (Fig.  1). On the other 
hand, using the culturing approach, we detected Myco-
bacteroides sp. in Brno only, where it was relatively highly 
prevalent and abundant. Pantoea sp. and Bacillus sp. 
were detected in Ceske Budejovice only, where they also 
were relatively high in abundance and low in prevalence.

Tick capillary artificial feeding with isolated bacteria
The volume of the bacterial suspension uptake was con-
verted into CFUs, resulting in an ingestion of between 
102 and 105 cells per tick during 2 h of feeding. The anal-
ysis of ticks processed immediately after 2  h of feeding 
showed a great reduction of all bacterial taxa (Fig.  7a, 
b), with complete elimination of M. luteus (Fig. 7b). The 
positive control, Chryseobacterium indologenes, showed a 
much lower reduction compared to that of the two other 
bacteria. To visualize the cells in the midgut, we also 
fed a high concentration of GFP-labeled bacteria to the 
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ticks, with these ticks ingesting between 108 and 109 cells 
per tick of GFP-labeled E. coli or GFP-labeled S. aureus. 
Microscopy revealed the presence of cells of both bacte-
rial species in the tick midgut lumen (Fig. 8).

Discussion
In a previous study, we used the culture-independent 
method and showed that the I. ricinus midgut microbi-
ome is highly diverse but limited in abundance, and that 
it dramatically declined during blood-feeding [32]. In the 
current study, the culturable midgut bacterial microbi-
ome of unfed I. ricinus females was low in terms of both 
prevalence and abundance. Only 37% of the analyzed 
midguts contained culturable bacteria, and among those, 
the abundance ranged from 2 to 1000 CFU/tick midgut 
(median: 9). Moreover, this microbiome was very diverse, 
with 32 species. Most of the species were isolated from 

only up to two individual ticks, indicating the absence of 
a culturable core microbiome. The majority of the identi-
fied bacterial taxa were typical representatives of the soil 
and plant environment or the mammalian skin, such as 
Mycobacteroides, Micrococcus, Rhodococcus, Bacillus, 
Pseudomonas, Enterobacter, Streptococcus and Staphylo-
coccus, which in agreement with previous studies [25–28, 
30, 31]. This result indicates that I.  ricinus on occasion 
accidentally ingests bacteria from the environment. 
Although the culture-dependent approach applied here 
is limited to culturing aerobic and facultatively anaerobic 
bacteria growing on a broad-spectrum artificial medium, 
we believe it provides the evidence of low prevalence and 
abundance of extracellular bacteria in the midgut. Our 
results are in agreement with a low abundance and prev-
alence of culturable bacteria and the absence of a core 
microbiome in the midgut of other tick species, including 
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Ixodes scapularis [49] and Amblyomma americanum 
[33], indicating that this feature might common across 
different ticks species and genera. Interestingly, this is 
in contrast to the highly abundant aerobic culturable 
gut microbiota of other blood-feeding arthropods, such 
as mosquitoes, analyzed under comparable cultivation 
conditions used in the current study [1–3]. It is also note-
worthy that the majority of the culturable bacteria in the 
midgut of different tick species tend to be Gram-positive 
taxa [27, 30, 33].

To determine if the midgut bacterial community of I. 
ricinus is influenced by the environment, we compared 
ticks collected from two sites in the Czech Republic. 

Ticks from Brno were from an urban park, while ticks 
from Ceske Budejovice originated from a forest where 
there is relatively low human activity. The difference in 
alpha bacterial diversity based on the Shannon index was 
not statistically significant between the two localities; 
however, when the phylogeny of the identified taxa was 
considered, the two localities were significantly different 
based on Faith’s index. This shows that although the mid-
gut microbiome was not influenced by the habitat based 
on the relative abundance, the bacterial community of 
the specific region tended to be phylogenetically more 
related than that of a different region.

Fig. 6  Mean relative abundance and prevalence of 50 most abundant taxa in the midgut of Ixodes ricinus adult females detected by the 
culture-independent method
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Fig. 7  Colony-forming counts of bacteria ingested (in red) and isolated (in blue) from the midgut of the same individual of Ixodes ricinus adult 
females after 2 h of capillary feeding. a Pantoea sp., b Micrococcus luteus. Chryseobacterium indologenes was used as a positive control. The results 
represent the median for 10 individual ticks. Asterisks indicate statistically significant difference at *** P < 0.001 and ****P < 0.0001

Fig. 8  Fluorescent microscopy of capillary-fed GFP-labeled bacteria in the midgut of Ixodes ricinus adult females. a, b Staphylococcus aureus, c, d 
Escherichia coli. Abbreviations: GFP, Green fluorescent protein
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The culture-independent approach revealed that the 
most prevalent bacterial taxa were known tick-borne 
pathogens and tick symbionts. The most abundant and 
prevalent genus was Borrelia, followed by the tick sym-
biont Midichloria sp. This is not surprising since the 
prevalence of the Borrelia burgdorferi sensu lato com-
plex is high in the Czech Republic [50, 51]. Of interest 
was that in ticks with Borrelia sp., the prevalence of the 
other phyla was low. Similarly, Rhipicephalus micro-
plus infected with Theileria sp. had an altered microbial 
composition, with a reduction in richness and evenness, 
referred to as a pathogen-induced dysbiosis [52]. It was 
also shown that Anaplasma phagocytophilum modified 
the I. scapularis microbiome via altering bacterial bio-
film formation in the gut in order to infect the tick more 
efficiently [15]. These results suggest that tick pathogens 
can alter the native microbial community in the midgut. 
Overall, genera such as Staphylococcus, Streptococcus, 
Ralstonia and Pelomonas were relatively common, indi-
cating an environmental influence on the tick midgut 
microbial community. As expected, several of the bacte-
rial taxa found only by sequencing were not culturable 
under our laboratorial conditions, including Borrelia, 
Spiroplasma, Midichloria and Rickettsia. It is also likely 
that some of the bacterial taxa culturable under the con-
ditions used in this study but which were detected by the 
culture-independent approach only represented DNA 
fragments of lysed/non-viable cells.

In order to investigate if the midgut microbiome can be 
manipulated to potentially negatively affect the tick vec-
tor competence for pathogens, we artificially fed adult 
females with indigenous bacteria isolated from the mid-
gut. Capillary feeding is an established method to feed 
ticks with pathogenic and non-pathogenic bacteria [53, 
54]. To test the reliability of our technique, we fed GFP-
labeled Gram-negative (E. coli) or Gram-positive (S. 
aureus) bacteria to I.  ricinus adult females. Cells from 
both species were visualized in the tick midgut 2 h after 
ingestion, confirming that the glass capillary feeding 
method was effective and that it is a suitable technique 
for in vitro bacterial feeding.

The indigenous M. luteus (Gram-positive) and Pan-
toea sp. (Gram-negative) were isolated from the I. rici-
nus midgut and used in the artificial feeding assays. 
Pantoea genus contains diverse species which are ver-
satile in function and which have been previously iso-
lated from I. ricinus [55–57]. Microccocus luteus is 
commonly found in soil, water and other environments, 
and it is also part of the mammalian skin microbiota. In 
other studies, M. luteus was cultured from I. ricinus in 
larvae [27] and nymphs [25]. Interestingly, Micrococcus 
spp. were also the most prevalent culturable taxon in A. 

americanum [33]. Chryseobacterium indologenes, the 
pathogen of the soft tick Ornithodoros moubata, was 
used as a positive control for bacterial ingestion and 
clearance [48]. Both Pantoea and M. luteus were rapidly 
cleared from the midgut within 2 h after ingestion, with 
complete elimination of M. luteus. A similar pattern 
of bacterial clearance was observed previously in Der-
macentor variabilis capillary fed with E. coli and Bacil-
lus subtilis [54]. In this study, although ticks ingested 
numerous bacterial cells, no CFUs could be cultured 
from the midgut after 3 h of feeding [54], suggesting 
a conserved general mechanism of bacterial clearance 
in the tick midgut. Taken together, these results led us 
to hypothesize that rapid reduction of bacteria in the 
I. ricinus midgut is the result of actions of the tick epi-
thelial immunity and, during feeding, also of actions of 
antibacterial factors in the host’s blood. Clearly, further 
research into the molecular basis of bacterial clearance 
in the tick midgut is needed to improve our under-
standing of this process.

In conclusion, the results presented in this study 
show that the I.  ricinus adult female midgut microbi-
ome is poor in terms of abundance and prevalence, and 
that it is environmentally determined. An efficient and 
rapid bacterial clearance of extracellular bacteria by the 
midgut epithelial immunity appears to limit bacterial 
colonization in this organ although the mode of this 
phenomenon remains to be investigated.
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