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Laboratory diagnostics for human 
Leishmania infections: a polymerase chain 
reaction-focussed review of detection 
and identification methods
Ineka Gow1*, Nicholas C. Smith1, Damien Stark2 and John Ellis1 

Abstract 

Leishmania infections span a range of clinical syndromes and impact humans from many geographic foci, but primar-
ily the world’s poorest regions. Transmitted by the bite of a female sand fly, Leishmania infections are increasing with 
human movement (due to international travel and war) as well as with shifts in vector habitat (due to climate change). 
Accurate diagnosis of the 20 or so species of Leishmania that infect humans can lead to the successful treatment of 
infections and, importantly, their prevention through modelling and intervention programs. A multitude of labora-
tory techniques for the detection of Leishmania have been developed over the past few decades, and although many 
have drawbacks, several of them show promise, particularly molecular methods like polymerase chain reaction. This 
review provides an overview of the methods available to diagnostic laboratories, from traditional techniques to the 
now-preferred molecular techniques, with an emphasis on polymerase chain reaction-based detection and typing 
methods.
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Background
Among parasitic diseases, leishmaniasis is second only 
to malaria as a cause of human mortality [1]. Human 
leishmaniasis is considered a neglected tropical disease 
(NTD) by the World Health Organization (WHO). It is 
widespread, occurring in all continents except for Aus-
tralia and Antarctica, but primarily impacts developing 
nations in the tropics. However, its endemicity in devel-
oped nations is changing due to human migration as a 
result of war, and expansion in sand fly habitats linked to 
changes in environmental factors that are often associ-
ated with climate change [2–5].

Human leishmaniasis is caused by 20 or more spe-
cies of the protozoan genus Leishmania (Kinetoplastida: 
Trypanosomatidae). These are often referred to as New 
World or Old World species based on their geographic 
localisation either in the Western Hemisphere (specifi-
cally, Mexico, Central and South America) or the East-
ern Hemisphere (specifically, southern Europe, Africa, 
the Middle East and parts of Asia), respectively. New 
World species include Leishmania infantum, Leishma-
nia braziliensis, Leishmania guyanensis, Leishmania 
panamensis, Leishmania peruviana, Leishmania lain-
soni, Leishmania naiffi, Leishmania mexicana (syn. 
Leishmania pifanoi) and Leishmania amazonensis (syn. 
Leishmania garnhami) [6]. Old World species include 
Leishmania donovani (syn. Leishmania archibaldi), Leish-
mania infantum, Leishmania tropica (syn. Leishmania 
killicki), Leishmania major and Leishmania aethiopica 
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[6, 7]. Other species that infect humans include Leishma-
nia shawi, Leishmania lindenbergi, Leishmania venezue-
lensis, Leishmania martiniquensis, Leishmania waltoni 
(all in the New World), and Leishmania arabica and the 
newly described Leishmania orientalis (in the Old World) 
[7–9]. It must be acknowledged, and kept in mind, how-
ever, that the classification of Leishmania is problematic 
largely due to the use of different genetic markers in evo-
lutionary relationship studies [10, 11]. There have been 
repeated calls for a consensus classification of the genus, 
but this has yet to be achieved [6, 12].

Humans become infected with Leishmania through the 
bite of female sand flies of the genera Lutzomyia (in the 

New World) or Phlebotomus (in the Old World) (Fig. 1). 
Transmission has also been documented through needle 
sharing, congenital transmission and sexually transmit-
ted infection, albeit rarely [14–16]. Clinical presentation 
of leishmaniasis consists of two main forms: cutaneous 
leishmaniasis (CL), which includes manifestations such 
as mucocutaneous leishmaniasis (MCL), diffuse cutane-
ous leishmaniasis, disseminated leishmaniasis, leishmani-
asis recidivans and post-kala-azar dermal leishmaniasis; 
and kala-azar or visceral leishmaniasis (VL) (Table  1). 
Each manifestation may be associated with certain spe-
cies of Leishmania, although there is considerable over-
lap, exceptions, hybrid species and mixed infections that 

Fig. 1 Life cycle of Leishmania species. The sand flies inject metacyclic promastigote stages of the parasite as they take their blood meal [13]. These 
parasites transform into asexually reproducing amastigotes within macrophages and can affect different organs and tissues depending, in part, 
on the parasite species and the species and immune status of the host. The Leishmania species that infect humans are also found in a variety of 
mammalian reservoir hosts, including canids (particularly domestic dogs), rodents and marsupials [17]
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are recognized [18, 19]. Furthermore, Leishmania has 
been shown to exhibit mosaic aneuploidy, which influ-
ences genetic diversity not only within a given species but 
within a single isolate [20, 21]. The clinical manifestations 
of Leishmania infection may also be affected by the pres-
ence of sand fly saliva and the host’s genetic makeup and 
immune status [22, 23].

Despite being listed as a NTD in 2007, and being the 
subject of concerted global efforts for its control, the inci-
dence of leishmaniasis remains significant, and the risk 
to vulnerable, mostly poor, populations remains lamen-
tably high [24, 25]. In 2018, over 200,000 new cases were 
reported to the WHO, and it is now estimated that there 
are 1 billion people at risk of contracting Leishmania [26, 
27]. These figures are probably underestimates, as Leish-
mania is not always a notifiable disease and treatment 
is not always sought due to financial or geographic con-
straints [28, 29]. Mortality rates are also under-reported, 
being confined mainly to official hospital deaths. VL has 
case fatality rates of between 1.5%, in Bangladesh, to 
20%, in South Sudan; based on a global case fatality rate 
of 10%, these figures represent approximately 20,000–
40,000 deaths per year [30]. In recent years (2006–2016), 
morbidity related to leishmaniasis, in terms of disability-
adjusted life years, has risen by 12.5% for CL/MCL but 
decreased by 61.1% for VL [31]. Other burdens exist, 
such as psychological morbidity arising from the social 
stigma surrounding the disfiguring lesions or scarring 
caused by CL and MCL [17].

The importance of the detection and identification 
of Leishmania
Worldwide control of leishmaniasis is believed to be 
achievable, but it does present a multifactorial problem 
because transmission of Leishmania species takes place 
in a complex biological interplay involving a human host, 
a diversity of parasite species, sand fly vectors, and ani-
mal reservoirs of infection, and is affected by a number 
of factors, including climate change, deforestation and 
war. Asymptomatic infections (and paucisymptomatic 
infections) add a further challenge, as undiagnosed 
patients become unobserved reservoirs of the disease, 
contributing to further transmission and maintenance of 
leishmaniasis foci [24, 32, 33]. Mild cutaneous infection, 
such as L. major CL infection, often goes undiagnosed 
and untreated, especially in resource-limited settings, 
which increases the risk of spread to the community [34]. 
Asymptomatic infections have been identified in several 
screening studies, including those of blood donors, and 
some studies have found these to be more common than 
symptomatic infection [35–38]. This was quantified in an 
epidemiological survey of peripheral blood by using real-
time polymerase chain reaction (PCR), where the authors 

were able to determine a threshold of five parasitic 
genomes per millilitre of blood at which asymptomatic 
disease progressed to symptomatic disease [39].

One particularly confounding factor for any leish-
maniasis control program is that Leishmania infection 
induces a broad spectrum of disease states and the clini-
cal presentation cannot be linked to individual species 
with certainty; moreover, geographic foci may harbor 
multiple species. Thus, diagnosis on clinical grounds 
alone, through physical examination and interrogation of 
patient travel history, is not sufficient for complete case 
assessment. Figure 2 shows the recommended diagnostic 
techniques for the various clinical forms of leishmaniasis 
given by the WHO, the Centers for Disease Control and 
Prevention, the Walter Reed Army Institute of Research, 
the National Reference Centre for Parasitology (Canada) 
guidelines, and relevant studies. For clinical case manage-
ment, species-level data provide important information 
for educated prognosis and therapeutic decision-mak-
ing. For instance, species-led treatment was found to be 
imperative for cutaneous leishmaniasis in Peru, as toler-
ance and susceptibility to antimony was dependent upon 
the infecting species [40]. At a national and global level, 
the epidemiological monitoring of individual species and 
their prevalence and transmission patterns guide public 
health responses, such as the VL elimination program 
launched in 2005 in India, Nepal and Bangladesh [41]. 
Moreover, tracking the presence of exotic species, e.g. 
L. tropica discovered in a returned traveller to Mexico, 
allows local health authorities to enact sanitary measures 
(such as indoor residual spraying) [42]. Consequently, a 
globally applicable technique that captures both genus- 
and species-level data has been suggested, to mitigate 
assay design complications, such as intraspecies hetero-
geneity and gene target copy number variations, and to 
detect asymptomatic and multiple-organism infections 
(including co-infection with multiple Leishmania species) 
[6]. Seven criteria have been proposed for species-typing 
tools: discrimination of species, global applicability, sen-
sitivity, specificity, standardisation, applicability for par-
ticular settings, and validation [6].

Additionally, test availability and timeliness affect 
opportune treatment. Shortages of diagnostic materials 
and a long period of time needed to deliver diagnostic 
results impede patient outcomes [51, 52]. These limita-
tions result in a lack of useful information for medical 
decision-making. Furthermore, many current diagnostic 
tests do not have the resolving power required to provide 
molecular epidemiological data for public health policy 
makers. Accurate and qualitative detection and identi-
fication of a Leishmania infection are, therefore, key to 
the diagnosis of leishmaniasis, and should be at the heart 
of any successful control program. This can lead to the 
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achievement of early and improved treatment regimens, 
implementation of control measures leading to better 
patient outcomes, and a reduction of sustained reservoirs 
in the transmission cycle [53]. Additionally, optimised 
diagnostic tools would be important additions to the One 
Health approach for the control of leishmaniasis [54]. 
The comparative strengths and weaknesses of existing 
diagnostic approaches, with a focus on the widely used 
and robust PCR-based methods that address many of the 
requirements for an optimal diagnostic test, are reviewed 
below.

Methods for the detection and diagnosis 
of leishmaniasis
Conventional detection methods
Detection via microscopy, histology, culture and serology, 
and other methods, are commonly utilised by laborato-
ries globally, and especially in endemic, resource-poor 
nations [55].

For microscopic detection of parasites, direct aspirate 
smears are used, often  with staining; amastigotes appear 
round in shape and 2–4  μm in diameter, and cultured 
promastigotes range between 15 and 25 μm in length and 

are ellipsoid to slender in shape [56–58]. Staining meth-
ods help to clarify the cells and Giemsa and Leishman 
stains (both derivatives of Romanowsky stain) are the 
most widely used for this [59]. Upon staining, Leishmania 
amastigotes are generally observed within macrophages 
and have a pale blue cytoplasm, red nucleus and adjacent 
purple-pink-stained kinetoplasts [60, 61]. Parasitic load 
may be estimated using the modified Ridley’s parasitic 
index (Table 2), which quantifies the number of amastig-
otes [62]. The sensitivity of detection varies (54.0–96.4%), 

Fig. 2 Recommended laboratory-based diagnostic techniques based on clinical presentation. For diffuse cutaneous leishmaniasis, disseminated 
leishmaniasis and leishmaniasis recidivans, where recommendations are not available from a public health organisation or reference laboratory, 
guidance is taken from relevant studies [43–50]. The asterisk indicates the rK39 rapid immunochromatographic test kit only. PCR Polymerase chain 
reaction

Table 2 Modified Ridley’s parasitic index [76]

Parasitic index Number of 
amastigotes per 
standard section

1+ ≥ 1

2+ ≥ 10

3+ ≥ 100

4+ ≥ 1000

5+ ≥ 10,000

6+ ≥ 100,000
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and specificity as low as 46.0% has been reported, 
depending upon the primary sample taken, the quality 
of the reagent used for staining and technical expertise 
[43, 63–68]. The stage of infection can also greatly affect 
sensitivity; in CL, amastigote levels decrease as infection 
progresses, including in MCL infection, whereas in VL, 
parasitic load increases as infection becomes chronic 
[69–71]. Generally, in VL, the highest sensitivity when 
using microscopy is for more invasive specimens, such as 
those seen in splenic aspirates [70, 72, 73]. Microscopy is 
of use at the genus level, but cannot be used for species 
differentiation as all  species of   Leishmania are mor-
phologically very similar [74]. Recently, machine learning 
has been incorporated into microscopical examination 
for leishmaniasis, with sensitivity and specificity of 83% 
and 35%, respectively, although efficacy and speed are 
dependent on image quality and the particular algorithm 
employed [75].

Histological examination for CL cases uses 4- to 5-μm 
tissue sections, stained with Giemsa or haematoxylin and 
eosin stains, and fixation to reveal histiocytes containing 
intracellular amastigotes, often near the epidermis [77]. 
The marquee sign, where organisms are located around 
the periphery of the dermal macrophage, is regarded as 
a typical characteristic of leishmaniasis [78]. Histologi-
cal examination does, however, depend upon the disease 
stage, since the number of amastigotes decreases as CL 
progresses until they are undetectable [62]. Indeed, it is 
considered the least sensitive diagnostic method, with 
sensitivities of between 42.0% and 70.0%, although 100% 
specificity has been reported [79–81]. Furthermore, 
Leishmania cells may be mistakenly identified in histo-
logical sections as Toxoplasma gondii, Mycobacterium 
leprae,  fungi, including Histoplasma, or even artifacts, 
and differential diagnosis requires alternative stains [81–
84]. Histological examination is less used in VL, where 
clusters of histiocytes, amastigote presence or morpho-
logical changes may be observed [85]. Amastigotes are 
often unevenly distributed, as sections are of varying 
thickness, which results in lengthy analysis [86].

Culture of Leishmania promastigotes is a useful tool for 
increasing the sensitivity of downstream detection and 
identification by microscopy or molecular applications 
[87]. A variety of semi-solid, liquid or biphasic media are 
used to culture promastigotes, including sloppy Evans, 
Novy-MacNeil-Nicole (the reference medium for isola-
tion), Tobie’s, Schneider’s Drosophila medium, Senekjie’s, 
Medium 199, RPMI 1640, Grace’s insect medium, brain–
heart infusion medium, blood agar (including rabbit 
blood) and chocolate agar [88–90]. These media gener-
ate growth in differing ways; of note, Tobie’s medium 
encourages the transformation of amastigotes to promas-
tigotes, and cell density is increased on Grace’s medium 

[73]. Novel culture methods include the microcapillary 
culture method, which concentrates the sample in cap-
illary tubes, or liquid (single-phase) media, used to cre-
ate the microaerophilic conditions that are optimal for 
amastigote transformation into promastigotes [91]. One 
study found an improvement from 69.2% sensitivity with 
traditional culture methods to 92.3% sensitivity with the 
newer microcapillary method, with a minimal change in 
specificity (98.9% vs 97.8%, respectively) [92]. It can take 
days to weeks to produce a result by  culture methods, 
which are also expensive and labour-intensive to set up 
[86]. Furthermore, the distribution, transport and stor-
age of cultures and culture material, including antibiotics 
used to prevent contamination from other microorgan-
isms, make it an impractical method in many clinical set-
tings [93, 94].

Serological methods test for Leishmania by detecting 
antigens or antileishmanial antibodies in the blood or, 
sometimes, urine or saliva. Antibody detection is primar-
ily used in cases of VL rather than for CL, as the humoral 
response to the latter is poor [95]. Many antigens have 
been assessed for antibody detection, and recombinant 
antigens are preferred over natural antigens, as the lat-
ter often cause problems such as cross-reactivity and 
resultant false-positive results [61, 96]. Some immuno-
assays, such as enzyme-linked immunosorbent assay 
(ELISA) and western blot, require relatively sophisti-
cated and expensive equipment and materials, which 
renders them less useful in endemic regions in poorer 
countries, despite their good sensitivities and robustness 
[97, 98]. However, ELISA is widely used as a serological 
method in countries where leishmaniasis is endemic or 
non-endemic, and it can provide detailed information 
on antibody responses [99, 100]. The sensitivity of ELISA 
depends on the antigen used to capture a specific anti-
body, with the commonly used crude soluble antigen 
(CSA), for example, providing sensitivities of between 80 
and 100%. However, cross-reactions with trypanosomia-
sis, tuberculosis and toxoplasmosis have been observed 
with this method [101]. Flow cytometry for serologi-
cal Leishmania detection is a recent development and 
can quantify antibodies rapidly with lower sample input 
volumes than other serological tests [102]. Despite the 
range of tests available and the ability of some of these 
tests to be used in the field, serological assays share the 
same limitations. The antigen load may not be suffi-
cient in early infection for detection; conversely, because 
antigen-specific antibodies persist long after cure, active 
relapsed disease cannot always be discerned [61, 103]. 
Furthermore, these tests are less accurate for immuno-
compromised patients, and cross-reactivity is reported 
with other diseases endemic to Leishmania-affected 
areas, including Chagas disease [53, 88, 104–108]. 
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Simplified assays have been introduced, such as the rK39 
immunochromatographic assay (ICT), the direct agglu-
tination test, the indirect fluorescent antibody test and 
latex agglutination testing [109]. They include the Food 
and Drug Administration-approved ICTs, CL Detect, 
based on the peroxiredoxin antigens, and Kalazar Detect, 
based on a 39 amino acid repeat recombinant leishmanial 
antigen, rK39. Although the rk39 ICT is widely used, its 
sensitivity has been found to be higher in some regions, 
with studies carried out in Southeast Asian countries 
and the Indian subcontinent documenting higher sensi-
tivities than those undertaken in East Africa and Brazil 
[110–112]. Furthermore, because antibodies are present 
in asymptomatic individuals and remain present for sev-
eral years after cure, antibody tests must be used in con-
junction with strictly standardised clinical case definition 
(i.e., more than 2 weeks of fever, weight loss and spleno-
megaly) for VL diagnosis [24]. These limitations must be 
considered in a modern diagnostic setting, hence, sero-
logical methods are being reassessed as principal diag-
nostic options [86, 113].

Other, lesser-used, methods include the leishmanin (or 
Montenegro) skin test. In CL, this test can detect past 
and active cases with high sensitivity, whereas in active 
VL, the test shows negative as patients are anergic, so 
it is used in screening studies for an indication of past 
exposure only [57, 114]. It involves intradermal injection 
of antigen, whereby induration of an area of the skin of 
5 mm or greater is considered a positive test result; sen-
sitivity and specificity with this cut-off point have been 
reported as 97.4% and 93.9%, respectively [15, 115, 116].  
When promastigote levels are too low for culture growth, 
xenodiagnosis can be used to detect Leishmania, through 
inoculation of the footpad of a hamster with a test sam-
ple; however, this approach is time-consuming and 
involves euthanasia of the hamster [56, 117, 118].

DNA‑based detection methods
In DNA-based detection of Leishmania a multitude of 
genomic targets are used which vary in sensitivity and 
are influenced largely by the target’s copy number in 
the genome of the organism. Table  3 summarises the 
targets that have been investigated for diagnostics. The 
design of molecular diagnostics is complex, however, and 
aside from the copy number of a chosen target, which 
is selected to increase the sensitivity of a given assay 
(for instance, the 18S rRNA gene), other attributes are 
sought in molecular assay design [119, 120]. For detec-
tion to the subgenus, species complex or species level, 
selection of gene targets exhibiting increased divergence 
may necessitate a loss of assay sensitivity by using a target 
with fewer copy numbers per cell (such as the mini-exon 
gene) [121]. For instance, polymorphisms, copy number 

variation and high copy number are attractive features of 
the kinetoplast DNA (kDNA) minicircle, whereas single 
copy genes, despite their decreased sensitivity, may be 
chosen for their stability or to normalise minicircle copy 
numbers [122, 123]. Moreover, detection of multiple spe-
cies distinctly and concurrently requires multiplex PCR 
assays, and designing a single PCR cycling protocol to 
suit each primer pair can present assay constraints. The 
use of the novel bisulphite-conversion technique can mit-
igate such limitations [124].

DNA-based methods represent a new era in clinical 
Leishmania diagnostics, where the limitations of previ-
ous detection methods have been overcome in terms 
of sensitivity, specificity, rapidity, ease of use and access 
in endemic settings. Similarly, the prices of molecular 
methods are decreasing globally; Table  4 illustrates the 
varying costs associated with Leishmania diagnostics in 
low income and upper-middle income nations [125–128]. 
The costs associated with molecular methods are com-
parable to those of other detection methods; however, 
the methodologies used to collect the costing data var-
ied between studies. Some studies compiled compre-
hensive costings, including that of the healthcare setting 
that the test may be performed in, to the basic supplier 
cost of the kit [125, 126]. Despite their differences, these 
cost analyses were performed at similar times, and their 
costing conclusions are similar. These advances have also 
provided new data on frequencies of asymptomatic car-
riage, and have been used in the monitoring of specific 
geographic disease burden and to measure the outcomes 
of intervention programs [109]. Techniques such as real-
time PCR can give more information on parasite load 
and responsiveness to therapy than other methods [122]. 
It can be used to identify asymptomatic patients who 
carry the infection, or infected patients before the onset 
of symptoms, which is important for the development of 
control measures and for blood donor monitoring [129, 
130].

DNA may be acquired from a vast range of clinical 
specimens, and each approach has varying advantages 
in terms of diagnostic sensitivity and specificity, ease of 
collection, transport and storage and invasiveness. For 
CL, the punch biopsy is the most commonly performed 
diagnostic procedure, but less invasive sampling can be 
achieved by using skin scrapings, fine needle aspiration 
and swabs, although sensitivity is sacrificed with these 
methods [131–134]. For post-kala-azar dermal leish-
maniasis, split skin smears and skin biopsies are most 
commonly used [135]. In VL, splenic, bone marrow or 
lymph aspiration are used, and sensitivity increases with 
the invasive nature of the sampling method (93–99% 
for spleen, 53–86% for bone marrow, and 53–65% for 
lymph [136]). Specimens obtained from less invasive 
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Table 3 DNA targets investigated for the detection of Leishmania species in DNA-based methods

Gene Location Number of  copiesa References

6-Phosphogluconate dehydrogenase (6pgd) Chromosomal DNA S [276]

18S rRNA Chromosomal DNA M (200) [124]

7SL RNA Chromosomal DNA M [277]

A2 (5′A2 rel, 3′A2 rel, internal A2 rel) Chromosomal DNA S (CL)/M (VL) [278]

Amino acid permease 3 (AAP3) Chromosomal DNA M [279]

Calmodium intergenic spacer Chromosomal DNA M [280]

Casein kinase Chromosomal DNA S [281]

Catalytic subunit of DNA polymerase α (POLA) Chromosomal DNA S [282]

Chitinase Chromosomal DNA S [283]

Cysteine protease A (cpA) Chromosomal DNA S [230, 284]

Cysteine protease B (cpB) Chromosomal DNA M [230, 285]

Elongation factor-1α (EF-1α) Chromosomal DNA S [286]

Glucose-6-phosphate dehydrogenase (g6pd) Chromosomal DNA S [41]

Glucose phosphate isomerase (gpi) Chromosomal DNA S [287]

Glyceraldehyde-3-phosphate dehydrogenase (GADPH) Chromosomal DNA M [288]

Heat-shock proteins (HSP)—hsp10, hsp40, hsp60, hsp70 (M 1–15), hsp83, hsp90, hsp100, hsp110; and 
small HSPs—hsp20 (S) and hsp23 (S)

Chromosomal DNA S/M [289]

Histones: H2A, H2B, H3, and H4) and linker histones (H1 and H5) Chromosomal DNA M [290]

Hydrophilic acylated surface protein A and B (HASPA/HASPB) Chromosomal DNA S [291]

Intergenic spacer (igs) rRNA Chromosomal DNA M [66]

Internal transcribed spacer 1 (ITS1) Chromosomal DNA M [232, 292]

Internal transcribed spacer 2 (ITS2) Chromosomal DNA M (50–350) [232, 293]

Iso-citrate dehydrogenase (icd) Chromosomal DNA S [41]

Large subunit rRNA (5.8S, 5S and 28S rRNA) Chromosomal DNA M [232]

Leishmania-activated C-kinase antigen (LACK) gene Chromosomal DNA M (2) [235]

Lipophosphoglycans (lpg) Chromosomal DNA S [294]

Macrophage migration inhibitory factor (mif) Chromosomal DNA S [232, 292, 295]

Major surface protease (msp)/glycoprotein 63 (gp63)/leishmanolysin Chromosomal DNA M (7–70) [232, 293, 296]

Mannose phosphate isomerase (mpi) Chromosomal DNA S [133]

Meta1/2 Chromosomal DNA S/ M (3) [297]

Mini-exon [or spliced leader (SL) RNA) Chromosomal DNA M (50–650) [298]

Mitogen-activated protein kinase (MAPK): MAPK2, MAPK3, MAPK4, MAPK5 and MAPK7 Chromosomal DNA S [218, 296]

MSP associated gene (mag) Chromosomal DNA M (18) [282]

N-acetylglucosamine-1-phosphate transferase (NAGT) Chromosomal DNA S [289, 299]

Pteridine reductase 1 (PTR1) Chromosomal DNA S [300, 301]

Repetitive nuclear DNA sequences (REPL) Chromosomal DNA M [282, 302]

RNA polymerase II largest subunit (RPOIILS) Chromosomal DNA S [299, 303]

SIDER repeat Chromosomal DNA M [282]

Small hydrophilic endoplasmic reticulum-associated protein (SHERPs) Chromosomal DNA S [304]

Splice leader associated retrotransposons (SLACS) Chromosomal DNA M [282]

Telomeric sequences Chromosomal DNA M [305]

Tryparedoxin peroxidase Chromosomal DNA M (3) [306]

Tubulins: alpha, beta, gamma, zeta and epsilon tubulin Chromosomal DNA M [218, 282]

Triose-phosphate isomerase (TIM) Chromosomal DNA M (2) [278, 307]

Topo isomerase II Chromosomal DNA S [286, 308]

12S, 9S Non-chromosomal DNA M [295, 309]

Conserved minicircle region (CSB-I, CSB-II and CSB-III) Non-chromosomal DNA M (10,000) [162, 276]

Cytochrome oxidase (CO) I, II and III Non-chromosomal DNA M [290, 310]

Cytochrome b (cytb) Non-chromosomal DNA M [282, 311]

Maxicircle divergent region (DR) Non-chromosomal DNA M [133, 312]

Variable minicircle region Non-chromosomal DNA M (10,000) [303, 313]

rRNA Ribosomal RNA
a Single copy (S) or multi-copy (M) (approximate number, if available)
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procedures, e.g., the taking of peripheral blood, are being 
explored for VL testing. Testing of peripheral blood by 
PCR is associated with a vast range of reported sensitivi-
ties, 62—93.2%, depending on the timing of sample col-
lection during the infection process, or the fact that some 
Leishmania species may circulate at lower levels in the 
peripheral blood [137, 138]. The use of peripheral blood 
is also being explored as a diagnostic option for CL, and 
a limit of detection of 0.1 parasites per reaction for Leish-
mania (Viannia) spp. parasites has been achieved [139]. 
Optimal sampling, storage and transport to a receiv-
ing laboratory (such as the Centres for Disease Control 
and Prevention, US, or Fiocruz, Brazil) is critical. Before 
detection, DNA must first be extracted and purified; 
this is often performed by using commercial kits, such 
as the silica-based DNeasy Blood and Tissue Kit (Qia-
gen, Germany), NucliSENS easyMAG system (BioMer-
ieux, France) or via in-house extraction protocols based 
on phenol extraction and ethanol precipitation [36, 140, 
141]. Some rapid extraction methods have been devel-
oped recently, e.g., SpeedXtract (Qiagen, Hilden, Ger-
many), which greatly reduce the time to test result [142]. 
These methods may be performed manually or through 
the use of automated systems, as discussed below.

Standardisation of protocols and quality control for 
assays that are used to detect Leishmania are important, 
particularly for molecular techniques [143]. Only few 
studies have compared sampling, extraction, gene target 
choice and primer design, and some of the findings differ 
from one report to an other [55]. These inconsistencies 
can be limited if experiments incorporate controls, which 

is of particular importance in settings where re-testing 
is expensive or the number of specimens limited. Poor 
DNA recovery due to losses during extraction and deg-
radation during storage was determined by the addition 
of both an external and internal control to a conventional 
PCR (cPCR) assay for  Leishmania  [143]; DNA recovery 
was poor for 15.1% of samples, and a reliable result was 
not produced for up to 1/6 of the samples [143]. Further-
more, few multi-site studies have been undertaken to 
validate protocols and examine their reproducibility. An 
endogenous extraction control used in the measurement 
of a host sequence can help to account for sample qual-
ity and extraction efficacy—two major issues associated 
with PCR methods—and may also be used to normalise 
parasite load [122, 143]. For this, an exogenous internal 
control is spiked into a sample at a known concentration, 
and sample inhibition is indicated if the control is not 
detected or is detected at lower levels than expected. This 
is especially useful for potential inhibitors in samples, 
such as in peripheral blood; a human β-actin gene was 
used in a real-time PCR assay to control for this [144]. 
Other controls that may be included are external posi-
tive controls that are used to assess the performance of 
the PCR, negative template control for PCR contamina-
tion, or a negative process control for contamination of 
the extraction process. Laboratories should also enrol in 
some form of an external quality control testing program, 
such as the Pan American HealthOrganization’s Regional 
External Quality Assessment Program (developed for 
microscopic diagnosis), as an indicator of performance 
[55, 145].

Table 4 Comparison of costs associated with Leishmania diagnostics

IFA Indirect immunofluorescence assay, MST Montenegro skin test, RDT CL Detect Rapid Test, LAMP (loop-mediated isothermal amplification) Loopamp Leishmania 
Detection Kit, DAT direct agglutination test, PCR polymerase chain reaction, RFLP restriction fragment length polymorphism; for other abbreviations, see Table  1

Country World Bank income classification Presentation Costs (in parentheses) Associated costs Year for which 
costs were 
determined

References

Colombia Upper-middle income MCL Biopsy + culture + stains 
+ IFA + MST (USD 172.40); 
biopsy + culture + stains + IFA 
(USD 162.57); biopsy + stains 
+ IFA (USD 128.91); PCR-mini-
exon (USD 128.77); PCR-kDNA 
(USD 128.77)

Direct 2015 [128]

Afghanistan Low income MCL, CL Microscopy (USD 53.79); RDT 
(USD 53.91); LAMP (USD 60.18)

Direct and indirect 2016 [127]

Iran Upper-middle income CL PCR–RFLP (USD 5.72); PCR 
sequencing (USD 11.20); PCR 
-HRM (USD 4.46)

Basic kit tariff 2015 [126]

Brazil Upper-middle income VL IT LEISH (USD 6.57); DAT-
LPC (USD 4.92); Kalazar Detect 
(USD 7.45); IFAT (USD 11.39); bone 
marrow aspirate (ambulatory set-
ting) (USD 27.10); PCR USD 32.72

Direct 2016 [125]
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A molecular technique that can be easily used in a 
resource-limited setting is nucleic acid sequence-based 
amplification (NASBA), which is based on the isother-
mal amplification of nucleic acids by enzymatic action. 
However, NASBA is prone to contamination, as it is not 
a closed tube system, which potentially leads to false–
positive results. It can be used as a quantitative test, tar-
geting RNA in the DNA background, with one method 
targeting 18S rDNA showing a sensitivity of 79.8% and 
specificity of 100% [146]. Quantitative NASBA can be 
combined with electrochemiluminescence, although this 
is more expensive and time-consuming; however, as the 
reaction includes a fluorescent beacon, it may be used 
in a real-time, closed tube format [147]. Loop-mediated 
isothermal amplification is another alternative to PCR 
that may be used in an endemic setting, as only basic 
equipment is required, with no need for a thermal cycler, 
and a total amplification time of about 40  min [148]. It 
involves amplification in a water bath and a visible col-
our change, which can be detected by the naked eye or 
under blue light, and more recently, in real-time by fluor-
imetry [149–151]. Sensitivity of this technique has been 
reported as 80–90% with specificities of 94–100% for 
human Leishmania diagnosis [152]. Additionally, as it is 
a closed tube test there is no need for post-amplification 
handling, thus the risk of laboratory contamination is 
low [153]. Recombinase polymerase amplification (RPA) 
and recombinase-aided amplification (RAA) are isother-
mal amplifications wherein recombinase enzymes and 
proteins avoid the need for temperature cycling as used 
in PCR methods [154, 155]. In RPA, the recombinase 
is derived from a phage, whereas in RAA, it is derived 
from bacteria and/or fungi. RPA was paired with a rapid 
extraction method to detect L. donovani in two studies  
[142, 156]; the resultant  detection systems were rapid, 
mobile and avoided the need for refrigerated reagents. 
The kDNAminicircle target was  used in both assays, 
which had sensitivities and specificities of 100% and 
100% [142] and 65.5% and 100% [156], respectively. How-
ever, there are challenges in the use of RPA and RAA, 
as robust design guidelines have yet to be published for 
either method, and both are time-consuming, labour 
intensive and expensive.

Polymerase chain reaction‑based detection methods
The use of polymerase chain reaction (PCR) as a molecu-
lar technique for Leishmania detection, in which purified 
nucleic acids  of the pathogen are amplified, is becoming 
more widespread. A PCR product may be detected at the 
end of amplification (cPCR) by gel electrophoresis, ampli-
fied further before detection (nested PCR) or detected as 
amplification occurs (real-time PCR) [157–159]. PCR 
has the best-reported sensitivities and specificities of 

all the diagnostic methods, and has been suggested as 
the future gold standard for Leishmania detection [123, 
132, 160, 161]. One systematic review and meta-analysis 
reported sensitivities of up to 100% and specificities up to 
100% [136]. Another systematic review assessing assays 
designed for New World parasitic species regularly found 
limits of detection of less than one copy [119]. Several 
commercially available kits based on PCR amplification 
and detection of Leishmania genes have been developed 
and are given in Table  5. PCR performance depends 
on certain factors, such as the nucleic acid extraction 
method employed, the type of sample, the copy number 
of the gene target and the design of the primers that tar-
get these [53, 109]. Thus, in-house PCR methods, which 
are developed and used widely, have great differences in 
the types of DNA targets used, primer and probe design 
and PCR cycling protocol [129]. Technology trans-
fer from the research and development phase does not 
always occur, and as these types of PCR assays are far 
from standardised, data comparison between laborato-
ries is compromised [109, 162]. More recently, PCR has 
been used to monitor a subject of growing concern in 
Leishmania infections, particularly in endemic regions: 
the relapse of disease or resistance to chemotherapy. 
Both issues present major challenges for the control of 
leishmaniasis [163]. A PCR-based study that monitored 
parasite load in VL showed that the presence of 10 para-
sites/mL of blood after treatment indicated relapse, thus 
gave useful information for disease prognosis [164]. Four 
single nucleotide polymorphisms of cysteine protease B 
gene were identified and indicated resistance to a widely 
used drug, amphotericin-B; thus, detection of these could 
be incorporated into a PCR assay [165]. These techniques 
have yet to be standardised, thus are not widely available 
in clinical settings, but have great potential to aid public 
health responses [166].

cPCR: In this method, DNA is amplified using a ther-
mal cycler, amplicons are separated by electropho-
resis due to their molecular weight and detected by 
staining (usually ethidium bromide) and ultraviolet light 
(via a transilluminator) [167, 168]. This method can be 
time consuming, requires an array of equipment and, 
as the PCR tube containing amplicons must be opened 
for electrophoresis, is associated with a risk of contami-
nation [169]. Clinical sensitivity and specificity of up to 
100% each have been achieved for lesion samples, with 
detection of as low as 0.01–0.1 pg of cultured Leishmania 
promastigote DNA [170].

Nested PCR: This method is used to overcome poor 
sensitivity and specificity [171, 172]. Two sequential 
PCRs are used: first, an outer set of primers is used to 
amplify the target gene (first round), then the amplicons 
of this PCR are re-amplified with a set of inner primers 
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(second round) [173]. The disadvantages of this approach 
are that the use of two PCRs is more time consuming and 
requires more reagent, and since the amplicon tube is 
opened for the second PCR, it is an open system, which 
poses a contamination risk [174]. Encouragingly, how-
ever, 100% sensitivity and 100% specificity were reported 
for a recently developed Leishmania spp.-specific modi-
fied version of a nested PCR that was created to reduce 
carryover and cross-contamination [175].

Real-time PCR: This method, in which fluorescent dyes 
give a visual indication of amplification as the reaction 
occurs,  is a more recent advance than cPCR [122, 176]. 
Although limiting in some settings due to the equip-
ment and expertise necessary, real-time PCR is faster 
than cPCR and is a closed system, so contamination risk 
is reduced [147, 177]. Real-time PCR is generally used 
with intercalating dyes, e.g. SYBR green due to its lower 
cost, but this method is prone to false–positives as it will 
visualise any amplified double-stranded DNA [178]. Use 
of probe-based real-time PCR increases specificity, thus 
avoids this issue, and targets can be multiplexed, whereby 
multiple assays occur in the same reaction, which saves 
reagents and time and increases throughput [179]. Real-
time PCR was compared to cPCR, and higher sensitivity 
and specificity, 93.9% and 100%, respectively, for the for-
mer was reported compared to two cPCR assays tested 
(75.6% and 100% for kDNA, and 53.7% and 88.8% for 
ITS1, respectively) [180]. Higher sensitivity, specificity 

and reproducibility of real-time PCR have also been 
reported in other studies [181–184]. For example, using 
peripheral buffy coat from cases of VL, 100% sensitivity 
and 100% specificity were achieved with real-time PCR 
[103, 129, 185]. The technique can give data on parasite 
load, which in turn provides information for prognosis 
and treatment, and is useful for epidemiological studies 
[186, 187]. Bisulphite modification is a method for reduc-
ing the complexity of the genome prior to application of 
PCR that has been adapted to Leishmania detection in 
real-time PCR [124, 188]. This assay achieved an ana-
lytical sensitivity of 10 genomic copies per real-time PCR 
reaction, and clinical sensitivity of 97.0% and specificity 
of 100.0%. Through treatment with sodium bisulphite, 
cytosine is converted to uracil and ultimately thymine 
during the first round of PCR. This causes the genomes 
of subtypes to become more similar to each other, mak-
ing genus-level primer and probe design possible for 
highly polymorphic gene targets [189]. The resulting 
simplified genome enables the design of simplified prim-
ers with unique characteristics, and the consequently 
fewer mismatches result in a similar melting tempera-
ture (Tm), allowing for the design of longer oligonu-
cleotides, thereby increasing the specificity of the assay. 
Additionally, proximate Tms between species-level oligo-
nucleotides can be achieved, making multiplexing more 
efficient, as a uniform PCR cycling protocol can be easily 
designated [124].

Table 5 Commercially available DNA-based diagnostic kits for detection of Leishmania 

NR Not recorded, FDA Food and Drug Administration (USA), qPCR real-time PCR, NASBA-OC nucleic acid sequence-based amplification-oligochromatography, WRAIR 
Walter Reed Army Institute of Research, cPCR conventional PCR, kDNA kinetoplast DNA; for other abbreviations, see Table  1
a The SMART Leish Kit is intended for use only in US Department of Defense laboratories

Product Supplier Technology Gene Reported sensitivity Species detected Regulatory 
approval 
(agency)

EasyScreen Leishmania 
Detection Kit

Genetic Signatures qPCR 18S rRNA 10 Copies/PCR Pan-Leishmania No

GenesigLeishmania (all 
species)

Primer Design qPCR cytb 100 Copies/PCR Pan-Leishmania No

Leishmania infantum and 
Leishmania donovani 
PCR Kit

MyBioSource qPCR DNA pol I protein B 100 Copies/PCR L. infantum and L. 
donovani

No

Leishmania OligoC-TesT Coris BioConcept NASBA-OC 18S ribosomal 1 Parasite/PCR Pan-Leishmania No

Leishmania major PCR Kit MyBioSource qPCR ND1 100 Copies/PCR L. major No

Leishmania sp. PCR 
Detection Kit

BioKits cPCR NR 20 Copies/mL Pan-Leishmania No

Leishmania tropica PCR 
Kit

MyBioSource qPCR GP63 100 Copies/PCR L. tropica No

Loopamp Leishmania 
Detection Kit

Eiken LAMP 18S rRNA/kDNA 
minicircle

NR Pan-Leishmania No

SMART  Leisha Cepheid/WRAIR qPCR 16S rRNA/GPI gene 4 Copies/PCR CL causative species Yes (FDA)

STAT-NAT Leishma-
nia spp.

Sentinel Diagnostics qPCR NR NR Pan-Leishmania No
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Droplet digital PCR: The advent of this method has 
enabled the absolute quantitative measurement of target 
DNA, negating the need for calibration curves in PCR 
assays [190]. DNA molecules are partitioned into tens 
of thousands of replicate PCR reactions, and amplifica-
tion to endpoint PCR occurs, at which point each “drop-
let” has template or no template present [191]. Due to 
the vast numbers of binary (positive or negative) results, 
the number of target DNA molecules can be calculated 
precisely. A droplet digital PCR was developed based on 
18S rDNA and validated for seven Leishmania species; 
however, despite the accurate quantification of DNA, 
the assay was marginally less sensitive and specific than 
an equivalent real-time PCR assay (84.0% for the for-
mer vs 85.0% for the latter) [192]. Moreover, the authors 
reported that the cost of droplet digital PCR is three 
times that of real-time PCR, thus is not suitable for the 
routine diagnosis of Leishmania.

Methods for the identification of species 
of Leishmania
Differentiation of Leishmania species to discriminate 
the species, or group of species, that cause disease is 
important, both clinically and epidemiologically, for dis-
ease prognosis, determining therapeutic options and 
surveillance of populations [122, 193]. As in Leishmania 
detection, no single differentiation method is consid-
ered to be a gold standard, although several techniques 
have been proposed, including PCR, multilocus enzyme 
electrophoresis (MLEE) and multilocus sequence typ-
ing (MLST) [122, 133, 193–198]. The lack of a definitive 
gold standard for species typing may be attributed to 
inherent issues related to a lack of standardisation, par-
ticularly with regard to the interpretation of the typed 
result. This pitfall is complicated by the closely related 
Leishmania species and inter-species hybrids that exist, 
and the novel species that continue to be discovered [199, 
200]. Moreover, methods of interpretation differ between 
laboratories and, if species assignment is based on cen-
tralised programs like BLAST, results can be dependent 
upon the evaluation of resultant similarity scores [201]. 
Despite this, multiple robust methods exist and the 
results obtained with their use continue to strengthen the 
molecular epidemiological, taxonomic and clinical data-
bases, even if these methods are not yet optimal for rou-
tine uses.

Multilocus studies are now used in preference to single 
locus analysis for population-wide studies as they achieve 
better resolution [129]. By combining genomic targets 
in parallel, multilocus schemes capture genetic relation-
ships that may be missed by one genetic locus, which is 
particularly advantageous in intraspecific variation stud-
ies or for species typing within species complexes due to 

the amount of information gathered [6]. MLEE distin-
guishes between organisms through electrophoresis of 
enzymes, and is regarded by some as the gold standard 
for Leishmania typing and taxonomic studies; informa-
tion acquired using MLEE led to the development of the 
first phylogenetic trees of Leishmania [18, 202, 203]. Dif-
ferences in enzyme mobilities are due to differences in 
their protein structures, which comprise different amino 
acids, and lead to the creation of banding patterns from 
which zymodemes (populations with similar isoen-
zyme patterns) can be assigned [24]. MLEE is laborious 
as it requires a large volume of cell culture and can take 
1–2  months to produce results, which cannot be com-
pared, with confidence, between laboratories; e.g., differ-
ent enzyme panels are used in Europe and South America 
[204, 205]. Furthermore, one zymodeme, MON-1, for L. 
infantum, the causative agent of most cases of VL in the 
Mediterranean Basin and South America, was shown to 
be heterogeneous and polymorphic [129].

DNA‑based identification methods
MLST, which involves DNA sequencing sections of 
defined housekeeping genes (usually seven or more) and 
the many allelic combinations produced, results in unam-
biguous characterisation of isolates, giving both inter- 
and intra-species information on heterogeneity [206, 
207]. This method is considered so powerful it has also 
been proposed as the new gold standard for taxonomic 
determination of Leishmania [208]. MLST has high 
reproducibility and can be compared between laborato-
ries; however, it is technically demanding [209].

Like MLST, multilocus microsatellite typing (MLMT) 
uses co-dominant markers, and because of the relatively 
high mutation rate of microsatellites, comparison of 
closely related organisms is possible [209, 210]. It works 
by the amplification of repeat sequences found in micro-
satellites, where polymorphisms in the copy number 
of repeats define the type assigned [211]. For instance, 
MLMT has been used to analyse L. donovani strains. In 
one study, the identification of heterogeneous genotypes 
by MLMT negated the usefulness of MLEE determining 
genetic relationships in zymodeme MON-37. Not only 
were the isolates genetically diverse but, geographically, 
they were spread globally, leading the authors to surmise 
that the discriminatory power of MLMT adds depth to 
both diagnostic and population genetic studies [212].

DNA sequencing is based on the classic Sanger 
sequencing (chain termination) method and, more 
recently, next generation sequencing (NGS), both of 
which identify the precise order of nucleotide bases in 
a targeted DNA locus [213]. DNA sequencing provides 
important information for genetic, clinical and epide-
miological studies. For instance, gene sequence analysis 
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has been used to detect Leishmania hybrids using the 
cytochrome b gene, to study differences in genetic com-
position between healed and non-healed patients using 
the ITS1, 7SL RNA and heat-shock protein 70 regions, 
and to illuminate the diversity of kDNA minicircle classes 
[213–215]. It is viewed currently as an impractical tech-
nique for endemic areas, as it is technically demand-
ing, although simplified techniques such as nanopore 
sequencing are being developed [198, 216].

NGS involves the extremely high-throughput sequenc-
ing of nucleotides in parallel [217]. It provides deep 
genome sequencing and whole genome sequencing 
(WGS) of organisms, and provides population-level data 
in a clinical context, although it is too costly for routine 
typing [218, 219]. The first complete genome sequence 
of any Leishmania parasite (i.e., L. major) was com-
pleted in 2005 and, since then, the complete genomes of 
L. mexicana, L. tropica, L. amazonensis, L. donovani, L. 
infantum, L. panamensis, L. braziliensis, L. guyanensis, L. 
naiffi, L. peruviana, L. lainsoni, L. martiniquensis and L. 
orientalis have been sequenced [220, 221]. One type of 
NGS couples WGS with MLST, and is a methodologi-
cal advance for the provision of standardised epidemio-
logical, molecular evolution and pathogenicity data [222]. 
Aneuploidy, which is observed in laboratory cultivated 
samples, as well as mosaicism, can be challenging in 
WGS, and thus read depth is critical for correct interpre-
tation of Leishmania NGS data [223–225].

PCR‑based identification methods
Restriction fragment length polymorphism (RFLP) tech-
nology: This methodology is used after amplification 
by PCR, and is widely applied in species identification 
[199]. Post-PCR amplicons are digested with a restric-
tion enzyme and the products are detected on a gel. The 
banding pattern produced can be used to identify a par-
ticular species, depending on the presence or absence 
of a restriction enzyme site in the PCR product derived 
from the target [226]. It is a relatively inexpensive tech-
nique compared to real-time PCR, and a multitude of 
gene targets can be utilised, including heat-shock protein 
70, glycoprotein 63, kDNA, cysteine protease B, mini-
exon or NADH dehydrogenase subunit 7 [121, 227–231].

An ITS1-RFLP reported by Schönian et  al. [231] was 
able to differentiate most Leishmania species but was less 
useful for those species within the L. braziliensis complex 
[232, 233]. Such findings can be problematic, as the clini-
cal presentation of the MCL tropism is caused by more 
than one of these species, but the response to treatment 
differs between them [129]. Improvements in species dis-
crimination using RFLP were achieved recently using the 
NADH dehydrogenase subunit 7 maxicircle gene target, 
where it was possible to discriminate L. braziliensis from 

other species within the L. braziliensis complex (Fig.  3) 
[231]. RFLP presents multiple difficulties, as it needs a 
relatively high parasite load, and is thus often paired with 
cell culture, and multiple restriction enzymes may have 
to be employed depending on the DNA target. Addition-
ally, RFLP can be difficult to compare between laborato-
ries as banding patterns may be dissimilar due to differing 
gel size or concentration [234].

Melt curve analysis: This method is used to differentiate 
species  following real-time PCR. Its effectiveness relies 
on the fact that the temperature at which a sequence of 
double-stranded DNA dissociates (or “melts”) is a func-
tion of the GC/AT ratio and the length of an amplicon 
[235]. Different species exhibit different melting points, 
which allows for discrimination [236]. In a study that 
used Tms to group infecting species, species that caused 
different clinical presentations (i.e., CL/MCL and diffuse 
cutaneous leishmaniasis) could be differentiated [234]. 
Either a standard melt curve or high resolution melt can 
be use for analysis, the latter being a method that is able 
to detect more subtle differences in temperature, which 
potentially gives better species discrimination [237–239].

Biosensors
Biosensors lead the emerging field of nanodiagnostics, 
spanning target detection of DNA/RNA, proteins and 
even volatile organic compounds from exhaled breath. 
They are devices that, put simply, convert a biological 
signal into an electrical signal via a recognition element; 
they are reported to be low-cost and portable, with high 
sensitivity and specificity of performance documented 
[240, 241]. Biosensors use one of several modes of sig-
nal generation, like electrochemiluminescence or opti-
cal signals, or are based on surface plasmon resonance 
(SPR). Genosensors, recognising DNA (or RNA), domi-
nate biosensor diagnostics for Leishmania. Other rec-
ognition elements may be antibodies, antigens or the 
newer aptamer-based sensors [242]. Aptamers show 
great promise in binding biological targets with high 
affinity; they are short, single-stranded nucleic acids 
that form unique three-dimensional structures and rec-
ognise and bind target molecules in a similar fashion to 
antibodies, such as those targeting the L. infantum his-
tone H3 or poly(A) binding protein [243, 244]. A DNA-
based biosensor using SPR that targeted the kDNA 
detected L. major and L. tropica [245]. Also using SPR 
biosensing techniques, Ferreira et al. [245] developed an 
immunosensor based on circulating antibodies against 
L. infantum, which achieved antibody detection within 
7  min [246]. Another DNA detection biosensor, which 
uses fluorescent probes based on the kDNA of L. infan-
tum and nanostructured films as sensing platforms, 
provided sensitive results (1.1  nM of target DNA) even 
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for complex sample types such a human blood [247]. To 
determine selectivity for the target molecule, the authors 
measured fluorescence recovery intensity when a target 
DNA sequence with a single base mismatch was intro-
duced, and observed a reduction of 32% when compared 
to a fully complementary sequence [247]. Most recently, 
another genosensor based on the recognition of a single-
stranded DNA sequence of L. infantum on cadmium 
sulfide nanosheets was described; the detection limit for 
L. infantum DNA was 1.2 ng/uL without reaction with L. 
major and L. tropica DNA [248]. Biosensor development 

for Leishmania detection is in its early stages and 
requires more research to improve efficiencies and stand-
ardisation. Despite this, recent publications on their use 
in NTDs have indicated the potential for their increased 
performance as well as a reduction in interactions with 
interfering substances, good stability and the minia-
turisation of devices, allowing their portability [249]. 
Furthermore, this detection method has been widely 
integrated into smartphone technology, simplifying the 
interpretation of results and allowing for  multiplexing 
of targets, such as multiple species [250, 251]. Biosensor 

Fig. 3 Polymerase chain reaction—restriction fragment length polymorphism analysis of Leishmania species targeting the NADH dehydrogenase 
subunit 7 gene, digested with NIaIII (a) or HpyCH4IV (b) run alongside 50-base pair (bp) molecular weight markers. Digestion of in silico, culture and 
direct clinical samples enabled differentiation of Leishmania species. Reprinted with permission of Kaufer et al. [231]
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technology, though in itsinfancy with regard to leishma-
niasisdetection, may be a good solution to the challenge 
of providing a cost-effective, fast and portable detection 
method [252].

Conclusions
A multitude of diagnostic assays exist for the detection of 
Leishmania species, but there is no widely accepted gold 
standard [122, 195, 196]. There have been, however, huge 
developments in the speed and accuracy of methods with 
advances in technology, and different approaches may be 
better suited to different diagnostic health care settings, 
ranging from primary health care centres (where techni-
cal staff perform point-of-care or single-use tests for out-
patients) to district hospital laboratories (where limited 
numbers of staff perform selected routine tests), regional 
or provincial hospital laboratories (where high numbers 
of laboratory staff are present to cover many pathology 
disciplines) and, ultimately, to national reference labo-
ratories (providing highly specialised tests, education 
and training in research or for teaching hospitals) [253]. 
All the techniques for the detection and identification 
of Leishmania, of which there is a vast array, have their 
own strengths and limitations, but high sensitivity, high 
specificity, low turnaround times and affordability are 
the critical features of an ideal test. Also important is dis-
crimination between Leishmania species, which is vital 
for epidemiological studies, disease prognosis and for the 
implementation of patient treatment regimens. Figure 4 
illustrates typical workflows for the techniques used in 
diagnostic laboratories, and highlights that, whilst more 
traditional protocols can be used to identify Leishmania 
to the genus level relatively speedily when in the hands 
of trained, experienced professionals, only molecular-
based techniques can give species-specific diagnostic 
information. As global efforts increase to control and 
eliminate NTDs, there is a need to develop, validate 

and standardise novel diagnostics for the detection and 
differentiation of Leishmania spp. With the successful 
implementation of such methods, the global burden of 
this disease could be reduced dramatically, with positive 
outcomes being seen for the people that need them the 
most.
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