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Abstract 

Background:  Triatoma dimidiata is a vector of the protozoan parasite Trypanosoma cruzi, the etiologic agent of Cha‑
gas disease. Phenotypic plasticity allows an organism to adjust its phenotype in response to stimuli or environmental 
conditions. Understanding the effect of T. cruzi on the phenotypic plasticity of its vectors, known as triatomines, has 
attracted great interest because of the implications of the parasite–triatomine interactions in the eco-epidemiology 
and transmission of the etiologic agent of Chagas disease. We investigated if the infection of the vector with T. cruzi 
may be associated with a change in the antennal phenotype of sylvatic, domestic, and laboratory-reared populations 
of T. dimidiata.

Methods:  The abundance of each type of sensillum (bristles, basiconic, thick- and thin-walled trichoid) on the anten‑
nae of T. cruzi-infected and non-infected T. dimidiata reared in the laboratory or collected in sylvatic and domestic 
ecotopes were measured under light microscopy and compared using Kruskal–Wallis non-parametric tests and 
permutational multivariate analysis of variance.

Results:  We found significant differences between sensilla patterns of infected and non-infected insects within syl‑
vatic and domestic populations. Conversely, we found no significant differences between sensilla patterns of infected 
and non-infected insects within the laboratory-reared population. Besides, for sylvatic and domestic populations, 
sexual dimorphism tended to be increased in infected insects.

Conclusion:  The differences observed in infected insects could be linked to higher efficiency in the perception of 
odor molecules related to the search for distant mates and hosts and the flight dispersal in search of new habitats. In 
addition, these insects could have a positive effect on population dynamics and the transmission of T. cruzi.

Keywords:  Triatomines, Chagas disease, Host manipulation, Phenotypic plasticity

Background
Phenotypic plasticity is of great interest in ecology and 
evolution because it allows an organism to actively adjust 
its phenotype in response to stimuli or environmental 
conditions [1–8]. The response may or may not be adap-
tive, and it may involve changes in morphology, physi-
ological state, behavior, or some combination of these [9]. 
Besides, phenotypic plasticity is also widely recognized 
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as an important factor for the evolution, population biol-
ogy, and ecological interactions of many species [10–13]; 
thus, it is a major mechanism of ecological adaptation 
[14]. Most information on phenotypic plasticity comes 
mainly from social insects [14–16], triatomines [17–20], 
grasshoppers [21, 22], and butterflies [13, 23].

Triatomine nymphs and adults of both sexes are strict 
blood-sucking insects that feed on vertebrate species 
available in their habitat [20]. Their olfactory system plays 
an important role in many behavioral contexts, such as 
host-seeking, refuges and mate finding, alarm and aggre-
gation behaviors, as well as avoidance of natural ene-
mies [24]. In triatomines, the antennal phenotype (AP) 
comprises the type and number of sensilla (classified as 
mechanoreceptors and chemoreceptors) distributed on 
the antennae. Sensilla act as an interface between the 
external and internal environments of insects (inter and 
intraspecific communication), capturing different stimuli 
from the external environment and directing them to the 
central nervous system [24–26]. This then triggers spe-
cific behavioral responses, such as the selection of a host 
for feeding, oviposition behavior, mate finding, and alarm 
and aggregation behaviors [27–33].

AP has been widely used as a sensitive marker to dis-
tinguish populations of triatomines [33–35]. In certain 
species or complexes, AP analysis complements other 
phenotypic and genetic characteristics [34, 36–39] or 
provides evidence for species differentiation [40, 41]. On 
the other hand, previous studies have established that 
the antennal sensilla of triatomines may show a degree of 
morphological variability between populations that seem 
to be associated with adaptations based on the sensorial 
requirements of different habitats [17, 37]. The number 
of sensilla may also vary because of selection pressure, 
sex, infection by a microorganism, and feeding habits [37, 
39, 42–46]. Such changes show the degree of phenotypic 
plasticity exhibited by the species [17]. Importantly, dif-
ferent studies have shown an absence of a correlation 
between the number of chemoreceptors and the total 
antenna length, length of antenna segments, and the 
number of each type of sensillum arranged over them 
[47, 48].

As vectors of the parasite Trypanosoma cruzi (Chagas, 
1909) (Kinetoplastida: Trypanosomatidae), the causal 
agent of Chagas disease, the insects of the subfamily 
Triatominae (Hemiptera: Reduviidae), have special rel-
evance in Latin America [49]. The parasite is transmit-
ted to humans and other animals when feces or urine of 
infected insects come into contact with mucous mem-
branes or damaged areas of mammal skin [50]. The co-
evolution between triatomines and T. cruzi has promoted 
the development of powerful and sophisticated strate-
gies, which can modify a wide range of physiological 

processes of the insects, including those related to the 
input, development, and discharge of the parasite [51]. 
The existence of these modifications as a characteristic of 
an association between T. cruzi and triatomines could be 
the consequence of different adaptive or nonadaptive sce-
narios (e.g., adaptive host manipulation) [52, 53]. While 
several works have analyzed the mechanisms associated 
with T. cruzi–vector dynamics (e.g., biotic and abiotic 
factors) to understand the T. cruzi–triatomine interac-
tions, under a co-evolutionary scenario [54], literature 
about how the parasites may influence the insects is more 
limited, and the studies have mainly been focused on the 
parasite’s effects on four patterns of the vector behavior: 
life-history traits, feeding, defecation, and dispersion/
locomotion [55]. Different studies have found negative 
effects of T. cruzi infection on vector survival [56–59], 
fecundity [59, 60], post-embryonic development [59, 61, 
62], behavior [55, 63–68], and physiological processes 
[55, 60, 69–71], while other studies have not identified 
these effects on patterns of alimentation/defecation [56, 
72, 73], development, and reproduction [74–76]. Over-
all, most of these studies determined that the effects of T. 
cruzi are species-dependent, age-dependent, sex-depend-
ent, and even environment/physiology-dependent.

Although the AP, effects of T. cruzi, and phenotypic 
plasticity of the triatomines have been extensively studied 
[17, 34, 54], the phenotypic plasticity linked to the infec-
tion with T. cruzi in triatomines has not been investigated 
so far. In this study, we evaluated the changes in the AP of 
Triatoma dimidiata (Latreille, 1811) according to T. cruzi 
infection. More specifically, we investigated whether T. 
cruzi infection was associated with AP and sexual dimor-
phism modifications.

Methods
Insects
Laboratory-reared T. dimidiata came from a colony 
maintained for the past 10  years at the Parasitology 
Laboratory of the Regional Research Center Dr. Hideyo 
Noguchi, Autonomous University of Yucatan. New 
insects have been periodically added to this colony to 
avoid inbreeding depression. The insects were reared 
and maintained for 11 generations under controlled con-
ditions (27 ± 1  °C, 70 ± 5% RH, a photoperiod of 12:12 
[L:D] h), and were fed on immobilized pigeons [Columba 
livia Gmelin, 1789 (Aves, Columbidae)]. The domestic 
and sylvatic populations were composed of insects col-
lected during entomological surveillance in 2018 inside 
and outside human dwellings of the rural village of Teya 
(25° 02′ 55″ N, 89° 04′ 25″ W), Yucatan, Mexico. The clos-
est human dwellings were 3.5 km from the sylvatic site. 
The study was approved by the Institutional Bioethics 
Committee of the Autonomous University of Yucatan.
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Trypanosoma cruzi
For infection of triatomines, the “V strain,” a TcI strain of 
T. cruzi originally isolated from a T. dimidiata specimen 
and maintained in the laboratory by cyclical passages in 
BALB/c adult mice, was used.

Infection of the laboratory‑reared triatomines with T. cruzi
After a 2-week starvation period, the initial infection of 
the laboratory-reared triatomines was carried out with 
nymphs that had just molted to their fifth instar. Nymphs 
were fed ad  libitum on BALB/c mice 15  days after they 
were infected with 1 × 106 parasites ml−1 of blood (i.e., 
during the parasite’s exponential stage of growth [65]). 
Approximately 30  days after infection, we corroborated 
the infection status through examination of a fecal drop 
observed under a light microscope at ×40 magnification. 
Control group insects were fed under the same condi-
tions on non-infected mice. The nymphs of both groups 
were maintained under rearing conditions and were fed 
fortnightly on infected/non-infected mice until they 
molted to the adult stage.

Assessment of the infection of domestic and sylvatic 
populations with T. cruzi
For T. dimidiata collected in natural conditions (i.e., 
domestic and sylvatic populations), we evaluated the 
infection with T. cruzi by amplifying parasite DNA from 
each bug midgut by polymerase chain reaction (PCR), 
using TCZ primers as described previously [77]. Based 
on the results obtained by PCR, each population had a 
group of infected and non-infected insects.

Antennal preparation
We examined a total of 130 antennae of T. cruzi-infected 
and non-infected females and males from the sylvatic, 
domestic, and laboratory-reared populations of T. dimid‑
iata (Table  1). One right antenna per specimen was 
removed using fine forceps and scissors. Antennae were 
processed with sodium hydroxide 4% for 6 h at 60 °C and 
then neutralized with glacial acetic acid 5% for 2  min. 
This procedure allowed cuticle diaphanization and ena-
bled the identification and counting of the sensilla using 
a Zeiss Primostar® stereo microscope at ×400 magnifi-
cation. The number and type of sensilla on antennal seg-
ments was counted manually using a procedure reported 
in previous works [33]. The ventral side of the three distal 
segments of the antennae (P: pedicel, F1: flagellum 1, and 
F2: flagellum 2) was evaluated by identifying and count-
ing sensilla including bristles (BR), thin-walled trichoid 
(TH), thick-walled trichoid (TK), and basiconic (BA) 
(nomenclature according to Catalá and Schofield [36]), 

thus giving a total of 12 morphological variables. The 
person who performed the measurements was unaware 
of the bug’s infection status to avoid any bias (MJET).

Data analysis
Differences in the AP between T. cruzi-infected (I) and 
non-infected (NI) insects were explored in the overall 
population, within each sex, within each population (i.e., 
sylvatic, domestic, and laboratory-reared), and within 
each sex within each population using univariate and 
multivariate analyses. Means and standard deviations 
of abundance were calculated for each type of sensilla 
(chemoreceptors: BR, TH, TK, and mechanoreceptors: 
BA) and antennal segment (pedicel, flagellum 1, and fla-
gellum 2). As original data and their transformations 
were not normally distributed using Shapiro–Wilk tests 
[78], Kruskal–Wallis non-parametric tests were used for 
univariate analyses, followed by pairwise comparisons 
[79]. Data were analyzed with the Minitab Statistical Soft-
ware, version 17 (Minitab, Inc., PA, USA). In all cases, 
P < 0.05 was considered statistically significant. Moreover, 
the sources of variation of the AP were assessed using 
two-way permutational multivariate analysis of variance 
(PERMANOVA) on Bray–Curtis similarity matrices of 
square root with 9999 permutations. These analyses were 
conducted in PAST version 3.05.

Results
Overall data
Abundances of the sensilla found for all the T. dimidiata 
specimens included in this study are shown in Additional 
file 1: Table S1. All the insects’ antennae presented three 
types of chemoreceptors (TH, TK, and BA) and one 
mechanoreceptor (BR) on the three segments. The aver-
age number of sensilla per insect was 669.52 ± 176.45. 
Overall, the TH sensillum of the pedicel (P-TH) was the 
most abundant (183.42 ± 92.70), while the BR sensil-
lum of the flagellum 2 (F2-BR) was the least abundant 
(17.45 ± 12.51). The pedicel was the segment with the 

Table 1  Number of T. dimidiata specimens used in this study. 
Population, sex and infection status of the specimens are 
indicated

♀: female and ♂: male

Populations Infected Non-infected Overall

♀ ♂ ♀ ♂

Laboratory-reared 10 10 10 11 41

Domestic 10 10 10 10 40

Sylvatic 10 10 13 16 49

Overall 30 30 33 37 130
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highest number of sensilla (322.42 ± 115.54) while the 
flagellum 2 was the segment with the lowest number of 
sensilla (149.63 ± 54.43).

AP of T. cruzi‑infected and non‑infected T. dimidiata
Differences in each sensillum on the three antennal seg-
ments between infected and non-infected insects in the 
overall population, within each sex, within each popula-
tion (i.e., sylvatic, domestic, and laboratory-reared), and 
within each sex within each population are summarized 
in Table 2.

Overall population
When infected and non-infected insects were compared, 
significantly more BA sensilla on pedicel (P-BA) and TK 
sensilla on flagellum 1 (F1-TK) were observed in infected 
insects (Kruskal–Wallis test, P = 0.007 and P = 0.01, 
respectively).

Within each sex
When infected and non-infected insects were compared 
for each sex (I females vs, NI females; I males vs, NI 
males), significantly fewer TH sensilla on pedicel (P-TH) 
were observed in infected females (Kruskal–Wallis test, 
P = 0.04). Conversely, significantly more TK sensilla on 
flagellum 1 (F1-TK) were observed in infected males 
(Kruskal–Wallis test, P = 0.008).

Within each population
In the domestic population, when infected and non-
infected insects were compared, significantly more BR 
sensilla on pedicel (P-BR) were observed in infected 

insects (Kruskal–Wallis test, P = 0.01). On the other 
hand, significantly fewer TH and TK sensilla on pedi-
cel, BR, BA, TK sensilla on flagellum 1, and BR, BA, TH 
sensilla on flagellum 2 were observed in infected insects 
(Kruskal–Wallis test, P < 0.05 in all cases). Additionally, 
the two-way PERMANOVA test associated the infec-
tion with T. cruzi with the AP of the domestic population 
(F = 7.15; P = 0.0001), while the sex and the interaction 
infection*sex did not have a significant association with 
the AP (F = 1.51; P = 0.177 and F = 1.188; P = 0.299, 
respectively; Table 3).

Table 2  Comparisons of the abundance of each sensillum between infected and non-infected insects overall population, within each 
sex, within each population, and within each sex within each population of Triatoma dimidiata 

BR bristles, BA basiconic, TH thin-walled trichoid, TK thick-walled trichoid, F female and M male, I infected, NI non-infected, D domestic, S sylvatic, and L laboratory-
reared. Asterisks represent a significant difference between infected and non-infected insects (P < 0.05*; P < 0.01**; P < 0.001***; – no difference)

Factor Pedicel Flagellum 1 Flagellum 2

BR BA TH TK BR BA TH TK BR BA TH TK

Overall population (I vs. NI) – ** – – – – – * – – – –

Within females (I F vs. NI F) – – * – – – – – – – – –

Within males (I M vs. NI M) – – – – – – – ** – – – –

Within domestic insects (I D vs. NI D) * – * * *** * – * * *** * –

Within sylvatic insects (I S vs. NI S) – *** – – *** ** – *** ** ** * **

Within laboratory-reared insects (I L vs. NI L) – – – – – – – – – – – –

Within females of the domestic population (F D I vs. F D NI) – – * – – – – – – * * –

Within females of the sylvatic population (F S I vs. F S NI) – *** – – ** ** – – * * – *

Within females of the laboratory-reared population (F L I vs. F L NI) – – – – – – – – – – – –

Within males of the domestic population (M D I vs. M D NI) * – – – *** – – – * *** – –

Within males of the sylvatic population (M S I vs. M S NI) – * – – ** – – *** * – * –

Within males of the laboratory-reared population (M L I vs. M L NI) – – – – – – – – – – – –

Table 3  Two-way PERMANOVA based on the Bray–Curtis 
distance matrix assessing the sources of variation of the antennal 
phenotype of T. dimidiata populations

P-values are based on 9999 permutations

Source of variation Sum of squares Mean square F-test P-value

Domestic population

 Infection 0.188 0.188 7.151 0.0001

 Sex 0.039 0.0.39 1.5179 0.1776

 Interaction 0.031 0.031 1.1887 0.2993

Sylvatic population

 Infection 0.209 0.209 7.418 0.0001

 Sex 0.121 0.121 4.288 0.0021

 Interaction 0.103 0.013 0.368 0.125

Laboratory-reared

 Infection 0.031 0.031 0.708 0.569

 Sex 0.083 0.083 1.869 0.104

 Interaction 0.052 0.052 0.126 0.473
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In the sylvatic population, when infected and non-
infected insects were compared, significantly more BA 
sensilla on pedicel, BR, BA, and TK sensilla on flagel-
lum 1, and BR, BA, TH and TK sensilla on flagellum 2 
were observed in infected insects (Kruskal–Wallis test, 
P < 0.05 in all cases). The two-way PERMANOVA test 
associated the infection with T. cruzi and the sex with the 
AP of the sylvatic population (F = 7.41; P = 0.0001 and 
F = 4.28; P = 0.002, respectively), while the interaction 
infection*sex did not have a significant association with 
the AP (F = 0.368; P = 0.125; Table 3).

Finally, in the laboratory-reared population, when 
infected and non-infected insects were compared, no dif-
ference in the number of sensilla was observed (Kruskal–
Wallis test, P > 0.05 in all cases). In the same way, the 
two-way PERMANOVA test did not reveal significant 
association of the infection with T. cruzi, of the sex and of 
the interaction infection*sex with the AP of laboratory-
reared insects (P > 0.05; Table 3).

Within each sex within each population
Differences in the abundance of each sensillum on the 
three antennal segments between infected and non-
infected insects within each sex within each population 
are shown in Additional file 1: Table S1 and are summa-
rized in Table 2.

Domestic population  When infected and non-infected 
females of the domestic population were compared, sig-
nificantly fewer TH sensilla on pedicel and flagellum 2, 
and BA sensilla on flagellum 2 (Kruskal–Wallis, P < 0.05 
in all cases) were observed. On the other hand, when 
infected and non-infected males of the domestic popu-
lation were compared, significantly more BR sensilla 
on pedicel (P-BR) (Kruskal–Wallis test, P = 0.01) were 
observed. Moreover, when infected and non-infected 

males of the domestic population were compared, signifi-
cantly fewer BR sensilla on flagellum 1 and flagellum 2, 
and BA sensilla on flagellum 2 (Kruskal–Wallis, P < 0.05 in 
all cases) were observed.

Sylvatic population  When infected and non-infected 
females of the sylvatic population were compared, sig-
nificantly more BA sensilla on the three segments of the 
antennae, BR sensilla on flagellum 1 and flagellum 2, and 
TK sensilla on flagellum 2 (Kruskal–Wallis test, P < 0.05 
in all cases) were observed. On the other hand, when 
infected and non-infected males of the sylvatic population 
were compared, significantly more BA sensilla on pedicel, 
BR and TK sensilla on flagellum 1, and BR and TH sensilla 
on flagellum 2 (Kruskal–Wallis test, P < 0.05 in all cases) 
were observed.

Laboratory‑reared population  In the laboratory-reared 
population, there were no differences in the abundance 
of each sensillum between infected and non-infected 
females and between infected and non-infected males 
(Kruskal–Wallis test, P > 0.05).

Sexual dimorphism of T. cruzi‑infected and non‑infected 
insects
Differences in the abundances of each sensillum between 
non-infected females and males, and between infected 
females and males in the overall population, and within 
each population, are summarized in Table 4.

Overall population
When non-infected females and males were compared, 
no significant difference in the abundance of each sensil-
lum was observed (Kruskal–Wallis test, P > 0.05). How-
ever, when infected females and males were compared, 

Table 4  Comparisons of the abundances of each sensillum between infected females and males and between non-infected females 
and males overall population, and within each population of Triatoma dimidiata 

BR bristles, BA basiconic, TH thin-walled trichoid, TK thick-walled trichoid, F female, M male, I infected, NI non-infected, D domestic, S sylvatic, L laboratory-reared. 
Asterisks represent a significant difference between infected and non-infected insects (P < 0.05*, P < 0.01**, P < 0.001***, – no difference)

Factor Pedicel Flagellum 1 Flagellum 2

BR BA TH TK BR BA TH TK BR BA TH TK

Overall non-infected insects (NI F vs, NI M) – – – – – – – – – – – –

Overall infected insects (I F vs, I M) – – ** – – – – – – – – –

Within non-infected domestic insects (F D NI vs, M D NI) – – – – – – – – – – – –

Within infected domestic insects (F D I vs, M D I) – – – – – – * – – – – –

Within non-infected sylvatic insects (F S NI vs, M S NI) – – * – – – ** – – – – –

Within infected sylvatic insects (F S I vs, M S I) – ** * – – * – – – – – –

Within non-infected laboratory-reared insects (F L NI vs, M L NI) – – – – – – – – – – – –

Within infected laboratory-reared insects (F L I vs, M L I) – – – – – – – – – – – –
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significantly more TH sensilla on pedicel (P-TH) were 
observed in males (Kruskal–Wallis test, P = 0.002).

Domestic population
When non-infected females and males were compared, 
no significant difference in the abundance of each sensil-
lum was observed (Kruskal–Wallis test, P > 0.05). How-
ever, when infected females and males were compared, 
significantly more TH sensilla on flagellum 1 (F1-TH) 
were observed in males (Kruskal–Wallis test, P = 0.01).

Sylvatic population
When non-infected females and males were compared, 
significantly more TH sensilla on pedicel (P-TH) and fla-
gellum 1 (F1-TH) were observed in males (Kruskal–Wal-
lis test, P = 0.02 and P = 0.003, respectively).

When infected females and males were compared, 
a significant difference in the abundance of TH sensilla 
on pedicel (P-TH) was still observed (Kruskal–Wal-
lis test, P = 0.04), while the difference in the abundance 
of TH sensilla on flagellum 1 (F1-TH) was not observed 
anymore. However, significantly more BA sensilla on 
pedicel (P-BA) and flagellum 1 (F1-BA) were observed 
in females (Kruskal–Wallis test, P = 0.003 and P = 0.04, 
respectively).

Laboratory‑reared population
In the laboratory-reared population, there was no sex-
ual dimorphism in infected and non-infected insects 
(Kruskal–Wallis test, P > 0.05).

Discussion
Phenotypic plasticity has been analyzed in different tri-
atomine species in response to ecological factors [17, 35, 
80], or to assess the effect of ecotope [18], food source 
[19], environment [35, 43, 81, 82], and sex [80]. The pre-
sent study is the first to analyze phenotypic plasticity 
related to the infection with T. cruzi in domestic, sylvatic, 
and laboratory-reared populations of T. dimidiata.

Our results show that there is an association between 
the infection status and the AP of T. dimidiata, at least 
in natural conditions. Indeed, we observed that infected 
and non-infected insects from the domestic and sylvatic 
populations showed significant differences in the abun-
dance of some sensilla types. Besides, our results show 
that the sexual dimorphism tends to increase in T. cruzi-
infected natural populations. Nevertheless, these differ-
ences in the abundance of some sensilla types between 
infected and non-infected insects, and the increased 
sexual dimorphism in infected insects was not observed 
in the laboratory-reared population. Consequently, while 
we were unable to evidence in this study a causal relation-
ship between the infection with T. cruzi and the observed 

AP differences between infected and non-infected insects 
in natural populations of T. dimidiata, we could not 
exclude it either because the laboratory-reared insects 
were infected during their fifth development stage. If 
a causal relationship between T. cruzi infection and AP 
exists, this suggests that we should have established the 
infection in the earliest development stages to observe 
this effect, since insects infected in early development 
stages are more likely to be manipulated, as Poulin et al. 
[83] have suggested. However, more laboratory research 
is needed to understand how long it would take for T. 
cruzi to modify the AP of T. dimidiata and if there is a 
relation between AP changes and the parasite load in 
these vectors [84].

Therefore, the question remains whether the observed 
morphological differences are explained by the direct 
effect of T. cruzi infection and host manipulation, are 
evolutionary responses to selection at the population 
level, or are the consequences of different causal factors 
such as microecological influences [85].

Determining why and how host manipulation by para-
sites evolves is a fascinating but challenging question 
for evolutionary biologists. Pioneer authors addressing 
this question [86, 87] proposed that host changes prob-
ably occurred after the establishment of complex life 
cycles involving more than one host species. Ramirez-
Gonzalez et al. [66] determined the effect of T. cruzi on 
the motor activity of fifth-stage nymphs of Triatoma lon‑
gipennis Usinger, 1939 and Triatoma phyllosoma (Bur-
meister, 1835) infected during the second-stage nymph. 
On the other hand, Depickere et al. [55] determined the 
effect of T. cruzi on the aggregation behavior of Triatoma 
infestans (Klug, 1834) captured in the field and naturally 
infected. Recent studies with T. infestans have shown that 
infected insects after 45  days present changes in their 
circadian locomotor activity and feeding and defecation 
patterns [68, 73].

In our study, infected insects of the domestic and syl-
vatic populations showed, in general, significantly more 
BR sensilla compared with non-infected insects. These 
mechanoreceptors are associated with habitat selection 
rather than host selection [36], with the perception of 
mechanical stimuli related to the microhabitat [88]. This 
suggests that infected insects could have greater capaci-
ties for adaptation or colonization of new habitats as 
compared with non-infected insects.

On the other hand, these mechanoreceptors also allow 
insects to perceive vibratory signals (through stridula-
tion) during mating, and variations in the air current 
[88–91]. Moreover, they play an important role in the ori-
entation toward odor-laden currents [92]. Various stud-
ies have determined that the infection by T. cruzi, can 
impair the fecundity, fertility, and mating performance of 
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triatomines (e.g., Fellet et  al. [60]). An increase in these 
mechanoreceptors suggests that infected insects may 
benefit from copulation frequency and searching mating 
pairs, although reproductive success could be affected 
because of the infection. However, several functional 
aspects of these mechanoreceptors are unknown, and 
for this reason, further studies aimed at analyzing these 
contexts are needed to gain a better understanding of the 
functionality associated with habitat selection and the 
search for mating pairs.

Concerning the chemoreceptors (BA, TH and TK), 
it has previously been reported that BA sensilla have an 
olfactory and/or gustative function for the detection of 
habitats, shelters, hosts, mating pairs and related to the 
perception of sex-pheromone [93–95]. Besides, these 
sensilla seem involved in the detection of presumed 
pheromones in conspecific feces [96, 97]. The multipa-
rous TH sensilla were first described in T. infestans by 
Bernard [93]. The function of these sensilla may be asso-
ciated with reproductive activities [37]. They respond to 
a range of fatty acids—particularly pyruvic and lactic—
and amyl acetate, and to breathing [93, 98]. On the other 
hand, although TK sensilla have been shown to predomi-
nate in triatomines [34], their chemosensory function has 
not been confirmed [93, 99]. However, Bernard [93] sug-
gested that they may respond only to special compounds 
such as pheromones, thus acting as olfactory sensilla 
[100], as has been shown in the insect Cimex lectularius 
(Linnaeus, 1758) (Hemiptera: Cimicidae) [101]. In our 
study, variation in the olfactory sensitivity associated with 
T. cruzi infection in the domestic and sylvatic popula-
tions is suggested. Indeed, in these populations, infected 
and non-infected insects showed significant differences 
in the abundance of some specific chemoreceptors. In 
the sylvatic population, the infection with T. cruzi was 
associated with more abundance of chemoreceptors. In a 
natural context, triatomines rely heavily on their sense of 
smell to locate, detect, and orientate toward a host from 
which they feed [34]. The evidence indicates infected 
T. longipennis and Triatoma pallidipennis react more 
quickly to human odor than non-infected [66]. Infected 
Mepraia spinolai (Porter, 1934) orient toward their host 
twice as fast, and their number of bites is duplicated [64]. 
Some of these behavioral changes could promote vector 
competence, which encompasses the ability to acquire, 
maintain, and transmit a pathogen [68]. Assuming the 
hypothesis of sensory modulation by the parasite [71, 
92], it is possible that the infected insects of the sylvatic 
population generate an increase in the antennal recep-
tors because of the wide range of hosts in the sylvatic 
ecotope and to enhance parasite transmission probability 
[77, 102, 103]. Moreover, this increase may enhance the 
capacity for dispersal and invasion of different habitats 

[47, 81], and efficiency in the perception of odor mol-
ecules in the search of distant mates and hosts and for 
flight dispersal in search of new habitats, as it has been 
suggested by other authors [82, 102, 104–106], thus con-
ferring an advantage to T. cruzi.

Nevertheless, infected insects of the domestic popula-
tions showed a decrease in some chemoreceptors. The 
occurrence of these modifications as characteristic of 
a parasite–host system may be the consequence of an 
adaptive process (i.e., adaptive host manipulation by the 
parasite or compensatory response by the host). Also, 
it may be an after-effect of the presence of the parasite 
that allows insects to reduce their investment in costly or 
reduced-use structures [52, 107].

Several studies have provided information about the 
sexual dimorphism in non-infected triatomines from dif-
ferent species, populations, rearing, and ecotopes [38, 
80, 88]. However, our study reports for the first time the 
sexual dimorphism in the AP of infected insects of T. 
dimidiata. In general, the sexual dimorphism observed in 
infected insects of T. dimidiata was based on an increase 
in the abundance of TH sensilla in infected males and/
or an increase of BA sensilla in infected females. These 
chemoreceptors have an olfactory function for the detec-
tion of sexual pairs, habitats, and hosts as mentioned 
above. Evidence of this study and previous works [48, 
81, 108] suggest that the sexual dimorphism in the AP 
may be linked to the perception of molecules related 
to sexual behavior and to differences in sensing sexual 
pheromones, as has been suggested by other authors 
(e.g., May-Concha et  al. [34]; Souza et  al. [82]). May-
Concha [109] provided information on a chemical signal 
produced during T. dimidiata mating, since fewer mat-
ing attempts were observed when the opening of female 
glands was occluded. Besides, that study describes a 
chemical signal which promotes the attraction of males to 
volatiles emitted by females and to mating couples [30]. 
On the other hand, based on previous works on olfactory 
receptors [24–26], we can propose that the increased 
abundance of TH chemo-sensilla in infected males con-
tributes to a greater efficiency in the perception of odor 
molecules involved in sexual communication compared 
with infected females. In contrast, we can hypothesize 
that the increased abundance of BA chemo-sensilla in 
infected females contributes to a greater efficiency in the 
perception of host odors compared with infected males. 
Therefore, the increase in the odor perception in infected 
insects may elicit a positive effect on vector population 
dynamics and could enhance the vectorial transmission 
of T. cruzi. Future studies should examine in-depth the 
effect of the parasite on other aspects of the behavior of 
triatomine insects, such as aggregation, alarm, feeding, 
excretion/defecation, and host foraging, which could 
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constitute epidemiologically relevant behavioral changes, 
and evaluate sexual behavioral changes in adults, which 
could impact the growth of triatomine populations.

Conclusion
To our knowledge, this is the first work that relates an 
association of the AP with the T. cruzi infection status 
of T. dimidiata. Although we could not demonstrate 
any causal relationship, we revealed a clear association 
between the natural infection status of T. dimidiata 
and its antennal phenotypic variation. The differences 
observed in infected insects could be linked to higher 
efficiency in the olfactory perception related to the 
search for distant mates and hosts and the flight disper-
sal in search of new habitats. In addition, these insects 
could have a positive effect on population dynamics 
and the transmission of T. cruzi.
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