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Whole-transcriptome profiling G

across different developmental stages of Aedes
albopictus (Diptera: Culicidae) provides
insights into chitin-related non-coding RNA
and competing endogenous RNA networks

Wenjuan Liu'", Sha An'", Peng Cheng? Kexin Zhang', Maoging Gong®’, Zhong Zhang'?" and Ruiling Zhang'*’

Abstract

Background The Asian tiger mosquito, Aedes albopictus, is one of the most invasive species and a vector of numer-
ous arboviruses. The deleterious effects of long-term and inappropriate use of chemical pesticides have stimulated
the exploration of new, environmentally friendly control strategies. Non-coding RNAs (ncRNAs) have been proven to
participate in almost all biological processes of insects.

Methods In this study, circular RNAs (circRNAs) and microRNAs (miRNAs) covering five developmental stages [egg,
early larvae, late larvae, pupae, adult (female and male)] of A. albopictus were obtained using whole-transcriptome
sequencing technology. Combined with long non-coding RNAs (IncRNAs) from previous research, circRNA/INCRNA-
miRNA—mitochondrial RNA (mMRNA) networks were constructed.

Results A total of 1434 circRNAs and 208 miRNAs were identified. More differentially expressed circRNAs (DE circR-
NAs) and miRNAs (DE miRNAs) were found in the egg versus early larvae comparison group. Functional enrichment
analysis demonstrated that most of the circRNA/INCRNA-mMiRNA-mMRNA networks were involved in chitin metabolism.
Hub genes of each circRNA/INcRNA-mMIiRNA-mMRNA network were screened out, which can be used as novel targets
to disturb the molting process of A. albopictus.

Conclusions Regulatory relationships obtained from competing endogenous RNA (ceRNA) networks provide more
information to manipulate the metamorphosis process and are helpful for developing effective and sustainable meth-
ods to control mosquitoes.
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Background

Aedes albopictus originated in Southeast Asia and has
now spread from its area of origin to more than 70 coun-
tries and regions around the world [1]. As one of the
important vectors, A. albopictus can transmit dengue
virus, Zika virus, chikungunya virus, yellow fever virus,
and some other arboviruses, posing a huge threat to pub-
lic health [2]. Despite decades of control efforts, mos-
quito-borne diseases are a major threat to public health
in large regions of the world. Dengue virus causes an
estimated 400 million infections annually, with 3.6 billion
people living in areas at risk for epidemic transmission
[2]. There is still no effective vaccine or drug for the dis-
eases caused by viruses transmitted via A. albopictus [3].
Mosquito population control is the most effective strat-
egy for preventing mosquito-borne diseases. Conven-
tional control methods depend primarily on insecticides,
which have been proven to be unsustainable solutions for
a variety of reasons, such as rapidly increasing insecti-
cide resistance [4] and negative impacts on the ecological
environment [5]. Therefore, the development of a novel
control strategy with proven epidemiological impact is
challenging.

Non-coding RNAs (ncRNAs) are functional RNA mol-
ecules that cannot be translated into proteins [6]. Micro-
RNAs (miRNAs), long non-coding RNAs (IncRNAs), and
circular RNAs (circRNAs) are major families of ncRNAs.
With the development of sequencing and experimen-
tal technology in recent years, a large number of studies
have demonstrated that ncRNAs play important roles in
the developmental regulation of insects [7-9]. miRNAs
are small RNA molecules with 21-23 nucleotides that
regulate gene expression post-transcriptionally, mainly
by binding the mRNA target. IncRNAs are a heterogene-
ous class of transcripts that are more than 200 nucleo-
tides in length and lack the potential for protein coding
[10-12]. circRNA is a newly discovered kind of endog-
enous ncRNA with covalently closed loop structures
formed by back-splicing, which exhibits high abundance,
stability, species conservation, and tissue/stage specificity
[13-15].

Accumulating evidence indicates that ncRNAs exert
their biological activity in the reproduction, embryogen-
esis, molting, development, and insecticide resistance of
Arthropoda [16—19]. These ncRNA-mediated interac-
tions are often interconnected, constructing complex
regulatory RNA networks [12, 19, 20]. This complicated
regulatory network is described as competing endog-
enous RNAs (ceRNAs), which play important regulatory
roles in post-transcriptional gene expression [21, 22]. The
ceRNA network has been described as an intricate inter-
play among diverse RNAs [23]. In addition to mRNAs,
IncRNAs, circRNAs, and other RNAs that share common
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miRNA response elements (MREs) can competitively
bind with miRNAs, acting as an RNA sponge to block
and inhibit miRNAs from binding to their target sites
[23]. These ceRNA modulatory mechanisms have been
found to participate in many biological processes. For
example, ceRNA (circRNA-miRNA-mRNA) networks
have been shown to play a comprehensive role in the
growth, development, and metabolism in the midgut of
the Apis cerana cerana workers [7]. lincRNA_Tc13743.2-
miR-133-5p-TcGSTmO2 is involved in mediating cyflu-
metofen resistance in Tetranychus cinnabarinus [24].
Inc-GSTul_AS-miR-8525-5p-GSTul were also found
to regulate the expression of detoxifying enzymes (glu-
tathione S-transferase, GST) to mediate the resistance of
Plutella xylostella to chlorantraniliprole [25].

A deep understanding of the expression profile and reg-
ulatory relationships of ncRNAs during the development
of A. albopictus will strongly improve our knowledge
of the molecular mechanisms underlying the holome-
tabolous development of the mosquito. Because of the
significant heterogeneity of ncRNAs, we performed a
comparative analysis of miRNAs and circRNAs covering
five developmental time points during the life-cycle of A.
albopictus. Combining the IncRNA data in previous stud-
ies [26], ceRNA networks (circRNA/IncRNA-miRNA-
mRNA) were established for each stage. Meanwhile, the
hub genes of each ceRNA network were screened out,
and a subnetwork of pivotal hub genes was also con-
structed. The results of this study will offer a novel per-
spective for investigating post-transcriptional regulatory
mechanisms of ncRNAs underlying developmental pro-
cesses, promoting the discovery of innovative control
strategies, such as the use of hub genes as developmental
time-specific tuners to regulate chitin metabolism and
ultimately control of A. albopictus.

Methods

Sample preparation

The A. albopictus colony used in this study was col-
lected in Shandong Province (China) and reared in the
laboratory under conditions of 27+1 °C and 65% rela-
tive humidity (RH) with a daily photoperiod of 14:10 h
(light/dark). Eggs were collected within 24 h after damp
collection filter paper was placed into an insect cage, and
were pooled to represent the embryonic stage. Larvae
were reared in dechlorinated tap water in plastic con-
tainers and fed a slurry that was a mixture of pork liver
powder (homemade), yeast, and distilled water. Larvae
samples were divided into early (first—second-instar)
and late (third—fourth-instar) larval stages. Pupae sam-
ples were mixed pools of various stages. Individual pupae
were placed in plastic tubes equipped with dechlorinated
tap water and covered with absorbent cotton until adults
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emerged. Then, male and female adults were collected
separately. Three duplicate samples for each stage were
prepared. All samples were flash frozen in liquid nitrogen
immediately following the collection and then stored at
—80 °C until RNA isolation.

RNA extraction, library construction, and sequencing

Total RNA was extracted from A. albopictus samples
(egg, early larvae, late larvae, pupae, adults [female and
male]) using TRIzol reagent (Invitrogen, USA). RNA
purity was checked using a NanoPhotometer® spectro-
photometer (Implen, Germany), and the RNA concen-
tration was measured using a Qubit® RNA Assay Kit
in a Qubit® 2.0 Fluorometer (Life Technologies, USA).
RNA integrity was assessed using the RNA Nano 6000
Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent
Technologies, USA). An Epicenter Ribo-Zero™ rRNA
Removal Kit (Epicenter, USA) was used to remove ribo-
somal RNA, and the rRNA-free residue was cleaned up
by ethanol precipitation.

circRNA library preparation was carried out using the
NEBNext® Ultra™ Directional RNA Library Prep Kit for
[lumina R (NEB, USA) following the manufacturer’s rec-
ommendations. RNA sequencing (RNA-Seq) was per-
formed by Novogene (Beijing, China) using the Illumina
HiSeq 2000 platform, and 150-base-pair (bp) paired-end
reads were generated. NEBNext®Multiplex Small RNA
Library Prep Set for Illumina® (NEB, USA) was used for
miRNA sequencing library construction according to the
manufacturer’s protocol. Single-end reads (50 bp) were
generated using the Illumina HiSeq 2500 platform.

Clean reads were obtained by removing the adaptor
reads and low-quality tags (containing ploy-N, 5’ adapter
contaminants, without 3’ adapter or the insert tag, con-
taining ploy A or T or G or C and low-quality reads) from
the raw reads using Trimmomatic v0.38 [27]. All subse-
quent analyses were performed based on the clean reads.
The Q30 and guanine-cytosine (GC) content of the sam-
ples were calculated. The miRNAs were mapped to the
A. albopictus genome (genome version: AalbF2, assem-
bly: GCA_006496715.1, NCBI) [28] by Bowtie 2 v 2.4.4
[29]. circRNAs were mapped to the reference genome
(genome version: AalbF2) using HISAT2 v2.1.0 [30].

Identification of circRNA and miRNA

Both find_circ [14] and CIRI2 [31] were used to detect
and identify circRNAs. Known miRNAs were identified
according to miRBase 22.1 [32]. The prediction of novel
miRNA was performed by miREvo [33] and mirdeep2
[34] based on the secondary structure (hairpin struc-
ture, Dicer cleavage sites, and minimum free energy) of
miRNA. Then, miFam.dat (http://www.mirbase.org/ftp.
shtml) and Rfam (http://rfam.sanger.ac.uk/search/) were
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used to search for families of known miRNAs and Rfam
families of novel miRNAs, respectively. Target gene pre-
diction of miRNA was performed by miRanda [35].

Identification of differentially expressed circRNAs (DE
circRNAs) and miRNAs (DE miRNAs)

The expression levels of circRNA and miRNA were esti-
mated by transcripts per million (TPM) according to the
criteria of Zhou et al. [36]. Differential expression analy-
sis was performed using DESeq R v3.1.3 [37]. The P-value
was adjusted using the Benjamini-Hochberg method
[38]. The threshold for significantly differential expres-
sion was set as |log2 (fold change)|>1.0 and adjusted
P-value<0.05. Venn diagrams were drawn to depict the
circRNA and miRNA expression profiles at different
developmental time points.

Establishment of ceRNA networks

Both miRanda and RNAhybrid software [39] were used
to predict the relationships among DE miRNAs, circR-
NAs, and IncRNAs. Only relationships that were identi-
fied simultaneously by these two methods were used for
subsequent analysis. A ceRNA network was constructed
with potential target mRNAs to the miRNAs and poten-
tial target circRNAs/IncRNAs to the miRNAs and cor-
responding mRNAs. The nodes in the network represent
the genes, and the nodes are connected if the corre-
sponding genes are significantly co-expressed [40]. Gene
connectivity was represented by edge weight, defined as
the sum of the weights across all edges of a node in the
gene co-expression network analyzed. Hub genes were
identified based on the connectivity degree of genes in
the network with the Cytohubba plugin [41] in Cytoscape
v3.8.2 [42].

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses of the target
gene candidates of DE circRNAs, DE miRNAs, and DE
mRNAs in the IncRNA/circRNA-miRNA-mRNA net-
work were implemented using the GOseq R v3.3.2 pack-
age [43] and KOBAS v3.0 software [44], respectively. A
P-value <0.05 was considered significantly enriched.

Reverse transcription real-time quantitative polymerase
chain reaction (QRT-PCR) analysis

To verify the accuracy of the results obtained from high-
throughput sequencing, four ceRNA co-expression net-
works were randomly selected. The expression profiles of
ncRNAs and mRNAs in these selected ceRNA networks
were confirmed using qRT-PCR, which used the same
RNA samples as Illumina sequencing.
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Total RNA was isolated using the TRIzol reagent
(Vazyme, China) according to the manufacturer’s pro-
tocol. The miRNA reverse transcription was performed
using a miRNA first-strand ¢cDNA synthesis kit (by
stem-loop) (Vazyme, China). The IncRNA and mRNA
template was reversely transcribed into complemen-
tary DNA (cDNA) using HiScript III RT SuperMix for
qPCR (4+gDNA wiper) (Vazyme, China). Then, qPCR
of miRNA was performed with miRNA Universal SYBR
qPCR Master Mix (Vazyme, China); qPCR of circRNA,
mRNA, and IncRNA was performed using ChamQ Uni-
versal SYBR qPCR Master Mix (Vazyme, China). All qRT-
PCR runs were carried out on an ABI 7500 qRT-PCR
platform (Thermo Fisher Scientific, USA). The expression
levels of the selected miRNAs, circRNAs, IncRNAs, and
mRNAs were normalized against the B-actin. All experi-
ments were performed with three biological and techni-
cal replicates, respectively. The 2724CT method was used
to estimate the relative expression of each IncRNA [45].

Results

Identification of circRNAs and miRNAs

Altogether, 18 libraries covering five developmental
time points (with three biological replicates for each
time point) were constructed for circRNA and miRNA
sequencing. The rate of reads mapped to the reference
genome of A. albopictus was 42.17% to 67.01% for cir-
cRNA and 72.38% to 96.25% for miRNA (Additional
file 2: Tables S1, S2). The Q30 of all samples was above
90.98%. Raw circRNA and miRNA data were deposited
in the NCBI Sequence Read Archive (SRA) database
with accession numbers PRJNA863740 (miRNA) and
PRJNA757239 (circRNA).

After normalization and filtration, a total of 1434 circR-
NAs and 208 miRNAs were identified (Additional file 2:
Table S3). All 1434 circRNAs are novel circRNAs, and
there were 1262 exon_circRNAs, 138 intergenic_region_
circRNAs, and 34 intron_circRNAs according to their
localization in the genome (Additional file 2: Table S3). A
total of 125 known miRNAs and 83 novel miRNAs were
identified. Venn analysis suggested that 148 circRNAs
were detected at all developmental time points, and 87,
30, 89, 86, 197, and 40 circRNAs were unique to E, L1,
L2, B, M, and F, respectively (Additional file 1: Fig. Sla).
Analysis of the miRNAs showed that only 33 miRNAs
were present at all developmental time points, and most
of the miRNAs were expressed at three or more develop-
mental time points (Additional file 1: Fig. S1b).

According to the successive developmental time points
of A. albopictus, five comparison groups were assigned:
egg versus early larvae (E vs. L1), early larvae versus late
larvae (L1 vs. L2), late larvae versus pupae (L2 vs. P),
pupae versus female (P vs. F), and pupae versus male (P
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vs. M). In total, 143 DE circRNAs were detected. The
same number (31 circRNAs) of DE circRNAs was up-
and downregulated in the E vs. L1 comparison group;
more DE circRNAs were downregulated in the L1 vs.
L2, P vs. M, and P vs. F comparison groups, while more
upregulated DE circRNAs were detected in the L2 vs. P
comparison group (Fig. 1a DE circRNA). There were 139
DE miRNAs, and many more DE miRNAs were down-
regulated in the E vs. L1, L1 vs. L2, and P vs. F com-
parison groups; the number of upregulated DE miRNAs
exceeded the number of downregulated DE miRNAs in
the L2 vs. P and P vs. M comparison groups (Fig. 1b DE
miRNA). There were 50, 12, 23, 17, and 10 DE circRNAs
specifically expressed in the E vs. L1, L1 vs. L2, L2 vs.
P, P vs. M, and P vs. F comparison groups, respectively
(Fig. 1c Venn DE circRNA). Five DE miRNAs (aal-miR-
305-5p, aal-miR-279, aal-miR-957, aal-miR-282-5p, and
aal-miR-263a-5p) were found expressed at all six devel-
opmental time points. There were 9, 5, 6, 15, and 5 DE
miRNAs unique to the E vs. L1, L1 vs. L2, L2 vs. P, P vs.
M, and P vs. F comparison groups, respectively (Fig. 1d
Venn DE miRNA).

ceRNA network construction
The circRNA-associated ceRNA networks of the E vs. L1,
L1vs.L2,L2vs. P, Pvs. M, and P vs. F comparison groups
included 50, 16, 28, 18, and 16 DE circRNAs, respectively
(Additional file 2: Table S4). The highest number of nodes
(3557, including 50 DE circRNAs, 3442 DE mRNAs, and
65 DE miRNAs) and edges (13,573) was detected in the
ceRNA network of the E vs. L1 group; the lowest number
of nodes (431, including 16 DE IncRNAs, 390 DE mRNAs
and 25 DE miRNAs) and edges (924) were found in the
ceRNA network of the L1 vs. L2 group (Additional file 2:
Table S4). In addition, according to the connective degree
of each node in the networks, all of the top 10 hub genes
in each group were miRNAs, and several of them were
shared among groups, such as aae-miR-285, aae-miR-
305-5p, and aae-miR-34-5p (Additional file 2: Table S5).
In the IncRNA-associated ceRNA networks, most of
the nodes and edges were also found in the ceRNA net-
work of the E vs. L1 comparison group, which consisted
of 1604 DE IncRNAs, 3692 DE mRNAs and 77 DE miR-
NAs (Additional file 2: Table S6). Similar to that of the
circRNA-associated ceRNA network, only 816 nodes
(308 DE IncRNAs, 465 DE mRNAs, and 43 DE miR-
NAs) and 2508 edges were included in the IncRNA-
associated ceRNA network of the L1 vs. L2 comparison
group (Additional file 2: Table S7). The top 10 hub genes
in all IncRNA-associated ceRNA networks were miR-
NAs, and aae-miR-305-5p was detected in all groups;
aae-miR-34-5p, aae-miR-285, aae-miR-92a-3p, and
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aae-miR-92b-3p were found in the L1 vs. L2, L2 vs. P, P

vs. M, and P vs. F comparison groups (Additional file 2:
Table S7).

Functional enrichment of the ceRNA networks

To assess the putative regulatory roles of the circRNAs
and miRNAs at different developmental time points,
functional enrichment analysis was performed for all DE
mRNAs in the circRNA- and IncRNA-associated ceRNA
networks.

Overrepresented GO terms and KEGG pathways
reflected stage-specific key biological processes during
the development of A. albopictus. The top 20 enriched
GO terms and KEGG pathways are listed in Additional
file 3: Tables S8-S11. Notably, the top 20 enriched
KEGG pathways were primarily metabolism-related,
including “alanine, aspartate and glutamate metabolism
(map00250),” “nitrogen metabolism (map00910),” “carbon

metabolism (map01200),” and “biosynthesis of unsatu-
rated fatty acids (map01040),” in both the circRNA- and
IncRNA-associated ceRNA networks. Highly enriched
GO terms including “structural constituent of cuticle
(GO: 0042302),” “endopeptidase activity (GO: 0004175),
“proteolysis (GO: 0006508), “serine hydrolase activity
(GO: 0017171); and “hydrolase activity (GO: 0016787)”
were found in several circRNA- and IncRNA-associated
ceRNA networks.

GO term annotation analysis showed that circRNA-
associated ceRNA networks were significantly enriched
in “structural constituent of cuticle,” which was the most
enriched GO term in all four comparison groups (E vs.
L1, L1 vs. L2, P vs. M, and P vs. F); “peptidase activity,
acting on L-amino acid peptides (GO: 0070011),” was the
most highly enriched GO term in the L2 vs. P compari-
son group. KEGG pathway enrichment analysis showed
that “nitrogen metabolism” was the most enriched
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pathway in the E vs. L1, L2 vs. P, P vs. M, and P vs. F com-
parison groups. In the L1 vs. L2 comparison group, “argi-
nine and proline metabolism (map00330)” was the most
enriched pathway. Functional annotation of IncRNA-
associated ceRNA networks showed a similar pattern to
that of the circRNA-associated ceRNA networks. “Struc-
tural constituent of cuticle” was the most enriched GO
term in the E vs. L1, L1 vs. L2, P vs. M, and P vs. F com-
parison groups. Meanwhile, “serine-type peptidase activ-
ity (GO: 0008236)” and “serine hydrolase activity” were
the top two significantly enriched GO terms in the L2 vs.
P comparison group. “Nitrogen metabolism (map00910)”
was the most enriched pathway in the E vs. L1, P vs. M,
and P vs. F comparison groups. “Arginine and proline
metabolism (map00330)” and “carbon metabolism” were
the highly enriched pathways in the L1 vs. L2 and L2 vs. P
comparison groups, respectively.

Stage-specific and shared functional annotations of
DE circRNAs and DE miRNAs were obtained by con-
ducting Venn analysis. Based on functional annotation
of all circRNA- and IncRNA-associated ceRNA net-
works, the “structural constituent of cuticle” GO term
was enriched in all five comparison groups (Fig. 2a, c).
“Nitrogen metabolism” and “alanine, aspartate and gluta-
mate metabolism” were KEGG pathways highly enriched
in all comparison groups (Fig. 2b, d). Ultimately, the
overlapping GO terms (structural constituent of cuti-
cle) and KEGG pathways (nitrogen metabolism, alanine,
aspartate, and glutamate metabolism) that were highly
enriched in the circRNA-miRNA-mRNA networks and
IncRNA-miRNA-mRNA networks were used for further
investigation.

Identification of hub genes in the co-expressed key
functions

Based on the results of functional enrichment analysis,
ncRNAs of all developmental time points were integrated
to construct ceRNA networks that participated in the
regulation of “structural constituent of cuticle, “nitro-
gen metabolism,” and “alanine, aspartate and glutamate
metabolism” Meanwhile, hub genes of each network
were obtained according to their connective degree in the
networks.

Altogether, 2753 nodes (94 circRNAs, 2344 IncR-
NAs, 116 miRNAs, 199 mRNAs) and 10,019 edges were
involved in the ceRNA networks of the “structural con-
stituent of cuticle” (Fig. 3a; Additional file 3: Table S12).
All of the top 20 hub genes were miRNAs, and aae-
miR-375 had the highest connective degree (Additional
file 4: Table S13). In the subnetwork of aae-miR-375,
there were 290 nodes (7 circRNAs, 268 IncRNAs, and
15 mRNAs) (Fig. 3b). In the ceRNA networks that par-
ticipate in the regulation of “nitrogen metabolism,” 1121
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nodes (41 circRNAs, 1044 IncRNAs, 17 miRNAs, 19
mRNAs) and 1509 edges were included. Among the top
20 hub genes, there were 16 miRNAs and four IncRNAs
(Fig. 4a; Additional file 4: Table S12). Notably, the con-
nective degree of aae-miR-375 is also at the top of the lists
(Additional file 4: Table S13). In this ceRNA network, the
subnetwork of aae-miR-375 consisted of 178 nodes (6 cir-
cRNAs, 171 IncRNAs, 116 miRNAs, 1 mRNA) (Fig. 4b).
The ceRNA networks involved in “alanine, aspartate and
glutamate metabolism” consisted of 1477 nodes (44 cir-
cRNAs, 1377 IncRNAs, 34 miRNAs, and 22 mRNAs) and
2730 edges (Fig. 5a; Additional file 4: Table S12). The con-
nective degree of aae-miR-981 was ranked first among
all nodes (Additional file 4: Table S13). Altogether, 277
nodes (7 circRNAs, 268 IncRNAs, and 1 mRNA) were
included, and 276 edges constituted the subnetwork of
aae-miR-981 (Fig. 5b).

qRT-PCR confirmation of differentially expressed miRNAs
To validate the reliability of the RNA-seq data, four
ceRNA networks (LINC6445-miR-375-XM019671701.2,
novel circ0001644-miR-375-XM019695236.2, LOC10941
6725-AS1-miR 981-TCONS00078437, and LINCB8338-
miR-306-5p-XM019678125.2) were randomly selected
for further gqRT-PCR analyses. The primers used in this
study are listed in Table S14. The changes in the expres-
sion levels of miRNAs, IncRNAs, circRNAs, and mRNAs
included in these four ceRNA networks showed similar
trends as the RNA-seq data (Fig. 6), confirming the relia-
bility of the RNA-seq data and guaranteeing the accuracy
of the related analysis.

Discussion

As one of the most important classes of post-transcrip-
tional regulatory factors, several studies have addressed
the identification, characterization, and function of miR-
NAs and confirmed their roles in the growth, develop-
ment, and immunity of insects [16]. Nevertheless, the
expression profiles, functions, and mechanisms of ncR-
NAs in A. albopictus remain largely unknown. In the
current study, circRNA, IncRNA, and miRNA data were
combined to obtain a comprehensive profile of ncRNAs
involved in the development of A. albopictus.

Expression pattern analysis demonstrated that
most of the circRNAs and miRNAs were differen-
tially expressed at five developmental time points in A.
albopictus. The dynamic changes in the DE circRNAs
and DE miRNAs were significantly different between
the comparison groups, with the most DE circRNAs
and DE miRNAs all found in the E vs. L1 comparison
group (Fig. 1a, b). A similar result was also detected for
the IncRNAs [26]. Consistent with the dynamic pattern
of DE ncRNAs, the highest number of nodes in both
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circRNA- and IncRNA-associated ceRNA networks was
in the E vs. L1 group (Additional file 2: Table S4, S6).
These results suggested complex regulatory relation-
ships among ncRNAs during the transition from eggs
to early larvae. As a holometabolous insect, the bio-
logical cycle of A. albopictus involves egg, larval, pupal,
and adult stages. Embryogenesis of the mosquito is a
complex process involving rapid cell proliferation and

organogenesis [46]. Therefore, it makes sense that a rel-
atively high proportion of differentially expressed genes
(DEGs) and more complex ceRNA networks were iden-
tified in the E vs. L1 comparison group. Meanwhile, the
fewest ceRNA network nodes were found in the L1 vs.
L2 comparison group, suggesting simpler regulatory
relationships within the same developmental stage.
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Although the exact functions of the majority of ncR- in the same biological process. Correspondingly, in a
NAs remain unclear, directly linked genes in ceRNA net-  specific network, the higher the connection degree of a
works usually have similar functions and may be involved  node, the more important this gene might be. Functional
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enrichment analyses revealed that most of the circRNA-
and IncRNA-associated ceRNA networks were metabo-
lism-related. As is well known, during the metamorphic
development of insects, either the larva molts from
one instar to the next or the final larval instar under-
goes a metamorphic molt to pupa to adult, combined
with extensive remodeling of organs and tissues, and in
some cases the organism is completely rebuilt [47]; thus,
metabolism-related biological processes are necessary to
provide materials such as energy and nutrients to sup-
port the metamorphic development of A. albopictus.

All insects produce exoskeletons, which are essential
in all developmental stages to protect the insect from
mechanical injury and predation. Due to growth and
development, the old exoskeleton becomes a physical
constraint, and the insect synthesizes a new cuticle and
partially digests and sheds the cuticle from the previ-
ous developmental stage during each molt [48-51]. It
has been observed that the growth of insects is highly
dependent on their capability for remodeling of the
exoskeleton. Chitin is a major component of the cuti-
cle that forms the exoskeleton and the internal chitin-
ous structures such as the peritrophic matrix (PM) of
the midgut [50, 52, 53]. The periodic synthesis and deg-
radation of chitin accompanying each molt explains the
highly enriched “structural constituent of cuticle” GO
terms detected in almost all developmental stages of A.
albopictus.

Chitin is the most abundant nitrogen-containing
biopolymer on Earth [54]. As a nitrogenous polysaccha-
ride, chitin is a linear homopolymer composed of 3-1,4-
linked subunits of N-acetylglucosamine [55]. Therefore,
the predominant “nitrogen metabolism” pathways in
both circRNA- and IncRNA-associated ceRNA networks
fulfill the requirements for chitin synthesis during the
life-cycle of A. albopictus. Additionally, molting is a high-
energy-demanding event. The energy is needed for the
disruption of and emergence from the old cuticle, and a
new cuticle has to be built toward the end of metamor-
phosis (larva to larva, larva to pupa, pupa to adult) [56].
As one of the most important energy metabolism path-
ways, “nitrogen metabolism” might also participate in the
energy supply during the metamorphic development of
A. albopictus.

Functional annotation of both circRNA- and IncRNA-
associated ceRNA networks revealed active amino acid
metabolism, including the “alanine, aspartate and glu-
tamate metabolism” KEGG pathway, which was highly
enriched in all developmental stages of A. albopictus.
Amino acids are the main building blocks of proteins
[57]. It is speculated that these amino acids might partici-
pate in the formation of chitin-binding proteins, which is
another important component of the cuticle in addition
to chitin. Chitin-binding proteins together with lipids,
carbohydrates, and other minor components depend
largely on the mechanical properties of the cuticle [58,
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59]. Similar results were also found in the molting of
Helicoverpa armigera at the proteomic level. Upregu-
lated proteins in larval and metamorphic molting of H.
armigera were found to be enriched in the amino sugar
metabolism pathway, lipid transport process, and protein
catabolism, which are related to the metabolism of chitin
[60].

Molting of insects involves both the synthesis of chi-
tin in the new procuticle and the degradation of chitin
(and protein) in the innermost parts of the old cuticle
[50]. The digestion of chitin in the old cuticle requires

the participation of several enzymes, including an assort-
ment of proteolytic enzymes [61, 62]. This explains the
highly enriched GO terms “endopeptidase activity (GO:
0004175),” “proteolysis (GO: 0006508), “serine hydro-
lase activity (GO: 0017171),” and “hydrolase activity (GO:
0016787)” found both in circRNA- and IncRNA-associ-
ated ceRNA networks.

As shown above, ncRNAs play vital roles in the chitin
metabolism of A. albopictus, especially “structural con-
stituent of cuticle,” “nitrogen metabolism,” and “alanine,

aspartate, and glutamate metabolism,” which are crucial
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for chitin synthesis and were highly enriched in all devel-
opmental stages. Therefore, key ncRNAs involved in
these three biological processes would be the optimal
choice for altering the formation of the cuticle. How-
ever, ncRNAs may regulate multiple targets in different
ceRNA networks, and vice versa: one gene can be regu-
lated by multiple ncRNAs [19]. Because some ncRNAs
exhibited stage specificity, ncRNAs at all developmental
time points involved in the above three chitin metab-
olism-related biological processes were integrated to
provide a comprehensive understanding of the interac-
tions between the ncRNAs (Figs. 3a, 4a, 5a). In both the
“structural constituent of cuticle” and “nitrogen metabo-
lism” regulatory networks, aae-miR-375 was found to
have the highest connectivity degree, suggesting a crucial
role of aae-miR-375 in chitin metabolism. In addition,
aae-miR-981 was the node with the highest connectiv-
ity in the regulatory network of “alanine, aspartate and
glutamate metabolism” Therefore, the miRNA-target
gene interaction network of aae-miR-375 (Figs. 3b, 4b)
and aae-miR-981 (Fig. 5b) was constructed to obtain
more detailed regulatory relationships centered on this
gene. The subnetwork of aae-miR-375 and aae-miR-981
provided more information for exploring the extensive
regulatory roles of these two hub genes. Combined with
the top 10 hub genes in each ceRNA network of differ-
ent comparison groups (Additional file 2: Table S5), this
study provided many vital targets for disturbing the molt-
ing process of A. albopictus in future work. Hub genes
that are conserved in all developmental stages, such as
aae-miR-375 and aae-miR-981, allow intervention in
normal growth and development of A. albopictus at any
stage, while hub genes specific to certain stages can be
used as stage-specific tuners to disrupt the normal molt-
ing process and achieve the goal of controlling mosqui-
toes and mosquito-borne diseases.

Taken together, a comprehensive catalog of ncRNAs
across five developmental stages of A. albopictus was
produced in the present study. ceRNA networks revealed
interplay among circRNAs, IncRNAs, and miRNAs,
improving our knowledge of the post-transcriptional
regulations involved in the development of A. albop-
ictus. Functional classifications of most typical ceRNA
networks were linked to cuticle formation and chitin
metabolism. As chitin is an indispensable structure for
insects and is one of the structural components essen-
tial for individual growth and development, research on
exploiting targets to disrupt the biosynthesis and regula-
tory pathways of chitin would be helpful for developing
new insect control technologies. Previous studies have
attempted to inhibit chitin synthesis in insects mainly
by interrupting chitin synthase using RNA interference
(RNAi) technology [63-66]. Some studies have shown
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that miRNAs are involved in chitin biosynthesis and reg-
ulate gene expression during the molting of insects [67—
70]. The present study revealed roles of ncRNAs in chitin
metabolism, providing more molecular targets for regu-
lating chitin-related biological processes. To be specific,
hub genes of each developmental stage were provided; in
addition to miRNAs, some IncRNAs and circRNAs were
also found as hub genes, which might be used as new tar-
gets to manipulate chitin metabolism. More importantly,
aae-miR-981 and aae-miR-375 were shown to be crucial
hub genes involved in three important chitin metabolism
pathways that are highly enriched in all developmental
stages. The results generated in this study can be a start-
ing point for dissecting the mechanisms of ncRNA func-
tions in A. albopictus, chitin metabolism-related hub
genes and the regulatory relationship between ncRNAs,
which may act as new target sites to shed light on pos-
sible strategies for mosquito control. If chitin metabolism
is dysregulated, such as failure of degradation of old cuti-
cles or synthesis of new ones, the growth and develop-
ment of the insect will be blocked.

Conclusion

This study provides comprehensive insight into ncRNAs
across different developmental stages of A. albopictus. DE
circRNAs, DE miRNAs, and circRNA- and IncRNA-asso-
ciated ceRNA networks for five comparison groups were
obtained. Functional annotation suggested that both cir-
cRNA- and IncRNA-associated ceRNA networks played
crucial roles in chitin metabolism. “Structural constituent
of cuticle,” “nitrogen metabolism,” and “alanine, aspartate
and glutamate metabolism,” which are important chi-
tin metabolism-related biological processes, were highly
enriched in most developmental stages of A. albopictus.
Hub genes of each ceRNA network were screened out,
which can be inferred as promising candidate molecular
target sites to interrupt chitin metabolism, and used for
developing safe, effective, and sustainable mosquito con-
trol methods.
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