Liu et al. Parasites & Vectors (2023) 16:25 P aras ite S & Vecto rs
https://doi.org/10.1186/513071-023-05650-2

REVIEW Open Access

: ®
The global prevalence of parasites Rl

in non-biting flies as vectors: a systematic
review and meta-analysis

Yufeng Liu'?3, Yuancai Chen'?3, Nanhao Wang '3, Huikai Qin'?, Longxian Zhang'*? and Sumei Zhang'**"

Abstract

Background Non-biting flies such as the house fly (Musca domestica), the Australian sheep blowfly (Lucilia cuprina)
and the oriental latrine fly (Chrysomya megacephala) may carry many parasites. In the present study, we performed
a systematic overview of the different species of parasites carried by non-biting flies, as well as of isolation methods,
different geographical distribution, seasonality and risk assessment.

Methods A meta-analysis was carried out with the aim to review the global prevalence of parasite transmission in
non-biting flies. A total sample size of 28,718 non-biting flies reported in studies worldwide satisfied the predeter-
mined selection criteria and was included in the quantitative analysis.

Results The global prevalence of parasites in non-biting flies was 42.5% (95% confidence interval [Cl] 31.9-53.2%;

n = 15,888/28,718), with the highest prevalence found for non-biting flies in Africa (58.3%; 95% Cl 47.4-69.3%; n
=9144/13,366). A total of 43% (95% Cl 32.1-54.4%; n = 7234/15,282) of house flies (M. domestica), the fly species
considered to be the most closely associated with humans and animals, were found with parasites. The prevalence of
parasites in the intestine of non-biting flies was 37.1% (95% Cl 22.7-51.5%; n = 1045/3817), which was significantly
higher than the prevalence of parasites isolated from the body surface (35.1%; 95% Cl 20.8-49.4%; n = 1199/3649;
P<0.01). Of the 27 reported parasites, a total of 20 known zoonotic parasites were identified, with an infection rate of
38.1% (95% Cl 28.2-48.0%; n = 13,572/28,494).

Conclusions This study provides a theoretical basis for the public health and ecological significance of parasites
transmitted by non-biting flies.
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Background
Many species of flies (Diptera) are closely associated
with humans and can complete their entire life-cycle in
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vectors of diseases [3, 4].
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Non-biting flies can have sponging mouthparts, which
are mainly used to lick and suck food, and can be either
mechanical or biological vectors of food-borne patho-
gens [5, 6]. Biting flies have piercing-sucking mouth-
parts and suck blood through punctures made by
piercing human and animal skin [7, 8]. Non-biting flies
are mechanical carriers of pathogens that adhere to their
body, mouthparts and body hair. These flies transmit
pathogens mainly by contact, and they can contaminate
their surrounding environment as they move about [9].
Food-borne pathogens can reproduce in the intestines
of non-biting flies and infect food through fly excretion
and regurgitation [10]. After exposure to food-borne
pathogens, humans and animals can experience diar-
rhea and other symptoms that sometimes lead to death
[11]. As such, non-biting flies can carry many pathogens,
and these pathogens have detrimental effects on public
health.

Non-biting flies can carry more than 100 kinds of path-
ogens, including parasites, bacteria, fungi and viruses
[12]. Among these, parasite eggs/cysts (such as those of
Cryptosporidium spp., Giardia spp., Taenia spp.) have
been isolated from the body surface and intestines of
non-biting flies, with most being zoonotic parasites. Such
parasites harm humans and animals by depriving the
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host of nutrients and damaging host tissues and organs
[13, 14].

No systematic investigation has been conducted on the
parasites carried by non-biting flies. This study provides
a systematic overview of the different species, isolation
methods, different geographical distribution, seasonal-
ity and risk assessment of parasites carried by non-biting
flies.

Methods
Search strategy
To determine the prevalence of parasites transmitted by
non-biting flies worldwide, we performed a systematic
search of the PubMed, PubMed Central, GeenMedical,
Web of Science and Science Direct electronic databases,
with the aim to identify relevant literature (Fig. 1). The
search was performed according to the Preferred Report-
ing Items of Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [15]. The keywords used were:
“house fly (Musca domestica),” “Lucilia sericata, “Chrys-
omya megacephala, “Ascaris lumbricoides, “Trichuris
Enterobius

trichiura, “Taenia solium, “Entamoeba coli “

vermicularis] “Hookworm,” “Strongyloides stercoralis,
“Hymenolepis nana, “Entamoeba histolytica, “Crypto-
sporidium parvum, “Giardia lamblia” and “Entero-
cytozoon bieneusi’, using “AND” and/or “OR” Boolean
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92 exclude after consulting the full text
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Fig. 1 PRISMA flow diagram on the different stages of the literature search process
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operators [16]. The search formula used was (host 1)
OR (host 2) AND (parasite 1) OR (parasite 2). . Litera-
ture data were obtained based on different non-biting
fly species, different parasite species, different national
geographic distribution, seasonality, sample size, positive
number and identification method [17].

Selection criteria

We searched all English articles on the epidemiology of
parasites carried by non-biting flies without a publishing
time limit. According to the PRISMA guidelines (Addi-
tional file 1: Table S1), titles were screened first for eli-
gibility based on full and legible citations and journal
article titles only [18]. Then, in groups of two reviewers
at a time, the titles and abstracts were assessed. Arti-
cles meeting the selection criteria include the following
points: (i) detailed and comprehensive sample informa-
tion; (ii) details on sample size and number of positive
specimens provided; (iii) peer-reviewed journal articles;
and (iv) clear description of detection methods provided.

Study selection

Articles that did not meet the selection criteria were
removed, and articles from which reference data could
be extracted were filtered out. Exclusion criteria were:
(i) duplicate articles in the five databases; (ii) incomplete
information on the sample; (iii) review article; (iv) only
the prevalence was provided, without information on
sample size and positivity; (v) no details on the sample,
and the data is not easy to distinguish; and (vi) experi-
mental studies, letters and articles published in a lan-
guage other than English (Additional file 1).

Quality assessment

The Grading of Recommendations Assessment, Develop-
ment and Evaluation (GRADE) system was used to grade
article quality. Article quality was assessed according to
current standards, and scores were determined [19]. Each
criterion was graded with a score of 1 point. The scor-
ing criteria included whether the study subjects were
clearly defined; whether there was > 3 types of grouping
analysis; whether the identification method was clearly
described; whether the sampling time was reported in
sufficient detail; and whether the sample size was > 200.
Score grades were divided into 3 grades, with 0-1 indi-
cating low quality, 2—-3 indicating medium quality and
4-5 indicating high quality [20].

Data extraction

All titles, abstracts and full texts were separately screened
by two authors (YFL and YCC), and the data were inde-
pendently extracted. Disagreements were resolved by dis-
cussion with a third author (NHW). The data included
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species of non-biting flies, different parasite species,
country, seasonality, total sample sizes, positive sam-
ple sizes, identification method, publication year, first
author’s name, sampling time and external surface/inter-
nal organs of non-biting flies (Table 1).

Statistical analysis

All statistical analyses were performed using Stata ver-
sion 14.0 (StataCorp, College Station, TX, USA). Because
there was heterogeneity in the data, heterogeneity of the
study was determined as low heterogeneity (I* <25%),
moderate heterogeneity (I> = 25-75%) and high hetero-
geneity (I* >75%), and P-value < 0.05 was considered to
be statistically significant [20]. Random effects models
were used for the meta-analysis, including the sensitiv-
ity analysis, subgroup analysis and univariate regression
analysis, to identify factors affecting heterogeneity. To
evaluate the reliability of the data, we performed sensi-
tivity analyses by removing individual studies one by
one and combining other studies to assess the effect of
selected studies on the pooled prevalence [47]. Forest
plots were used to estimate differences across groups, and
funnel plots and Egger’s tests were used to indicate pos-
sible publication bias in the study [48]. Potential sources
of heterogeneity were assessed, including region (5 com-
parisons of continents), non-biting fly species (Musca
domestica compared to other fly species), identification
methods (morphology, molecular biology and immuno-
fluorescence techniques), risk assessment (zoonotic and
non-zoonotic parasites), non-biting fly body surface and
gut (body surface only, gut and both combined preva-
lence), seasonality (four-season comparison) and parasite
classification (protozoa compared to helminth) (Table 2).

Results
Literature selection and research data extraction
Using the search strategy described above, 2193 studies
were initially retrieved from the five databases (PubMed,
117 studies; PubMed Central, 841 studies; GeenMedi-
cal, 109 studies; Web of Science, 1113 studies; Science
Direct, 13 studies). A total of 632 studies met the first
round of screening criteria after deletion of duplicate
articles in the databases. A total of 120 studies passed the
second round of screening, with 512 studies whose titles
and abstracts did not meet the selection criteria being
excluded. Finally, 28 studies were identified for inclusion
in the meta-analysis following review of the full text, with
92 studies excluded due to incomplete sample informa-
tion (n=20), incomplete data (n=45) and review articles
(n=27) (Fig. 1).

To date, 28 studies on the prevalence of parasites car-
ried by non-biting flies cover 16 countries on five conti-
nents.(Fig. 2; Table 1). Among these, the highest number
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of studies were carried out in Africa, including Nigeria
(n=4), Ethiopia (n=3) and Egypt (n=1), followed by
Asian countries, with seven studies, including China
(n=2), Philippines (n=1), Iran (n=1), Mongolia (n=1),
Malaysia (n=1) and Thailand (n=1). Seven studies
were carried out in European countries, including Spain
(n=2), England (n=2), Ukraine (n=1), Germany (n=1)
and Sweden (z=1). Those studies carried out in South
America are mainly concentrated in Brazil (n=2), and
those carried out in North America are concentrated in
the USA (n=4) (Table 1). The prevalence and geographi-
cal distribution of parasites carried by non-biting flies are
shown in Fig. 2. .

Quality assessment
Evaluation of article quality showed that 21 of the 28
studies scored 4-5, indicating high quality, and seven
studies scored 2-3, indicating moderate quality due to
unclear sampling time and insufficient data on group
analysis (Table 1).

Sensitivity analysis and publication bias

The sensitivity analysis showed that the data were stable
and the analysis was reliable (Fig. 3). Funnel plots were
constructed to observe whether there was publication
bias in the meta-analysis results. The plots showed that
the effect points presented a basically symmetrical pat-
tern and showed no publication bias (Fig. 4). Egger’s test
(Table 3) was used to give P>0.05, indicating that there
was no publication bias in the data.

Different geographical distribution of parasites carried

by non-biting flies

The overall infection rate of parasites carried by non-
biting flies worldwide is about 42.5% (95% confidence
interval [CI] 31.9-53.2%;; n = 15,888/28,718) with het-
erogeneity (I>=99.8%, P<0.001) (Table 2). Of the five
continents reported in the literature, the highest number
of studies were carried out in Africa, which also had the
highest infection rate (58.3%; 95% CI 47.4-69.3%;; n =
9144/13,366) with heterogeneity (=99.2%, P<0.001),
followed by South America (48.6%; 95% CI 31.8-
65.3%; n = 1413/4619) with heterogeneity (I*=98.9%,
P<0.001), North America (39.9%; 95% CI 6.4-73.5%;; n
= 2989/4982) with heterogeneity (I*=99.6%, P<0.001),
Asia (36.9%; 95% CI 24.0-49.9%;; n = 1616/3184) with
heterogeneity (I?=99.0%, P<0.001) and Europe (29.5%;
95% CI 13.2-45.8%;; n = 726/2567) with heterogene-
ity (I’ =99.4%, P<0.001) (Table 2; Fig. 5). Among the 16
countries reported, Thailand had the highest infection
rate (80.0%; 95% CI 69.6—90.4%; n = 48/60), and Ukraine
has the lowest infection rate (1.9%; 95% CI 0.4—-3.5%; n =
6/312) (Fig. 2).
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Pooled prevalence based on parasites carried by different
non-biting flies

Among the 28 studies, 23 reported that the house fly
(M. domestica) carried parasites, which accounted for >
90% of all reported parasite species (Table 2). According
to the statistics, the infection rate of parasites carried by
the house fly (M. domestica) was 43.3% (95% CI 32.1-
54.4%; n = 7234/15,282) with heterogeneity (2=99.6%,
P<0.001), while the infection rate of parasites carried by
the other 16 non-biting flies was 44.1% (95% CI 23.9—
64.3%; n = 8654/13,436) with heterogeneity (2=99.9%,
P<0.001) (Table 2; Fig. 6). These results showed that the
house fly (M. domestica) was the most common fly spe-
cies and its potential risk to human health could not be
ignored. However, although other non-biting fly species
are uncommon, their safety risks also cannot be ignored.

Pooled prevalence based on different identification
methods, risk assessment and seasonality

Of the different identification methods listed in the
studies, morphological identification is the most com-
monly used method for parasite identification; 17 of
the 28 studies identified parasite species by microscopy,
with an infection rate of 47.4% (95% CI 33.0-61.7%;
n = 12,188/20,351) with heterogeneity (I*=99.8%,
P<0.001). The prevalence rates according to routine
PCR molecular identification and immunofluorescence
identification methods were 34.8% (95% CI 24.6—45.1%;
n = 761/3469) with heterogeneity (I*=98.2%, P <0.001)
and 33.5% (95% CI 7.1-74.1%; n = 2939/4898) with het-
erogeneity (I 2=99.7%, P<0.001), respectively (Table 2;
Fig. 7). Non-biting flies are mechanical carriers of many
parasitic species, most of which are zoonotic parasites.
Among the 27 parasites reported, a total of 20 known
zoonotic parasites were identified. The infection rate
was 38.1% (95% CI 28.2-48.0%; n = 13,572/28,494)
with heterogeneity (I*=99.7%, P<0.001), and the
prevalence rate of non-zoonotic parasitic diseases was
13.3% (95% CI 9.4—17.3%; n = 2316/17,626) with het-
erogeneity (I>=98.3%, P<0.001) (Table 2; Fig. 8). The
species of parasites carried by non-biting flies can differ
seasonally. The highest infection rate was 70.0% (95%
CI 69.1-70.9%; n = 6685/9550) and occurred in the
spring, followed by the autumn, winter and summer,
with infection rates of 44.6% (95% CI 31.7-57.5%; n =
1253/3003) with heterogeneity (I*=98.0%, P<0.001),
42.0% (95% CI 4.9-88.9%; n = 121/522) with hetero-
geneity (I>=99.4%, P<0.001) and 29.7% (95% CI 13.7—
45.6%; n = 4331/9809) with heterogeneity (I 2=99.7%,
P<0.001), respectively (Table 2; Fig. 9).
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Pooled prevalence based on parasites carried on the body
surface and guts of non-biting flies

Non-biting flies can infect humans and animals by con-
tacting and adhering to parasite eggs/cysts through
mouthparts and body hair covering their entire body.
They can also indirectly infect humans and animals
through intestinal excretion of contaminated water
and body waste. Several studies have shown that par-
asites can be isolated from both the body surface and
gut of non-biting flies, with a prevalence of 51.1% (95%
CI 41.5-60.7%; n = 13,644/21,252) with heterogeneity
(*=99.5%, P<0.001). The prevalence of parasites iso-
lated from the intestine of the non-biting flies investi-
gated only was 37.1% (95% CI 22.7-51.5%; 1045/3817)
with heterogeneity (I*=99.2%, P<0.001), which was
significantly higher than the prevalence of parasites
isolated from the body surface (35.1%; 95% CI 20.8—
49.4%; n = 1199/3649) with heterogeneity (?=99.3%,
P<0.001) (Table 2; Fig. 10).

Pooled prevalence based on protozoa cysts and helminths
eggs carried by non-biting flies

According to the subgroup analysis (protozoa compared
with helminths), the prevalence of helminth eggs carried
by non-biting flies was 42.6% (95% CI 33.5-51.8%; n =
7791/20,084) with heterogeneity (*=99.5%, P<0.001)
was significantly higher than that of protozoa cysts
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(32.1%; 95% CI 22.9-41.3%; n = 8097/21,789) with het-
erogeneity (I>=99.5%, P<0.001) (Table 2; Fig. 11).

Sources of heterogeneity by meta-regression analysis

All studies included in this meta-analysis had signifi-
cant heterogeneity, and the source of heterogeneity was
further determined by univariate regression analysis.
The results showed whether or not zoonotic parasites
(P<0.05) were the key factors of heterogeneity (Table 2).

Discussion
Non-biting flies are common on farms and in residential
areas and have a close relationship with humans and ani-
mals [41]. Feces, garbage and sewage attract non-biting
flies and are often the most suitable locations for repro-
duction [33, 43]. Non-biting flies mainly pollute water
sources, fruits and vegetables and animal feed through
body surface contact and intestinal excretions [28, 32].
Humans and animals are indirectly infected by eating
food and water containing parasitic eggs or cysts. In addi-
tion to transmission through water and food, non-biting
flies can also spread parasitic eggs/cysts through contact
with human and animal skin, which increases the risk of
human and animal infection [33, 31].

This systematic review included 28 studies cover-
ing 16 countries across five continents. The reliability of
estimated prevalence of parasites carried by non-biting
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Fig. 2 Prevalence and geographical distribution of non-biting flies carrying parasites. (This figure was originally designed using ArcGIS 10.4
software. The original vector diagram, imported in ArcGIS, was then adapted from Natural Earth (http://www.naturalearthdata.com). Cl, Confidence
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Fig. 3 Sensitivity analysis of global prevalence of non-biting flies that have been found to transmit parasites
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Fig. 4 Funnel plot for the determination of publication bias of the
global prevalence estimates of non-biting flies found to transmit
parasites

Table 3 Egger’s test for publication bias

StdEff*  Coefficient  Standard error  t P>t 95%Cl
Slope  57.587 9.193 6.26 0.000 38.690-76.484
Bias —9.206 7.000 —132 0200 —23595t05.182

2 Standardized effects

flies worldwide was derived by meta-analysis. The high-
est prevalence was found in Afric (58.3%; 95% CI 47.4—
69.3%; n = 9144/13,366); two studies, one each in South
America and North America were reported, but these
were not representative [38]. Prevalence is reported to
be generally high in African and Asian countries, such as

Ethiopia (69.9%; 95% CI 69.0-70.7%; n = 7885/11,286)
[29], Nigeria (66.6%;(95% CI 64.3—-68.9%; n = 1047/1572)
[30], Iran (60.0%; 95% CI 53.3—-66.7%; n = 126/210) [40]
and Thailand (80.0%; 95% CI 69.6—90.4%; n = 48/60) [42].
In contrast, the prevalence ranged from 1.9% to 65.7%
in European countries [24, 25, 27], from 41.7% to 69.9%
in African countries and from 14.8% to 80.0% in Asian
countries, mainly due to environmental factors affecting
health [26]. According to the literature, most feces and
garbage in Africa are handled improperly, and open-air
defecation is prevalent in children and a small number of
adults [29].

Different non-biting fly species are likely to carry vari-
ous kinds of parasites [49]. Individual non-biting flies can
carry > 2 parasites, and eggs of the same parasites, such
as hookworm, Ascaris lumbricoides and Trichuris trichi-
ura can be isolated from different species of flies [39].
The house fly (M. domestica) are common in areas of
human habitation and are closely associated with human
activities [17]; as such, they are most likely involved in
parasite transmission. In general, studies have focused
on the house fly (M. domestica), including some labora-
tory studies and surveys of the prevalence of transmitted
parasites. However, although other fly species are not as
abundant in human habitations and animal environ-
ments as the house fly (M. domestica), the prevalence of
parasites carried by these fly species has shown a linear
increase in some countries with poor sanitary conditions,
such as Africa and Asia [45].

Methods are available for the isolation and identifica-
tion of parasites carried on the body surface and intestine
of non-biting flies. The parasite species can be identified
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%
Study ID Prevalence (95% CI)  Weight
Asia :
Sulaiman et al. [39] L 0.44 (0.42,0.47) 3.59
Monzon et al. [64] - ! 0.31(0.28,0.34) 3.59
Zhao etal. [27] - : 0.20(0.17,0.23) 359
Pornruseetriratn et al. [50] | —4— 0.80(0.70, 0.90) 3.49
Yuetal. [52] * 1 0.12 (0.10, 0.14) 3.60
Hemmati et al. [44] : —— 0.60 (0.53, 0.67) 3.55
Barnes et al. [65] —— . 0.15(0.08, 0.21) 3.55
Subtotal (I-squared = 99.0%, p = 0.000) L 0.37 (0.24, 0.50) 24.97
1
Europe :
Roberts et al. [60] | —— 0.64 (0.54, 0.73) 3.51
Peggetal. [61] 1 - 0.66 (0.62, 0.70) 3.58
Clavel etal. [40] *> ! 0.18 (0.15,0.21)  3.59
Forster et al. [26] - : 0.30 (0.24, 0.36) 3.56
Lalander et al. [62] > 1 0.06 (0.03, 0.09) 3.59
Doiz etal. [57] - ! 0.22 (0.18, 0.25) 3.59
Paliy etal. [54] * : 0.02 (0.00, 0.03) 3.60
Subtotal (I-squared = 99.4%, p = 0.000) - 0.29 (0.13, 0.46) 25.02
1
Africa !
Getachew etal. [25] : * 0.70 (0.69, 0.71) 3.60
Fetene etal. [49] 1 ¢ 0.83(0.81,0.85) 3.60
Fetene etal. [56] - ! 0.26 (0.22, 0.30) 3.58
El-Sherbini et al. [48] +I- 0.42 (0.37, 0.46) 3.58
Adenusietal. [21] | - 0.75(0.72,0.78) 3.59
Adenusietal. [24] 1 - 0.61 (0.56, 0.67) 3.57
Ahmadu et al. [22] ! - 0.63 (0.59, 0.68) 3.58
Oyeyemi et al. [23] —:0— 0.45 (0.37, 0.53) 3.53
Subtotal (I-squared = 99.2%, p = 0.000) | <> 0.58 (0.47, 0.69) 28.63
1
North America !
Graczyk etal. [42] - : 0.10 (0.06, 0.14) 3.59
Graczyk etal. [43] | —— 0.60 (0.49, 0.70) 3.48
Szostakowska et al.  [45] e 0.27 (0.18, 0.35) 3.52
Connetal. [41] ! L ] 0.63 (0.62, 0.65) 3.60
Subtotal (I-squared =99.6%, p = 0.000) <> 0.40 (0.06, 0.73) 14.19
1
South America :
Oliveira etal. [53] | * 0.57 (0.55, 0.59) 3.60
Limaetal. [63] * 0.40 (0.37,0.43) 3.59
Subtotal (I-squared = 98.9%, p = 0.000) <|> 0.49 (0.32, 0.65) 7.19
Overall (I-squared = 99.8%, p = 0.000) <> 0.43 (0.32, 0.53) 100.00
NOTE: Weights are from random effects analysis :
| | |
0 2 4 6

Fig. 5 Forest plot of the global prevalence estimates of non-biting flies found to transmit parasites

by morphological observation of eggs/cysts under mag-
nification by optical microscopy. They can also be iden-
tified by molecular methods and immunofluorescence
techniques [50]. Morphological identification is the
most commonly used method for parasite identifica-
tion, with prevalence statistics reaching 47.4% (95% CI
33.0-61.7%; n = 12,188/20,351) [51, 52]. However, most
parasite eggs/cysts share similar morphological charac-
teristics, and in most cases species cannot be identified
using light microscopy [53]. In addition, microscopy may
overestimate the prevalence due to the long publication

time of multiple studies, mostly concentrated in Africa,
in some countries with limited experimental conditions.
To address this problem, molecular techniques are a via-
ble alternative for identifying parasite species [54, 55].
Molecular identification is mainly based on conventional
PCR, which has the advantages of strong specificity, high
sensitivity, easy operation and low cost [56]. The identi-
fication of parasites using genetic characteristics is now
widely applied, and species identified in this way include
Cryptosporidium spp. and Giardia lamblia [35, 23, 46].
Cryptosporidium spp. can be accurately identified based
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%

Study ID Prevalence (95% CI)  Weight
Housefly (Musca domestica) 1
Roberts etal. [60] : —_— 0.64 (0.54, 0.73) 2.98
Peggetal. [61] » - 0.66 (0.62, 0.70) 3.04
Sulaiman et al. [39] - 0.44 (0.42, 0.47) 3.05
Monzon etal. [64] - ! 0.09 (0.07, 0.12) 3.05
Graczyk etal. [42] - : 0.10 (0.06, 0.14) 3.04
Clavel etal.  [40] L 1 0.18 (0.15, 0.21) 3.05
Oliveiraetal. [53] I 0.57 (0.55, 0.59) 3.05
Getachew et al. [25] : * 0.73 (0.71, 0.74) 3.05
Feteneetal. [49] 1 < 0.82(0.78, 0.86) 3.04
Forster etal. [26] - ! 0.30 (0.24, 0.36) 3.02
Feteneetal. [56] - : 0.26 (0.22, 0.30) 3.04
El-Sherbini et al.  [48] - 0.42 (0.37, 0.46) 3.04
Adenusi etal. [21] | 0.56 (0.47, 0.66) 297
Adenusi etal. [24] : -+ 0.75 (0.72, 0.78) 3.05
Zhao etal. [27] L J 1 0.20 (0.17, 0.23) 3.05
Doizetal. [57] - ! 0.22 (0.18, 0.25) 3.05
Limaetal. [63] -o-: 0.40 (0.37,0.43)  3.05
Oyeyemietal. [23] —— 0.45 (0.37, 0.53) 3.00
Ahmadu etal. [22] ! - 0.63 (0.59, 0.68) 3.04
Pornruseetriratn et al.  [50] : —4— 0.80 (0.70, 0.90) 2.96
Hemmati etal. [44] | - 0.60 (0.53, 0.67) 3.01
Yuetal. [52] * ! 0.12 (0.10, 0.14) 3.05
Paliy etal.  [54] i ! 0.03 (-0.00, 0.05)  3.05
Subtotal (I-squared =99.6%, p = 0.000) ¢ 0.43 (0.32, 0.54) 69.73

1
Other :
Monzon et al. [64] | 0.52 (0.48, 0.57) 3.04
Graczyk etal. [43] | —— 0.60 (0.49, 0.70) 2.95
Szostakowska et al.  [45] —— : 0.27 (0.18, 0.35) 2.99
Getachew et al. [25] | * 0.69 (0.68, 0.70) 3.06
Connetal. [41] 1 * 0.63 (0.62, 0.65) 3.05
Feteneetal. [49] : % 0.84(0.82,0.87) 3.05
Adenusi etal. [24] | —— 0.64 (0.57, 0.71) 3.01
Lalander etal. [62] L 1 0.06 (0.03, 0.09) 3.05
Paliy etal. [54] * : 0.01 (-0.00, 0.03)  3.05
Barnes etal. [65] —— | 0.15 (0.08, 0.21) 3.02
Subtotal (I-squared = 99.9%, p = 0.000) _ 0.44 (0.24, 0.64) 30.27

[
Overall (I-squared = 99.7%, p = 0.000) <> 0.44 (0.34, 0.53) 100.00
NOTE: Weights are from random effects analysis :

| | |
0 2 4 .6

Fig. 6 Forest plot of the prevalence estimates of parasites carried by different non-biting flies

on its small subunit ribosomal RNA (SSU rRNA) gene
[57]. The 60-kDa glycoprotein gene (gp60) is the most
commonly used gene locus in Cryptosporidium spp. gen-
otyping [58]. Commonly used gene loci for genotyping
G. lamblia are SSU rRNA [59], B-giardin (bg), glutamate
dehydrogenase (gdh) and triose-phosphate isomerase
(tpi) [60, 61, 44]. Immunofluorescence technology com-
bines a fluorescent-labeled antibody or antigen with the
corresponding antigen or antibody in the test sample and
detects fluorescence under a microscope. It is a reliable,
rapid, sensitive and widely applicable application and can
detect Cryptosporidium parvum oocysts [21].

Non-biting flies are mechanical carriers of many par-
asitic species, most of which are zoonotic parasites [40,
37, 62]. In addition to farms, the environments used for
sample collection included residential areas, restaurants
and fruit and vegetable stores [1]. The sequences of the
SSU rRNA gene and the gp60 locus of C. parvum in non-
biting flies were 100% homologous with the sequences of
C. parvum from humans, indicating that non-biting flies
were likely vectors of C. parvum [63]. The IIdA19G1 sub-
type identified in non-biting flies was the same as that
of found in cattle from the same dairy farm studied [43,
34]. Non-biting flies will therefore increase the risk of
Cryptosporidium infection in humans. The present study
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%

Study ID Prevalence (95% CI) Weight
Morphological :
Roberts et al.  [60] 1 —— 0.64 (0.54,0.73)  3.51
Peggetal. [61] ! - 0.66 (0.62,0.70)  3.58
Sulaiman et al. [39] -:0- 0.44(0.42,047) 359
Monzon et al. [64] * 0.31(0.28,0.34)  3.59
Oliveira et al.  [53] : * 0.57(0.55,0.59)  3.60
Getachew et al.  [25] I * 0.70 (0.69, 0.71) 3.60
Forster etal.  [26] - 0.30 (0.24, 0.36) 3.56
Fetene etal. [49] : ¢ 0.83(0.81,0.85  3.60
Fetene etal. [56] - 0.26 (0.22,0.30)  3.58
El-Sherbini et al. [48] - 0.42(0.37,0.46)  3.58
Adenusi etal. [21] : - 0.61 (0.56,0.67)  3.57
Lalander et al. [62] -+ \ 0.06 (0.03,0.09)  3.59
Adenusi etal. [24] 1 - 0.75(0.72, 0.78) 3.59
Limaetal. [63] -Oi 0.40 (0.37,0.43)  3.59
Ahmadu etal. [22] 1 - 0.63(0.59,0.68)  3.58
Oyeyemi etal. [23] —— 0.45(0.37, 0.53) 3.53
Paliy etal. [54] * : 0.02 (0.00,0.03)  3.60
Subtotal (I-squared =99.8%, p = 0.000) _ 0.47 (0.33,0.62)  60.85

I
Molecular :
Graczyk etal.  [43] | —— 0.60 (0.49,0.70)  3.48
Clavel et al. [40] L g : 0.18(0.15,0.21)  3.59
Zhaoetal. [27] - I 0.20(0.17,0.23)  3.59
Doizetal. [57] L I 0.22(0.18,0.25)  3.59
Pornruseetriratn et al.  [50] : —4— 0.80(0.70, 0.90) 3.49
Yuetal. [52] * | 0.12(0.10,0.14)  3.60
Hemmati et al. [44] [ 0.60 (0.53, 0.67) 3.55
Barnes etal.  [65] - : 0.15(0.08,021)  3.55
Subtotal (I-squared = 98.2%, p =0.000) <> 0.35 (0.25, 0.45) 28.45

1
Immunofluorescence :
Graczyk etal.  [42] - I 0.10(0.06, 0.14)  3.59
Szostakowska et al.  [45] - ! 0.27(0.18,0.35)  3.52
Connetal. [41] : . 0.63 (0.62,0.65)  3.60
Subtotal (I-squared = 99.7%, p = 0.000) ! — 0.34 (-0.07,0.74)  10.71

I
Overall (I-squared = 99.8%, p = 0.000) <> 0.43 (0.32,0.53)  100.00
NOTE: Weights are from random effects analysis :

| | |
0 2 4 6

Fig. 7 Forest plot of prevalence estimates for the different identification methods

provided evidence for assessing the role of non-biting
flies as transport hosts of parasites in the transmission of
parasitic diseases.

The species of parasites carried by non-biting flies
can differ seasonally. The seasonal growth and decline
of non-biting flies show a three-peak curve. The highest
peak, sub-peak and minimum peak appear in late May,
early March and early September, respectively [11].
Non-biting flies pass through egg, larva, pupa and adult
stages, and the developmental rates of these stages
depend on temperature [10, 36]. Under favorable con-
ditions in the summer and autumn, the development
from egg to adult fly can be completed in 7 days. This
rapid generation time explains why the fly populations

sometimes grow explosively under warm conditions
[31]. An increase in the number of flies can increase
parasite prevalence in humans and animals [32, 33].
Although the prevalence rate was found to be highest
in the spring, only one study reported this result, and
there is no reference value: despite a large sample size,
the detection method was by microscopic observa-
tion, and mistakes are likely when this method is used
to identify protozoal parasites [31]. The second-higest
prevalence was found in the autumn, as reported by
five studies; this conclusion was reliable according to
the seasonal fluctuation law [30, 28]. Finally, although
the infection rate was lowest in the summer, nine stud-
ies reported this result; however, this conclusion was
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%

Study ID Prevalence (95% CI)  Weight
Zoonotic :
Roberts etal.  [60] 1 —— 0.64 (0.54, 0.73) 2.49
Peggetal. [61] 1 - 0.66 (0.62, 0.70) 2.57
Sulaiman etal.  [39] *' 0.27 (0.24, 0.29) 2.58
Monzon etal. [64] * : 0.16 (0.13, 0.18) 2.59
Graczyk etal. [42] - | 0.10 (0.06, 0.14) 2.57
Graczyk etal.  [43) 1 —— 0.60 (0.49, 0.70) 2.46
Clavel etal. [40] * ! 0.18 (0.15, 0.21) 2.58
Oliveira etal. [53] : * 0.44 (0.42, 0.46) 2.59
Szostakowska et al.  [45] — 0.27 (0.18, 0.35) 2.50
Connetal. [41] 1 * 0.63 (0.62, 0.65) 2.59
Getachew etal.  [25] ! * 0.59 (0.58, 0.60) 2.59
Forster etal. [26] +: 0.25(0.19, 0.30) 2.55
Fetene etal. [49] | L d 0.69 (0.66, 0.71) 2.58
Fetene etal. |[56] - 0.26 (0.22, 0.30) 2.57
El-Sherbini etal. 48] . 0.42 (0.37, 0.46) 2.57
Adenusietal. [21] : - 0.47 (0.41,0.52) 2.55
Adenusietal. [24] | * 0.38 (0.34, 0.41) 2.58
Zhaoetal. [27] * 0.20(0.17, 0.23) 2.58
Doizetal. [57] - ! 0.22 (0.18, 0.25) 2.58
Limaetal. [63] : E 3 0.40 (0.37, 0.43) 2.58
Oyeyemietal. [23] — 0.27 (0.20, 0.34) 2.53
Ahmadu etal. [22] 1 - 0.56 (0.51, 0.60) 2.56
Pornruseetriratn etal.  [50] ! -—e— 0.80(0.70, 0.90) 2.46
Yuetal. [52] * : 0.12(0.10, 0.14) 2.59
Hemmatietal. [44] 1 - 0.60 (0.53, 0.67) 2.54
Paliy etal. [54] 4 1 0.01 (-0.00, 0.02) 2.59
Barnes etal. [65] - ! 0.15(0.08, 0.21) 2.54
Subtotal (I-squared = 99.7%, p = 0.000) b 0.38 (0.28, 0.48) 69.04

1
Non-zoonosis !
Sulaiman etal. [39] C 0.18 (0.16, 0.20) 2.59
Monzon etal.  [64] * : 0.15(0.13, 0.18) 2.59
Oliveiraetal. [53] * 1 0.13(0.11, 0.14) 2.59
Getachew et al. [25] * 1 0.11(0.10, 0.12) 2.59
Forster etal.  [26] L ! 0.06 (0.03, 0.09) 2.58
Fetene etal. [49] ¢ : 0.15(0.13, 0.17) 2.59
Adenusietal. [21] - | 0.14 (0.11, 0.18) 2.57
Adenusietal. [24] | & 0.37 (0.34, 0.41) 2.58
Lalander etal. [62] ! 0.06 (0.03, 0.09) 2.58
Oyeyemietal. [23] - : 0.17 (0.11, 0.23) 2.54
Ahmadu etal. [22] L 1 0.08 (0.05, 0.11) 2.58
Paliy etal. [54] £ 1 0.01 (-0.00, 0.02) 2.59
Subtotal (I-squared = 98.3%, p = 0.000) < : 0.13 (0.09, 0.17) 30.96
Overall (I-squared =99.8%, p = 0.000) é 0.30 (0.23, 0.38) 100.00
NOTE: Weights are from random effects analysis :

| I I
0 2 4 6

Fig. 8 Forest plot of prevalence estimates for risk assessment of parasite transmission by non-biting flies

not credible according to the law of seasonal waxing
and waning, and most of these nine studies focused
on European countries with better sanitary conditions
compared with the studies in the spring and autumn
studies which were carried out in African countries [30,
21, 11].

Several studies combined the prevalence of parasites
carried on the body surface and gut of non-biting flies
(51.1%; 95% CI 41.5-60.7%; n = 13,644/21,252), and
combined prevalence was selected for the statistical
analysis in the present meta-analysis because data could

not be subdivided [22, 64]. In addition, it has been shown
that the prevalence of parasites isolated from the gut of
non-biting flies alone is 37.1% (95% CI 22.7-51.5%; n =
1045/3817), which is significantly higher than the preva-
lence of parasites isolated from the body surface (35.1%;
95% CI 20.8-49.4%; n = 1199/3649). These results indi-
cate that parasites were more easily transmitted by intes-
tinal excretion. The results of this study are consistent
with previous findings in Nigeria on the potential risk of
transmission of human intestinal helminths eggs by non-
biting flies [30] and with previous studies in Ethiopia that
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Study ID

Spring
Getachew etal. [25]
Subtotal (I-squared =.%,p=.)

Summer
Sulaiman et al.
Clavel et al.
Connetal. [41]

Forsteretal.  [26]

El-Sherbini et al. [48]

Doizetal. [57]

Zhaoetal. [27]

Yuetal. [52]

Barnes etal.  [65]

Subtotal (I-squared =99.7%, p = 0.000)

139]
[40]

Autumn
Monzon et al.  [64]

Szostakowska et al.  [45]

Adenusi etal. [21]
Lima et al. [63]
Ahmadu etal. 122]

Subtotal (I-squared = 98.0%, p = 0.000)

Winter

Oyeyemi et al. 23]
Pornruseetriratn et al.
Paliy etal. [54]
Subtotal (I-squared =99.4%, p = 0.000)

[50]

Overall (I-squared =99.8%, p =0.000)

NOTE: Weights are from random effects analysis
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%
Prevalence (95% CI) Weight
:
| . 0.70 (0.69,0.71)  5.60
! [ 0.70 (0.69, 0.71)  5.60
1
1
P 0.44 (0.42,047)  5.59
> | 0.18(0.15,021) 5.8
! . 0.63 (0.62,0.65)  5.59
- 0.30(0.24,0.36)  5.54
Lo 0.42(0.37,0.46)  5.57
P 0.22(0.18,0.25)  5.58
s 0.20(0.17,023)  5.58
. ! 0.12(0.10,0.14)  5.59
—— i 0.15(0.08,021)  5.53
>~ 0.30 (0.14, 0.46)  50.14
:
1
- 0.31(0.28,0.34)  5.58
— 0.27(0.18,0.35)  5.47
! —— 0.61 (0.56,0.67)  5.55
- 0.40(0.37,0.43)  5.58
| - 0.63(0.59,0.68)  5.56
<= 0.45(0.32,0.57)  27.75
:
—— 0.45(0.37,0.53)  5.49
: —&— 080(0.70,0.90)  5.43
. ! 0.02 (0.00,0.03)  5.59
<>— 0.42 (-0.05,0.89)  16.51
1
1
<> 0.38 (0.25,0.51)  100.00

0

2 4 6

Fig. 9 Forest plot of seasonal prevalence estimates of non-biting flies found to transmit parasites

investigated the transmission of intestinal helminths eggs
by non-biting flies in residential areas [31].

The most common methods used to identify helminths
eggs are mostly morphological ones, and egg morphol-
ogy is observed using a microscope. Identification can be
directly made because some eggs have specific character-
istics, with a prevalence of 42.6% (95% CI 33.5-51.8%).
However, for the detection of protozoa, morphological
identification alone cannot be used to make an accu-
rate judgment, and even fungal spores can be mistaken
for protozoa, with a prevalence of 32.1% (95% CI 22.9—
41.3%). In some publications, only Cryptosporidium
spp. and Giardia spp. were observed by microscopy,
and no specific species could be identified; therefore, the
best way to distinguish parasite species is by molecular
tools [31, 29]. Most studies identified Entamoeba histol-
ytica and Escherichia coli by morphological observation
and did not apply molecular tools to distinguish them;

consequently, the prevalence of E. histolytica has likely
been overestimated [30, 28].

Although this systematic review covers studies report-
ing on non-biting flies that transmit parasites in mul-
tiple countries, there are a number of limitations. First,
some of the studies/publications identified during the
search could not be downloaded and were therefore not
included in the analysis [65]. Second, the publication of
relevant articles spans many years, there are only a few
such published studies and there is a lack of understand-
ing of the prevalence of parasites carried by non-biting
flies. Third, the identification methods for detecting para-
sites are limited, and published studies mostly use con-
ventional microscopic identification, with the likelihood
that some prevalence rates may be overestimated. How-
ever, even with these limitations, the purpose of using
meta-analysis in this study was to increase the sample
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%

Study ID Prevalence (95% CI) Weight
External surfaces !
Monzon et al.  [64] *> : 0.31(0.28,0.34)  3.59
Graczyk etal. [43] | —— 0.60 (0.49,0.70)  3.48
El-Sherbini et al. 48] - 0.42 (0.37,0.46)  3.58
Lalander et al.  [62] - : 0.06 (0.03,0.09)  3.59
Limaetal. [63] -+ 0.40 (0.37,0.43)  3.59
Oyeyemi etal. [23] —IO— 0.45(0.37,0.53) 3.53
Pornruseetriratn et al.  [50] | —4— 0.80(0.70,0.90) 3.49
Paliy etal. [54] * | 0.02 (0.00,0.03)  3.60
Barnes etal.  [65] - : 0.15(0.08,021) 3.55
Subtotal (I-squared =99.3%, p = 0.000) > 0.35(0.21,0.49)  32.01

1
External surfaces/Internal organs :
Sulaiman et al.  [39] - 0.44(0.42,0.47)  3.59
Graczyk etal. [42] - ! 0.10 (0.06, 0.14)  3.59
Oliveiraetal. [53) : *> 0.57(0.55,0.59)  3.60
Szostakowska et al.  [45] - 0.27 (0.18,0.35)  3.52
Connetal. [41] : * 0.63 (0.62,0.65)  3.60
Getachew etal. [25] | * 0.70 (0.69, 0.71)  3.60
Fetene etal.  [49] I ¢ 083(0.81,0.85) 3.60
Forsteretal.  [26] —— : 0.30(0.24,0.36)  3.56
Fetene etal. [56] - | 0.26 (0.22,0.30)  3.58
Adenusi etal. [21] 1 - 0.61 (0.56,0.67)  3.57
Adenusietal.  [24] : - 0.75(0.72,0.78)  3.59
Ahmaduetal. [22] | - 0.63(0.59,0.68)  3.58
Subtotal (I-squared = 99.5%, p =0.000) 'Io 0.51 (0.42,0.61) 42.97

1
Internal organs 1
Roberts et al.  [60] : — 0.64 (0.54,0.73)  3.51
Peggetal. [61] | - 0.66 (0.62,0.70)  3.58
Clavel etal.  [40] <> I 0.18(0.15,0.21)  3.59
Doizetal. [57] L : 0.22(0.18,0.25)  3.59
Zhaoetal. [27] L d I 0.20(0.17,0.23)  3.59
Yuetal. [52] * ! 0.12(0.10,0.14)  3.60
Hemmati et al. [44] : —— 0.60 (0.53,0.67)  3.55
Subtotal (I-squared =99.2%, p = 0.000) = 0.37 (0.23,0.52)  25.01

I
Overall (I-squared = 99.8%, p = 0.000) <> 0.43 (0.32,0.53)  100.00
NOTE: Weights are from random effects analysis :

o2 4

Fig.10 Forest plot for estimation of prevalence of parasites carried on the body surface and gut of non-biting flies

size and power of the meta-analysis, so that the study
results were close to the true prevalence.

Conclusion

Available studies have shown that the prevalence of
parasites transmitted by non-biting flies worldwide is
relatively high at 42.5%, and associated risk factors, such
as zoonotic risk, should be considered so that people
can implement effective management plans according
to local conditions that may differ between geographi-
cal regions and environments, and prevent zoonotic

transmission. Non-biting flies are mechanical vectors of
a variety of parasites, most of which are zoonotic para-
sites, which can circulate between humans and humans,
and between humans and animals as vectors. Thus, fly
vectors should be controlled, especially in human resi-
dential areas and farms. This study provides a theoreti-
cal basis for the public health and ecological significance
of parasites transmitted by non-biting flies. Future stud-
ies should mostly use molecular diagnostic tools because
it not only improves detection rates, but also accurately
distinguishes parasite species and reduces errors.
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Y%

Study ID Prevalence (95% CI) Weight
Helminth :
Peggetal. [61] 1 - 0.66 (0.62,0.70)  3.05
Sulaiman et al. [39] : - 0.44(0.42,047) 3.08
Monzon et al. [64] * 0.31(0.28, 0.34) 3.07
Oliveira etal. [53] 1 * 0.57 (0.55,0.59)  3.08
Getachew et al. [25] OI 0.37(0.36,0.38)  3.09
Forster et al.  [26] - 0.30(0.24,0.36)  3.00
Fetene et al. [49] 1+ 0.46 (0.43, 0.49) 3.07
El-Sherbini et al. [48] :4- 0.42(0.37,0.46)  3.05
Lalander et al. [62] | - 0.58 (0.52,0.64)  2.99
Adenusi etal. [21] 1 - 0.61 (0.56,0.67)  3.02
Adenusi et al. [24] -> : 0.20(0.17,0.23)  3.07
Limaetal. [63] . 0.22(0.20,0.25)  3.08
Ahmadu etal. [22] - 0.26 (0.22,0.30)  3.05
Oyeyemi etal. [23] :—0— 0.45(0.37,0.53) 2.94
Pornruseetriratn et al.  [50] | —&— 0.80(0.70,0.90) 2.85
Hemmati etal. [44] 1 - 0.60 (0.53,0.67) 2.98
Paliy etal. [54] ! 0.02 (0.00,0.03)  3.09
Subtotal (I-squared =99.5%, p =0.000) b 0.43 (0.33,0.52) 51.55

1
Protozoa :
Roberts et al.  [60] h —— 0.64 (0.54,0.73)  2.89
Graczyk etal.  [42] - 1 0.10 (0.06,0.14)  3.06
Graczyk etal.  [43] : — 0.60 (0.49,0.70)  2.83
Clavel etal. [40] -> . 0.18 (0.15,0.21)  3.07
Szostakowska et al.  [45] —_ 0.27(0.18,0.35)  2.92
Connetal. [41] : . 0.63 (0.62,0.65)  3.09
Getachew et al. [25] ., 0.33(0.32,0.34)  3.09
Fetene etal. [49] - 0.37(0.34,0.40)  3.07
Fetene etal.  [56] - : 0.26 (0.22,0.30)  3.05
Adenusi etal. [21] 1 - 0.55(0.51,0.59)  3.06
Zhao etal. [27] <> 1 0.20 (0.17,0.23) 3.07
Doizetal. [57] - : 0.22 (0.18,0.25)  3.06
Limaetal. [63] * . 0.18(0.16,0.20)  3.08
Ahmadu etal. [22] - 0.38(0.33,042)  3.04
Yuetal. [52] * : 0.12(0.10,0.14)  3.08
Barnes etal.  [65] - | 0.15(0.08,0.21)  2.99
Subtotal (I-squared = 99.5%, p = 0.000) > 0.32 (0.23,0.41) 48.45

1
Overall (I-squared = 99.5%, p = 0.000) <> 0.38(0.31,0.44)  100.00
NOTE: Weights are from random effects analysis :

I I
0 2 !1 .6

Fig. 11 Forest plot of global estimated prevalence of protozoa and helminths carried by non-biting flies
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