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Abstract 

Background Aedes albopictus is an increasingly serious threat in public health due to it is vector of multiple arbovi-
ruses that cause devastating human diseases, as well as its widening distribution in recent years. Insecticide resistance 
is a serious problem worldwide that limits the efficacy of chemical control strategies against Ae. albopictus. Chitinase 
genes have been widely recognized as attractive targets for the development of effective and environmentally safe 
insect management measures.

Methods Chitinase genes of Ae. albopictus were identified and characterized on the basis of bioinformatics search of 
the referenced genome. Gene characterizations and phylogenetic relationships of chitinase genes were investigated, 
and spatio-temporal expression pattern of each chitinase gene was evaluated using qRT-PCR. RNA interference (RNAi) 
was used to suppress the expression of AaCht10, and the roles of AaCht10 were verified based on phynotype observa-
tions, chitin content analysis and hematoxylin and eosin (H&E) stain of epidermis and midgut.

Results Altogether, 14 chitinase-related genes (12 chitinase genes and 2 IDGFs) encoding 17 proteins were identi-
fied. Phylogenetic analysis showed that all these AaChts were classified into seven groups, and most of them were 
gathered into group IX. Only AaCht5-1, AaCht10 and AaCht18 contained both catalytic and chitin-binding domains. 
Different AaChts displayed development- and tissue-specific expression profiling. Suppression of the expression of 
AaCht10 resulted in abnormal molting, increased mortality, decreased chitin content and thinning epicuticle, procuti-
cle and midgut wall of pupa.

Conclusions Findings of the present study will aid in determining the biological functions of AaChts and also con-
tribute to using AaChts as potential target for mosquito management.
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Background
Arthropod-borne viruses transmitted by Aedes mosqui-
toes, such as dengue, yellow fever, Zika and chikungunya 
viruses, have been expanding their global distribution in 
recent years, causing significant human morbidity and 
mortality in affected regions [1–4]. No specific thera-
peutic treatment or effective vaccine is available for these 
arboviruses, and vector control remains the primary 
public health intervention to prevent and respond to 
epidemics [5]. As one of the major vectors of these arbo-
viruses, Aedes albopictus, originating in Southeast Asia, 
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has invaded more than 70 countries and regions world-
wide [1]. Further global expansion is expected concern-
ing the increases in global temperature, urbanization 
and travels [6, 7]. Chemical insecticide is widely used in 
mosquito-borne disease control and prevention [8, 9]. 
Besides environmental pollution and non-specific toxic-
ity, frequent and unprecedented quantity of insecticide 
use exerts an exceptionally strong selective pressure for 
resistance. Insecticide resistance of mosquitoes to most 
of the WHO-approved public health insecticides has 
been reported worldwide [10–12].

Chitin is a polymer of β (1,4)-linked N-acetylglucosa-
mine, which is the critical constituent of arthropod exo-
skeletons (cuticle) and the peritrophic membrane (PM) in 
midgut [13, 14]. The tough and durable exoskeleton pro-
vides physical support and protects insects from exter-
nal damage, which also restricts the growth of insects 
[15]. Therefore, the old chitin degraded and new chitin is 
synthesized periodically to allow for molting and meta-
morphosis of insects [16]. As chitin is an indispensable 
structure for survival of insects, the balance of chitin con-
tent is crucial for individual development. Meanwhile, 
chitin is absent in animals and plants [17]. Hence, chitin 
could be used as target for mosquito control; altering the 
metabolism pathways to intervene formation or degrada-
tion of chitin would be helpful for exploiting novel and 
environmentally friendly biological control strategies.

Chitinases (Chts) are one of the largest groups of 
hydrolases that break down glycosidic bonds in chitin 
and decompose chitin into N-acetylglucosamines [18]. 
Several studies have been explored utilizing chitinase 
genes as biocontrol molecule agent to interrupt the molt-
ing process of insects, such as Ostrinia nubilalis (Lepi-
dopteran) [19], Tribolium castaneum (Coleopteran) 
[20], Anopheles gambiae (Dipteran) [21] and Locusta 
migratoria (Neopteran) [22], resulting in abnormal molt-
ing and increased mortality. Based on conserved amino 
acids, protein folding and conserved motifs, chitinases 
are classified into glycosyl hydrolase family 18 (GH18) 
and family 19 (GH19) [23]. These two chitinase families 
possess distinct sequence features and three dimensional 
(3D) structures; all insect chitinases belong to the GH18 
[24]. Besides chitinases, some Cht-like proteins that lack 
chitinase activity, such as imaginal disc growth factors 
(IDGFs), are also included in GH18 [24]. Previous stud-
iees have demonstrated that the number of chitinase 
genes varies in different species; chitinases and Cht-like 
proteins can be classified into different groups according 
to amino acid similarities and phylogenetic relationships, 
and functions of chitinases differ greatly among groups 
[15, 25]. Several chitinases were found to be essential 
for insect survival, molting and development [26–28]. 
Downregulating the expression level of insect chitinase 

genes results in severe phenotypes, including ecdysis dis-
turbance, growth inhibition, pupation failure and death 
[29].

To explore members of chitinase in Ae. albopictus and 
the potential to use chitinases as promising targets for 
mosquito control, a systematic genome-wide investiga-
tion of Ae. albopictus chitinase genes was performed. The 
developmental- and tissue-specific expression patterns 
of all chitinases in Ae. albopictus (AaCht) were profiled 
to identify optimal candidate genes that can be used as 
a target to disrupt the chitin metabolism pathway. Pre-
vious work has demonstrated that Group II chitinase 
(ChtII, also known as chitinase 10) has multiple catalytic 
and chitin-binding domains, which are indispensable 
for insect ecdysis at all developmental stages [30]. The 
functions of chitinase 10 (Cht10) have been assessed by 
RNA interference (RNAi), and molting defects have been 
detected in many insect species [25, 31–33]. Consider-
ing the importance of Cht10 in insects, the function of 
AaCht10 was explored using RNAi to provide insights to 
design mosquito control strategy utilizing chitinase.

Materials and methods
Mosquito maintenance
Aedes albopictus samples used in this study were from 
a colony collected in Shandong Province (China) main-
tained in a laboratory and reared at 27 ± 1 °C and 65% rel-
ative humidity (RH) with a daily photoperiod of 14:10 h 
(L:D). Adults were maintained in a 10% sucrose solution, 
and the females were fed mouse blood for egg-laying. The 
larvae were reared on slurry that was a mixture of pork 
liver powder (homemade), yeast and distilled water.

Chitinase gene identification and phylogenetic analysis
Chitinase genes of Aedes aegypti (annotated based 
on Genome version: GCA_000004015.3) and Culex 
quinquefasciatus (annotated based on Genome version: 
GCA_015732765.1) downloaded from VectorBase database 
(https:// www. vecto rbase. org) were used as query to screen 
for putative chitinases and IDGFs genes in the reference 
genome of Ae. albopictus (Genome version: AalbF2, assem-
bly: GCA_006496715.1, NCBI) [34]. Default parameters 
were used for the analyses (E-value cutoff = 1.0e− 5). Iden-
tified candidate chitinase and IDGF genes were compared 
with the protein database of Ae. albopictus in VectorBase 
using the BLASTp program [35] with the default settings.

Molecular weight, amino acid numbers and theoretical 
isoelectric points (pIs) of the chitinase sequences were calcu-
lated using ExPASy Proteomics Server (http:// cn. expasy. org/ 
tools/ pitool. html) [36]. SMART (http:// smart. emblh eidel 
berg. de/) was used to confirm the chitin binding, catalytic 
and transmembrane domains. Multiple sequence alignment 
and identification of conserved domains were performed 

https://www.vectorbase.org
http://cn.expasy.org/tools/pitool.html
http://cn.expasy.org/tools/pitool.html
http://smart.emblheidelberg.de/
http://smart.emblheidelberg.de/
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using MAFFT (http:// mafft. cbrc. jp/ align ment/ server/). 
Then, the graphical displays of chitinase gene sequences 
were created using the online Gene Structure Display Server 
(2.071) (http:// gsds. cbi. pku. edu. cn/).

Altogether, 123 sequences from nine species (Ae. 
albopictus, Aedes aegypti, An. gambiae, Bactrocera dor-
salis, Cx. quinquefasciatus, Drosophila melanogaster, 
Nilaparvata lugens, T. castaneum and Plutella xylostella) 
(Additional file  1: Table  S1) were used to explore the 
evolutionary relationships of chitinases. The ClustalW 
alignment function in MEGA 7.0 [37] was used to align 
all chitinase sequences. An unrooted neighbor-joining 
(NJ) phylogenetic tree was constructed using MEGA 
7.0 with 1000 bootstrap replicates. Chitinase and IDGF 
genes in this study were named as AaCht and AaIDGF; 
a homology sequence of each gene was represented with 
numbers.

Total RNA extraction and cDNA synthesis
To evaluate the expression pattern of chitinase genes, 
samples of different developmental stages and various 
tissues of pupa were prepared, respectively. Two hun-
dred eggs were collected within 24 h after deposition by 
blood-fed females, and they were pooled to represent the 
embryonic stage. Larvae samples were divided into early 
(I–II instars) and late (III–IV instars) larval stage; 100 
early larval and 50 late larval were collected, respectively. 
Fifty pupae at 12–24  h after pupate were mixed. Fifty 
male and fifty female adults were collected separately 
within 12 h after eclosion.

Pupae were first immobilized on an ice box for 6 min 
and then transferred to precooled PBS solution for dis-
section, which was performed with forceps while using 
a dissecting microscope. Four different tissues (cephalo-
thorax, integument, midgut and malpighian tube) from 
100 pupae were collected, respectively. All samples were 
flash frozen in liquid nitrogen immediately following col-
lection and then stored at − 80 °C until RNA isolation.

Total RNA was extracted using RNA isolater total 
RNA extraction reagent (Vazyme, China) and treated 
with DNase I (Vazyme, China) to remove genomic DNA. 
cDNA was synthesized from 1  μl total RNA using HiS-
cript 3 RT SuperMix for qPCR (Vazyme, China) accord-
ing to the manufacturer’s instructions. The quality and 
quantity were detected by 2% agarose gels and ScanDrop 
spectrophotometer (Jena, Germany).

Real-time quantitative PCR (qRT‒PCR) was carried 
out using ChamQ Universal SYBR qPCR Master Mix 
(Vazyme, China) on an ABI7500 qRT-PCR platform 
(Thermo Fisher Scientific, USA). Primers used for qRT-
PCR were listed in Additional file  1: Table  S2. All qRT-
PCRs were carried out with 20  μl reaction mixture 

consisting of 10  μl qPCR Master Mix, 2  μl cDNA tem-
plates and 0.4  μl each of forward and reverse primers. 
The processes were 95 °C for 30 s, 40 cycles of 95 °C for 
10 s and 60 °C for 30 s. Melting curve analysis from 65 °C 
to 95  °C was conducted to verify a single PCR product. 
The expression levels of chitinase genes were normalized 
against β-actin. All experiments were performed in trip-
licate and repeated three times. The  2−ΔΔCT method was 
used to estimate the relative expression of chitinase gene 
[38]. P value < 0.05 was considered statistically significant.

Molecular cloning of AaCht10 and double‑stranded RNA 
synthesis
The open reading frame (ORF) of AaCht10 was predicted 
using the ORF Finder (http:// www. ncbi. nlm. nih. gov/ gorf/ 
gorf. html), and E-RNAi (http:// www. dkfz. de/ signa ling/e- 
rnai3/ idseq. php) was used to confirm target sequence 
of AaCht10 and enhanced green fluorescent protein 
(eGFP, used as control) (GenBank accession number: 
CAA58789). Then, the forward and reverse primers har-
boring T7 RNA polymerase promoter were designed 
according to the target sequence of AaCht10 and eGFP. 
Polymerase chain reaction (PCR) was used to amplify the 
target sequence of AaCht10 using 2 × Phanta Max Mas-
ter Mix Kit (Vazyme, China) with specific primers (Addi-
tional file 1: Table S3). PCR reactions were set up in total 
volume of 50 μl, consisting of 25 μl Phanta Max Master 
Mix, 5 μl template DNA and 2  μl each of forward and 
reverse primers. PCR was performed by initially dena-
turing the cDNA template for 3 min at 95 °C followed by 
35 cycles consisting of 15 s at 95  °C, 15 s at 60  °C, 60 s 
at 72 and a final extension step for 5 min at 72 °C. Fast-
Pure Gel DNA Extractin Mini Kit (Vazyme, China) was 
used to purify the PCR product, which was then cloned 
into a 5  min TM TA/Blunt-Zero Cloning Kit (Vazyme, 
China) for sequencing from both directions. The posi-
tive recombinant plasmid was purified using FastPure 
Plasmid Mini Kit (Vazyme, China). Afterwards, using the 
same PCR conditions as mentioned above, the plasmid 
DNA was amplified and used as template for synthesis of 
dsAaCht10 and dseGFP using T7 RNAi Transcription Kit 
(Vazyme, China).

Verification of RNAi‑mediated AaCht10 silencing
The concentration of purified dsRNA was measured using 
ScanDrop spectrophotometer (Jena, Germany). The pupae 
at 12 h after pupate were selected for injection. Microinjec-
tor was carried out using Nanoject III (Drummond, USA); 
750 ng (0.025 μl of 0.3 μg/μl) dsAaCht10 was injected into 
pupa from the dorsal cuticle between the thorax and abdo-
men under the dissecting microscope [39]. Two control 
groups, i.e. dseGFP group (pupae injected with dseGFP) 

http://mafft.cbrc.jp/alignment/server/
http://gsds.cbi.pku.edu.cn/
http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://www.ncbi.nlm.nih.gov/gorf/gorf.html
http://www.dkfz.de/signaling/e-rnai3/idseq.php
http://www.dkfz.de/signaling/e-rnai3/idseq.php
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and control (non-injected pupae, Non-inj) were used in 
this study. All experiments were repeated three times.

Living pupae were collected at 12 h, 24 h and 36 h after 
dsRNA treatment, respectively. qRT-PCR was performed 
to evaluate the effects of dsAaCht10 on gene expression. 
The survival, malformation and eclosion rates were ana-
lyzed at 12 h, 24 h, 36 h, 48 h and 72 h after dsAaCht10 
injection had been performed. Malformation phenotypes 
were observed under optical  microscope, and the Leica 
Application Suite V4 program was used to take photos 
(Leica Microsystems, Switzerland).

Analysis of chitin content after RNAi
The method used to estimate chitin content referred to 
Arakane et al. (2005) [40] with some modifications. To be 
specific, samples at 12  h, 24  h and 36  h after treatment 
were collected and put into an oven (65 °C for 1 h). Then, 
dried samples were weighed and added to a glass grind-
ing tube containing 1 ml sterilized  ddH2O. Homogenates 
were transferred to new microfuge tubes (1.5  ml) and 
centrifuged at 5000 r/min for 15 min at room tempera-
ture, and the supernatant was discarded. The pellet was 
suspended in 400  μl 3% sodium dodecyl sulfate (SDS) 
and then heated at 100 °C for 15 min. After cooling, sam-
ples were centrifuged at 5000 r/min for 10 min, and the 
supernatant was discarded. The pellet was suspended 
in 500 μl sterilized  ddH2O and then centrifuged at 5000 
r/min for 10  min, and the supernatant was discarded. 
We added 300  μl 120% KOH to suspend the pellet and 
heated the samples at 130  °C for 60  min. Samples were 
mixed with 800 μl precooled 75% ethanol and put on ice 
for 15 min. After adding 30 μl 5% diatomite suspension, 
the samples were stirred and then centrifuged at 5000 r/
min for 5 min at 4 °C, and the supernatant was discarded. 
The pellet was washed once using precooled 40% ethanol 
and then washed twice using sterilized  ddH2O. Precooled 
sterilized  ddH2O (500  μl) was used to suspend the pel-
let and then transfer 100 μl suspension to new microfuge 
tubes (1.5 ml). After mixing with 50 μl 10%  NaNO2 and 
50  μl 10%  KHSO4, the sample was centrifuged at 5000 
r/min for 15  min at 4  °C. Then, the supernatant (60  μl) 
was transferred to new microfuge tubes and mixed with 
20 μl  NH4SO3NH2. We added 20 µl freshly prepared 0.5% 
3-methyl-2-benzothiazolinone hydrazine (MBTH) to the 
samples, heated them at 99 °C for 3 min and added 20 μl 
 FeCl3 after the samples had cooled down. We transferred 
100 μl of each sample to an ELISA plate, and the absorb-
ance at 630  nm was recorded. Using acetylglucosamine 
(GlcNAc) as template, a standard curve was drawn based 
on the absorbance of different concentrations (500, 400, 
300, 200, 100, 80, 60, 40, 20 and 0 μg/ml).

Hematoxylin and eosin stain
To explore the effect of AaCht10 on chitin metabolism, 
tissue sections and hematoxylin and eosin (HE) stain 
were performed for microscopic examination. Pupae 
at 36 h after injection of dsAaCht10 were chosen. Epi-
dermis and midgut sections were obtained by tran-
secting the middle of the third abdomen of the pupae. 
The dissected samples were fixed using 4% paraform-
aldehyde and then rinsed with running  ddH2O for 
20  min to remove residual paraformaldehyde. Differ-
ent concentrations of ethanol were used for dehydra-
tion (75% for 3 h, 85% for 1 h, 95% for 1 h and 20 min, 
100% for 20 min). Transparency was achieved by soak-
ing samples into ethanol/xylene (1:1) mixture solution 
for 20  min, 100% xylene for 15  min and 100% xylene 
for 15  min successively. Embedding in paraffin was 
performed by soaking samples in melted 100% paraf-
fin for 1 h, newly melting 100% paraffin for 2 h, newly 
melting 100% paraffin for 3  h and then putting sam-
ples into an embedded frame for cooling and solidifi-
cation. Next, 4-μm paraffin sections were made with 
a RM2125 RST rotary microtome (Leica, Germany). 
The sections were adhered to slides, dried for 20 min 
and then deparaffinized using 100% xylene twice, 
10  min each time. After washing using different con-
centrations of ethanol (100%, 95%, 85% and 75%) and 
 ddH2O, the cleaned slide were dyed with hematine for 
10  min and then washed use rinsing water for 2  min. 
Slides were placed in 1% hydrochloric acid (dissolved 
in ethanol and  ddH2O) for 10 s and washed with rins-
ing water for 2  min. Slides were transferred to 50  °C 
water for 30 s and washed with rinsing water for 2 min. 
Counterstaining of slides was carried out with eosin 
for 5 min, and they were washed with rinsing water for 
5  s. Finally, slides were covered and images collected 
using Pannoramic 250 (3DHISTECH, Hungary).

Statistical analysis
Differences in gene expression levels were assessed using 
one-way analysis of variance; multiple comparisons were 
performed post hoc using the Tukey-Kramer honestly 
significant difference test with Prism 8.0 (GraphPad Soft-
ware). P-value < 0.05 denoted statistical significance. The 
survival rate was evaluated using the log-rank test and 
Mantel-Cox test in Kaplan-Meier method.

Results
Identification and phylogenetic analysis of chitinase genes 
in Ae. albopictus
Altogether, 14 chitinase-related genes (12 chitinase genes 
and 2 IDGFs) encoding 17 proteins were identified from 
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the genome sequence of Ae. albopictus (Table  1). These 
identified putative chitinase-like genes were assigned 
gene numbers according to the previously identified 
members of the other insect chitinase-like gene family to 
which they are most closely related, while genes lacking 
homogeny were represented by Cht-New (Table  1). The 
length of predicted chitinase proteins ranged from 306 
amino acids (aa) (AaCht-New 2) to 2366 aa (AaCht10). 
The relative molecular mass ranged from 34.10 kD 
(AaCht-New 2) to 267.77 kD (AaCht10), and the pIs 
ranged from 4.18 (AaCht-New 2) to 8.28 (AaIDGF2) 
(Table 1).

All chitinase genes contained at least one exon, and 
AaCht5-1 contained 11 exons, the most of all the chi-
tinase genes (Fig. 1A). Domain architecture analysis dem-
onstrated that a signal peptide was found in 11 chitinase 
proteins. Except for AaCht-New 1 and AaCht-New 2, all 
other chitinase proteins contained the GH18 catalytic 
domain; four catalytic domains were found in AaCht5-1 
and AaCht10, and two catalytic domains were found in 
AaCht7 and AaCht20, respectively. In addition, among all 
these 17 chitinase proteins, chitin binding domains were 
only detected in five AaChts; there were 1, 4, 1, 3 and 4 
chitin binding domains in AaCht5-1, AaCht10, AaCht18, 
AaCht-New 1 and AaCht-New 2, respectively (Fig. 1B).

The results of multiple sequence alignments suggested 
that 16 AaChts have four conserved motifs, KxxxxxGGW 
(motif I), FDGxDLDWEYP (motif II), MxYDxxG (motif 
III) and GxxxWxxDxDD (motif IV), whereas AaCht11 
lacks motif IV (Fig.  2). The constitution of amino acid 
residue analysis showed that residue E in motif II was 

retained in AaCht2-1, AaCht2-2, AaCht5-1a, AaCht7 (a, 
b), AaCht10 (b, c, d) and AaCht11 (Fig. 2). Phylogenetic 
analysis using 123 amino acid sequences from nine insect 
species (Additional file 1: Table S1) demonstrated that all 
these chitinase proteins were clustered into nine distinct 
groups (I–IX). The 17 chitinase proteins of Ae. albopic-
tus were divided into seven groups, and most of them 
were gathered in group IX. Both AaIDGF2 and AaIDGF4 
were clustered into group V with IDGF sequences from 
other species, and only one AaCht was included in group 
II (AaCht10), III (AaCht7) and VIII (AaCht11). Fur-
thermore, there were two AaChts in group I (AaCht5-1, 
AaCht5-2) and group VII (AaCht2-1, AaCht2-2), respec-
tively (Fig. 3).

Temporal‑spatio expression patterns of AaChts
The expression level of all AaChts in different develop-
mental stages were evaluated. According to the results of 
qRT-PCR, AaCht17 and AaIDGF2 showed high expres-
sion merely in eggs; eight AaChts (AaCht1-2, AaCht2-1, 
AaCht2-2, AaCht5-1, AaCht5-2, AaCht11, AaCht20 and 
AaCht-New 3) were highly expressed in egg, followed 
by pupa; AaCht10, AaCht18, AaCht-New 2, AaCht7 and 
AaIDGF4 had peak expression in pupa; AaCht-New 1 
was expressed at a high level in late larval stages (Fig. 4).

Among four tissues of pupae, relatively high expres-
sion of AaCht2-1, AaCht2-2 and AaCht10 was found in 
both cephalothorax and integument; AaCht7, AaCht11, 
AaCht17, AaCht18 and AaCht20 were expressed at 
high levels in cephalothorax; the highest expression lev-
els of AaCht5-1, AaCht5-2, AaIDGF2 and AaIDGF4 

Table 1 Information on chitinase genes in Aedes albopictus 

Gene symbol Transcript ID in Vectorbase Length of amino acid (aa) Molecular weight (kD) Isoelectric point

AaCht1-1 AALF024608-RA 396 44.61 7.27

AaCht1-2 AALF004020-RA 396 44.65 7.52

AaCht2-1 AALF021117-RA 482 54.18 5.37

AaCht2-2 AALF015610-RA 415 46.48 5.22

AaCht5-1 AALF023420-RA 1740 195.65 5.39

AaCht5-2 AALF008220-RA 411 15.68 5.60

AaCht7 AALF024829-RA 954 107.44 7.55

AaCht10 AALF010019-RA 2366 267.77 6.98

AaCht11 AALF015878-RA 331 37.90 6.90

AaCht17 AALF011996-RA 355 38.77 6.34

AaCht18 AALF023915-RA 724 79.56 6.42

AaCht20 AALF002858-RA 900 99.52 5.20

AaCht-New 1 AALF019402-RA 316 34.57 5.32

AaCht-New 2 AALF006375-RA 306 34.10 4.18

AaCht-New 3 AALF014503-RA 547 61.65 4.78

AaIDGF2 AALF002418-RA 442 48.19 8.28

AaIDGF4 AALF002417-RA 441 48.71 6.65
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Fig. 1 Structural features of Aedes albopictus chitinases genes. A Intron and exon structure. Yellow, coding sequence; blue, untranslated regions; 
black lines, intron. B Domain architectures. Green rectangle, catalytic domain; blue hexagon, chitin-binding domain; red triangle, transmembrane 
region; horizontal line, linker regions
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were detected in integuments; AaCht1-2, AaCht-New 1, 
AaCht-New 2 and AaCht-New 3 were highly expressed 
in the midgut, whereas all genes showed relatively low 
expression in malpighian tubes (Fig. 5).

Verification of effective of RNAi
After injection of dsRNA, qRT-PCR was performed to 
evaluate gene expression levels at 12  h, 24  h and 36  h, 
respectively. Results showed that the expression levels 
of AaCht10 were significantly downregulated by 84.9% 
(P < 0.0001), 93.8% (P < 0.0001) and 74.7% (P < 0.0001) com-
pared with the Non-inj group and suppressed by 82.1% 
(P < 0.0001), 92.0% (P < 0.0001) and 69.0% (P = 0.0003) 
compared with the dseGFP group (Fig. 6A).

Effects of deficiency of AaCht10 on pupae
One hundred sixty pupae in each group were used to 
evaluate the survival rate, and results suggested that, 
compared with the Non-inj group, the mortality of pupae 
was significantly increased at 48  h, 60  h and 72  h after 
injection of dsAaCht10. At 72 h, the survival rate of the 
treated group was reduced to 34.4%, which was signifi-
cantly decreased by 61.3% (P < 0.05) and 43.9% (P < 0.05) 
compared to the Non-inj group and dseGFP group, 
respectively (Fig.  6B; Table  2). Correspondingly, a sig-
nificant difference in eclosion rate was detected at 60  h 
and 72 h. Only 55 pupae in the dsAaCht10-treated group 
were in eclosion, while 98 and 142 pupae were success-
fully in eclosion in the dseGFP group and Non-inj group 
(Fig.  6C; Table  3). Two kinds of malformations were 
detected in adult mosquitoes in the dsAaCht10-treated 

group. The first was splitting of the pupal cuticle, where 
adult mosquitoes failed to detach from the pupal shell 
completely; in the second, newly emerged adult mosqui-
toes could not fly because of deformed  wings (Fig.  6D). 
The malformation rate in the dsAaCht10-treated group 
was up to 15%.

The chitin content assay indicated that there was no 
significant difference in the chitin content among groups 
at 12  h and 24  h after silencing of AaCht10. However, 
the average chitin content of pupae in the dsAaCht10-
treated group was 5.0 mg/g at 36 h, much lower than that 
of dseGFP (9.2  mg/g) (P < 0.0001) and Non-inj groups 
(8.8 mg/g) (P < 0.0001) (Fig. 6E). The result of H&E stain-
ing suggested that the average thickness of the epicuti-
cle in the dsAaCht10-treated group was 1.49 ± 0.1  µm, 
which was obviously thinner than in the dseGFP 
(2.42 ± 0.14 µm) and Non-inj groups (2.56 ± 0.06 µm); the 
thickness of the procuticle (1.05 ± 0.03 µm) in the treated 
group showed no significant difference compared with 
the dseGFP group (1.35 ± 0.15 µm), but it was much thin-
ner than in the control group (2.23 ± 0.24 µm) (Fig. 7A). 
A similar result was also detected in the midgut; the mid-
gut wall in the treated group (12.17 ± 0.21 µm) was sig-
nificantly thinner than in the dseGFP (18.89 ± 0.35  µm) 
and Non-inj (16.14 ± 0.19 µm) groups (Fig. 7B).

Discussion
Chitin represents up to 60% of dry weight in some 
insect species, which illustrates the importance of 
this component for insect survival [41]. As one of the 
structural components essential for insect growth and 

Fig. 2 Amino acid sequence analysis of catalytic domain of Aedes albopictus chitinases. Four conservative motifs are displayed using black boxes
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development, many studies have attempted to disrupt the 
regulatory pathways of chitin biosynthesis and degrada-
tion to control pests [42–45].

Chitinases are a large family of enzymes that degrade 
chitin by hydrolysis [46]; they differ substantially in 
their enzymatic properties, stage- and tissue-specific 
expression, domain organization and size [30, 31, 47]. 
A total of 17 Cht-related proteins were identified based 
on a genome-wide screen of the Ae. albopictus genome 
in this study. Previous research demonstrated that 
insect chitinases clustered into eight groups based on 
phylogenetic analysis of their catalytic domains [48], 
while AaChts were clustered into seven groups. Except 
for several members that were in accordance with the 

previous model of evolution of the chitinase family 
GH18 [25, 48], most of the AaChts were gathered with 
chitinases of Ae. aegypti and Cx. quinquefasciatus in 
group IX (Fig.  3). Cht1 and Cht3 in D. melanogaster 
were designated as portions of DmCht10 [15], whereas 
Cht1 of Ae. albopictus, Ae. aegypti and Cx. quinquefas-
ciatus was identified and included in group IX (Fig. 3). 
This differential in composition of chitinase members 
among species may be driven by functional differentia-
tion with the evolution of chitinase gene families. Con-
sistent with the previous studies that showed only one 
member in group I in all insects with the exception of 
An. gambiae and Ae. aegypti [48], phylogenetic analy-
sis showed that two chitinase members (AaCht5-1, 

Fig. 3 Phylogenetic relationships of chitinases from different species. Aa, Aedes albopictus; Ae, Aedes aegypti; Ag, Anopheles gambiae; Bd, Bactrocera 
dorsalis; Cq, Culex quinquefasciatus; Dm, Drosophila melanogaster; Nl, Nilaparvata lugens; Px, Plutella xylostella; Tc, Tribolium castaneum. Numbers at 
branches are bootstrap support values. The red dots represent the chitinases of Ae. albopictus 
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AaCht5-2) were clustered into group I in Ae. albopictus 
(Fig. 3). Similarly, there were two members in AaCht1 
(AaCht1-1, AaCht1-2) and AaCht2 (AaCht2-1, AaCht2-
2), which were classified into group VII and IX, respec-
tively. These results were caused by gene duplications 
resulting in two  or  more additional members [48, 49]. 

Duplicated genes may gain new structures and func-
tions over the process of biological evolution, resulting 
in chitinases with different numbers among species, 
diverse functions and expression patterns [50, 51]. 
Notably, the numbers in the nomenclature of chitinases 
were assigned based on their sequence similarities to 

Fig. 4 Expression patterns of AaChts in different development stages of Aedes albopictus. E, egg; L1, early larva; L2, late larva; P, pupa; M, male; 
F, female. All data are represented as means ± SE. Different lower case letters (a–d) on the bars indicate significant differences among different 
samples
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the correspondingly numbered Chts from other insect 
species. However, no orthologous genes were currently 
found for chitinase genes of AaCht-New 1, AaCht-New 
2 and AaCht-New 3. Further investigations are needed 
to rename these chitinases and exploit their properties 
and physiological functions.

Domain architecture analysis demonstrated that the 
number of catalytic and chitin-binding domains was 
different among different chitinases; only AaCht5-
1, AaCht10 and AaCht18 possess both of these two 
important domains (Fig. 1B). Chitin-binding domain is 
supposed to anchor the enzyme tightly onto the large 

Fig. 5 Expression patterns of AaChts in different tissues of Aedes albopictus pupae. CT, cephalothorax; IN, integument; MG, midgut; MT, malpighian 
tube. All data are represented as means ± SE. Different lower case letters (a–d) on the bars indicate significant differences among different samples
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insoluble polymeric substrate, facilitating the hydro-
lytic process catalyzed by catalytic domain [52, 53]. 
The degradative process of chitin is a dynamic process 
that requires coordinated action of both domains [52]. 
Therefore, AaCht5-1, AaCht10 and AaCht18 would be 

priority selections as a target used for Ae. albopictus 
control. According to previous studies, the glutamate 
residue (E) in motif II is the most critical residue, which 
is likely to be the proton donor required for cleavage of 
the glycosidic bond. Replacement of this residue with 

Fig. 6 Effects of knockdown of AaCht10. A Effectiveness of RNAi; B survival rate of pupae; C eclosion rate of pupae; D malformed phenotype of 
pupae and aduls. Scale bar = 1 mm. E Chitin content in pupae. Non-inj, blank control; dseGFP, negative control; dsAaCht10, treatment. ***P < 0.001, 
****P < 0.0001

Table 2 Statistics of survival rate of pupae after RNAi of AaCht10 

x/y: x represents the number of survivors; y represents the total number of pupae used in this experiment

24 h 36 h 48 h 60 h 72 h

Non-inj
(% ± SE)

159/160
(99.4% ± 0.9)

151/160
(94.4% ± 1.1)

146/160
(91.2% ± 1.0)

142/160
(88.8% ± 0.8)

142/160
(88.8% ± 0.8)

dseGFP
(% ± SE)

148/160
(92.5% ± 2.2)

136/160
(85.0% ± 2.2)

121/160
(75.6% ± 2.4)

98/160
(61.3% ± 1.1)

98/160
(61.3% ± 1.1)

dsAaCht10
(% ± SE)

144/160
(90.0% ± 2.2)

122/160
(76.3% ± 2.2)

97/160
(60.6% ± 2.7)

56/160
(35.0% ± 1.3)

55 /160
(34.4% ± 1.3)
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others resulted in total loss of activity [54]. Except 
for AaCht2-1, AaCht2-2, AaCht5-1a, AaCht7 (a, b), 
AaCht10 (b, c, d) and AaCht11, residue E in the amino 
acid sequence of all other chitinases has been replaced 
by other residues (Fig. 2), indicating that catalytic abil-
ity of these chitinases might be inactive. In addition, 
the developmental and tissue expression patterns sug-
gested that chitinase genes are stage- and tissue-spe-
cific (Figs. 4, 5), which further support that these genes 
may have distinct functions involved in the specific 
stage transition and turnover of chitin in specific tissue. 
Results of these analyses will give clues toward choos-
ing a suitable chitinase as a candidate target for mos-
quito control.

Although this is the first experimental evidence for the 
potential function of chitinase in Ae. albopictus to our 
knowledge, several studies have demonstrated that chi-
tinases (e.g. Cht10) are essential for insect survival, molt-
ing and development [19–22, 29, 33, 49, 55, 56]. Based on 
the results of this study, AaCht10 contains both catalytic 
and chitin-binding domains, retains residue E in motif II 

and is expressed in multiple stages and tissues. The func-
tion of AaCht10 was verified using RNAi, and results 
suggested that injection of dsAaCht10 caused high 
mortality (about 65.6% in the injected group) (Fig.  6B; 
Table  2) and significantly reduced the eclosion rate of 
pupae (Fig. 6C; Table 3). Furthermore, several adult sur-
vivors after dysfunction of AaCht10 displayed defective 
morphology (e.g. failed to shed the old cuticle, wrinkled 
wings) (Fig. 6D). Similar results were also reported in P. 
xylostella and Sogatella furcifera; silencing of PxCht10 
and SfCht10 caused high mortalities and lethal pheno-
types [57, 58]. The high levels of mortality and develop-
mental arrest after silencing AaCht10 demonstrated that 
AaCht10 is crucial for shedding of the old cuticular shell 
and eclosion of pupae, which can be used as a promising 
target to disrupt the pupa-adult transition and develop 
an efficient pesticide for the control of Ae. albopictus.

In addition, the suppression of AaCht10 had a nega-
tive impact on chitin content of Ae. albopictus (Fig. 6E), 
and this result was corroborated by the microstruc-
ture shown by H&E stain, which showed that RNAi of 
AaCht10 resulted in a thinner epicuticle, procuticle and 
midgut wall (Fig. 7). However, the previous research on 
D. melanogaster suggested that chitin content was sig-
nificantly increased in wings of Cht10 knockdown flies 
[33]. Given that enzymatic properties and tissue-specific 
expression of chitinases vary with species [30, 31, 47], 
the inconformity results after dysfunction of Cht10 may 
be caused by the different tissues used to observe micro-
structure and quantify chitin content. The significantly 
reduced thickness of epicuticle, procuticle and midgut 
wall (Fig.  7) may be caused by reduction of chitin syn-
thesis after dysfunction of AaCht10. Nonetheless, the 

Table 3 Statistics of eclosion rate of pupae after RNAi of AaCht10 

x/y: x represents the number of eclosion; y represents the total number of pupae 
used in this experiment

24 h 36 h 48 h 60 h 72 h

Non-inj
(% ± SE)

0 1/160
(0.6% ± 0.2)

37/160
(23.1% ± 2.0)

142/160
(88.8% ± 0.75)

142/160
(88.8% ± 0.75)

dseGFP
(% ± SE)

0 0 33/160
(20.6% ± 1.0)

97/160
(60.6% ± 0.96)

98/160
(61.3% ± 1.1)

dsAaCht10
(% ± SE)

0 0 17/160
(10.6% ± 0.7)

55/160
(34.4% ± 1.3)

55/160
(34.4% ± 1.3)

Fig. 7 Microstructure of epidermis (A‑A’’) and midgut (B‑B’’) under hematoxylin and eosin staining. EPI, epicuticle; PRO, procuticle. Scale 
bar = 20 μm. dsAaCht10, treatment; dseGFP, negative control; Non-inj, blank control
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mechanisms by which AaCht10 influences cuticle metab-
olism need to be explore in future studies.

Conclusion
In summary, we performed a systematic genome-wide 
analysis of chitinase genes in Ae. albopictus. Structural 
features and expression patterns of 17 candidate chi-
tinases were generated, which provide the first compre-
hensive information for chitinase genes of Ae. albopictus 
to our knowledge. Differences in their biochemical prop-
erties reinforce the notion of distinctive biological func-
tions for specific AaCht. The high efficiency of AaCht10 
in disrupted pupa-adult transition presents an opportu-
nity to make use of AaChts as efficient targets in mos-
quito control.
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