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Abstract 

Background The roundworms, Parascaris spp., are important nematode parasites of foals and were historically model 
organisms in the field of cell biology, leading to many important discoveries. According to karyotype, ascarids in 
Equus are commonly divided into Parascaris univalens (2n = 2) and Parascaris equorum (2n = 4).

Methods Here, we performed morphological identification, karyotyping and sequencing of roundworms from three 
different hosts (horses, zebras and donkeys). Phylogenetic analysis was performed to study the divergence of these 
ascarids based on cytochrome c oxidase subunit I (COI) and internal transcribed spacer (ITS) sequences.

Results Karyotyping, performed on eggs recovered from worms of three different Equus hosts in China, showed two 
different karyotypes (2n = 2 in P. univalens collected from horses and zebras; 2n = 6 in Parascaris sp. collected from 
donkeys). There are some differences in the terminal part of the spicula between P. univalens (concave) and Parascaris 
sp. (rounded). Additionally, it was found that the egg’s chitinous layer was significantly thicker in Parascaris sp. (> 5 μm) 
than P. univalens (< 5 μm) (F(2537) = 1967, P < 0.01). Phylogenetic trees showed that the sequences of Parascaris from 
Equus hosts were divided into two distinct lineages based on sequences of the COI and ITS.

Conclusions Comparing the differences in roundworms collected from three different Equus hosts, this study 
describes a Parascaris species (Parascaris sp.) with six chromosomes in donkeys. It is worth noting that the thickness of 
the chitinous layer in the Parascaris egg may serve as a diagnostic indicator to distinguish the two roundworms (P. uni-
valens and Parascaris sp.). The Parascaris sp. with six chromosomes in donkeys in the present study may be a species of 
P. trivalens described in 1934, but the possibility that it is a new Parascaris species cannot be ruled out. Both karyotyp-
ing and molecular analysis are necessary to solve the taxonomic problems in Parascaris species.
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Background
The Equidae are important reservoir hosts for various 
nematode parasites, some of which can cause significant 
morbidity or mortality if their hosts are untreated. Equine 
roundworms are large parasitic nematodes that predomi-
nantly infect foals and weanlings. Parascaris have a direct 
life cycle where infective eggs ingested from the environ-
ment hatch in the horse’s stomach. The larvae then pen-
etrate the intestinal mucosa, migrating through the liver 
and lungs, and eventually return to the small intestine to 
develop into adults and reproduce [1]. Infected with large 
numbers of adult worms, the hosts often present with 
coughing, anorexia, lethal intestinal obstruction or rup-
ture, and even death [2]. Larvae in the migrating stages 
can also cause hepatitis, pneumonitis and associated res-
piratory disorders [3].

Two species of roundworms, Parascaris univalens and 
Parascaris equorum, are found infecting Equus hosts 
[4–6]. These two species cannot be easily distinguished 
morphologically but differ concerning their karyotype. 
One pair of chromosomes (2n = 2) is found in P. univa-
lens and two pairs (2n = 4) are found in P. equorum [7]. 
Additionally, P. trivalens, another rare horse roundworm 
with three pairs of chromosomes, was described in 1934 
and 1937 [8, 9]. However, there have been no reports of 
this species since 1937.

In 2014, Nielsen et  al. karyotyped P. univalens and 
uploaded a complete mitochondrial genome of the worm 
to the National Center for Biotechnology Information 
(NCBI) database. Until now, only Goday et al. have kar-
yotyped P. equorum, collected from horses in the 1980s 
[7, 11, 12]. However, many studies have shown that P. 
univalens is more prevalent whereas P. equorum can-
not be found in horses using cytological methods [1, 6, 
10]. Himmelstjerna et  al. (2021) concluded that most P. 
equorum registered in the NCBI database based solely on 
cytochrome c oxidase subunit I (COI) and internal tran-
scribed spacer (ITS) sequence analysis without karyotyp-
ing were actually derived from P. univalens specimens 
[13]. For this reason, the results based only on analyz-
ing the sequences of horse roundworms are inadequate 
for identifying P. univalens and P. equorum at the present 
time.

Although cytological analysis is a useful method for 
specific identification, it would be desirable to have 
available genomic markers for polymerase chain reac-
tion (PCR)-based analyses of genetic variation within 
Parascaris. Combined with cytological analysis, some 
researchers have generated mitochondrial genome 
sequence data for P. univalens to provide a reference 
sequence for this parasite [3, 6]. Here, we analyzed the 
morphology, karyotype and genetic characteristics of 
Parascaris in three Equus host populations of horse 

(E. caballus), zebra (E. zebra) and donkey (E. asinus) in 
northern China. We present the first report on the cyto-
logical analysis of Parascaris populations in donkeys and 
show that the roundworms in donkeys were a Parascaris 
species with six chromosomes.

Methods
Sample collection and morphology identification
The roundworms in the present study were collected 
from Equus hosts after anthelmintic treatment. Four 
horse roundworm individuals (h1–h4) were collected 
from a farm in Harbin, Heilongjiang, China. Twelve 
roundworms from zebras (z1–z12) were obtained from 
Harbin Northern Forest Zoo, Heilongjiang, China. Four-
teen roundworms (d1–d14) from donkeys were collected 
from a farm in Liaocheng, Shandong, China. Another 
10 roundworms from donkeys (d15–d24, karyotyp-
ing of these roundworms could not be carried out due 
to our poor preservation) were collected from a farm in 
Chifeng, Inner Mongolia, China (Fig. 1). The roundworm 
information in this study is presented in Additional file 2: 
Table  S1. All 40 specimens were washed extensively in 
phosphate-buffered saline (PBS, 37  °C) and transported 
immediately to the parasitology laboratory. Here, the 
structure of the head, tail and spicula and the length of 
the body were observed with an Olympus CX43 micro-
scope (Olympus, Tokyo, Japan) using EPview v 3.2 soft-
ware (Olympus Scientific Solutions, Tokyo, Japan). 
Additionally, the 20 female individuals (h1–h3, z1−z8 
and d1−d9) were carefully dissected, and the gonads and 
zygotes were collected. The size (length and width) and 
the chitinous layer of the eggs (20 eggs of each female 
individual were chosen) were measured. Then the gonads 
and remaining male roundworms were stored at −80 °C 

Fig. 1 Sampling localities and geographical distribution of the three 
distinct populations of Parascaris spp.
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until further use, and zygotes were stored at 4 °C for the 
next karyotyping.

Karyotyping
We performed karyotyping on the collected zygotes (20 
eggs of each female individual were chosen) for analyz-
ing early embryonic mitotic divisions as described pre-
viously [6]. Briefly, the appropriate amount of 0.5  M 
NaOH, 0.4  M KOH and a mixture of 6% hypochlorite 
and 0.4 M KOH (17:83) were added sequentially to a tube 
containing the eggs, and after adding each reagent, rest-
ing, resuspension, centrifugation and washing with cold 
distilled water were necessary for the decortication of 
the eggs. Then the eggs were washed and resuspended 
in 0.7% saline solution and incubated at 37 °C until they 
developed into the first or second embryonic mitotic 
division under the microscope. Before staining the eggs, 
the saltwater was sucked out, and the tubes were filled 
with a mixture of methanol, acetic acid and chloroform 
(6:3:1) and were left for 1 h. Drops of embryo suspension 
were deposited on slides and left at room temperature for 
drying. Finally, staining was carried out with 4′,6-diami-
dino-2-phenylindole (DAPI) for 10 min and then exam-
ined under a fluorescence microscope. Additionally, 
Giemsa banding staining (G-banding) was applied after 
the eggs were deshelled, as described previously [16].

Nucleic acid isolation and gene amplification
DNA was extracted from all 40 Parascaris samples using 
the QIAamp DNA Mini Kit (QIAGEN, Germany) follow-
ing the manufacturer’s instructions. Partial sequences of 
the gene of mitochondrial DNA (mtDNA), COI and ITS 
(including partial ITS1, 5.8  s and ITS2) were amplified 
to explore the genetic characteristics and phylogenetic 
relationships. Primer F5 (5′-TCA TAA GGA TAT TGG 
GAC C-3′) and primer F6 (5′-GCA AAA TGT AAA GGG 
AAA A-3′) [17] were applied to amply the COI (996-base 
pair [bp]) gene of each specimen. Primers NC5 (5′-GTA 
GGT GAA CCT GCG GAA GGA TCA TT-3′) and NC2 (5′-
TTA GTT TCT TTT CCT CCG CT-3′) [18] were applied 
to amply the ITS (~770 bp) sequence of each specimen. 
Regarding the two PCR reactions, all the volumes were 
25 μl, including 12.5 µl Premix Taq (Ex Taq version 2.0 
plus dye, Takara, Japan), 8.5  µl double-distilled water 
 ddH2O), 1 µl of each primer and 2 µl of template DNA 
under the following conditions: initial denaturation at 
94 °C for 5 min, then 35 cycles at 94 °C for 30 s (denatura-
tion); annealing at 50 (COI)/55  °C (ITS) for 30 s, exten-
sion at 72 °C for 90 s (COI)/60 s (ITS), followed by a final 
extension at 72 °C for 7 min. The PCR product was exam-
ined on a 1.5% agarose gel to verify that the reactions 
produced single bands, and then was sent to Comate 

Biosciences Co., Ltd. (Changchun, China) for Sanger 
sequencing in the forward and reverse directions.

Phylogenetic relationship and genetic structure
Multiple sequence alignments of nucleotide sequences in 
this study and sequences available from GenBank were 
generated using ClustalX v2.0 software. DnaSP v5.10 
software was applied to establish the sequence haplo-
types of different populations. For COI, the sequences of 
P. univalens samples in horses and zebras were divided 
into three haplotypes (CHU1–CHU3); the Parascaris sp. 
in donkeys in Liaocheng were divided into five haplotypes 
(CHS1–CHS5); the sequences of samples in donkeys in 
Chifeng were divided into three haplotypes (CH1–CH3). 
For ITS, the sequences of P. univalens were divided into 
two haplotypes (IHU1 and IHU2); the Parascaris sp. 
were divided into one haplotype (IHS1); the sequences 
of samples in donkeys in Chifeng were divided into two 
haplotypes (IH1 and IH2) (Additional file  3: Table  S2). 
For phylogenetic analysis, the representative sequences 
for each haplotype defined in the present study were 
used to analyze phylogenetic relationships. The Ascaris 
suum COI (KY045804) and ITS (KY964445) sequences 
were retrieved from GenBank and used as outgroups to 
perform phylogenetic analysis, which was hypothesized 
using maximum likelihood (ML) and Bayesian inference 
(BI). The best-fitting nucleotide substitution model was 
selected using Modeltest 3.7 software with the Akaike 
information criterion (AIC) [19]. For ML, the best mod-
els of COI and ITS sequences were HKY+G and T92, 
respectively. In addition, phylogenetic analysis was con-
ducted using PhyML 3.0 software [20]. Bootstrap branch 
support values (MLBS) were obtained with 1000 rapid 
bootstrap inferences, and thereafter searched through 
ML search on the dataset. For BI, the best models of COI 
and ITS sequences were GTR+G and HKY, respectively. 
Phylogenetic analysis was performed using MrBayes v3.2 
software [21]. The parameters were set as follows: nst = 6 
(COI sequences)/2 (ITS sequences), rates = propinv (COI 
sequences)/equal (ITS sequences), with four Markov 
chain Monte Carlo (MCMC) run for two runs from ran-
dom starting trees for five million generations, and the 
trees were sampled every 1000 generations. In addition, 
25% of generations were discarded as “burn-in,” and the 
remaining samples were used to calculate Bayesian pos-
terior probabilities (BPP). Phylograms were plotted using 
FigTree v1.4.2 software.

Statistical analysis
To investigate the differences between the structural 
morphology (the size and thickness of the chitinous layer) 
of the Parascaris eggs from different hosts, the data were 
first tested for normality using the W-test. Then one-way 
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analysis of variance (ANOVA) in R (v4.0.2) was used to 
analyze the divergence of the data. The "ggpair" function 
in R was used to perform correlation analysis between 
the size and the thickness of the chitinous layer of the 
eggs. The final result when using analytical signals was 
the complex Pearson correlation coefficient. The P-value 
was used to show the significance of the difference. Addi-
tionally, the “dplyr” package, “patchwork” package and 
“ggplot2” package in R were used to visualize the results.

Results
Karyotyping was performed with eggs recovered from 
worms of three different hosts in China (in total 20 
worms). Representative pictures of stained eggs are 
shown in Fig. 2. The roundworms collected from horses 
and zebras showed only two large chromosomes and 
were therefore assigned to the species P. univalens. In 
comparison, the roundworms (Parascaris sp.) collected 
from the donkey in Liaocheng showed six large chro-
mosomes. The chromosome breakage occurred during 
the development of the eggs, and chromatin diminution 
occurred in pre-somatic cells of Parascaris sp. like A. 
suum and P. univalens (Fig. 3).

It was found that the spiculae of P. univalens termi-
nate in a truncated and slightly concave form. In con-
trast, in Parascaris sp., they terminate in a distinctly 
rounded form (Fig.  2). Additionally, the chitinous layer 

of Parascaris sp. (> 5  μm) was thicker than that of the 
P. univalens (< 5  μm, F(2537) =  1967, P < 0.01, Additional 
file 2: Table S1). Furthermore, the correlation coefficient 

Fig. 2 The differences in the terminal part of the spicula, the thickness of the chitinous layer and the karyotypes of Parascaris species from different 
hosts or locations. The area indicated by the arrow represents the thickness of the chitinous layer

Fig. 3 Karyotyping of early embryos at the 1–4-cell stages of the 
roundworms collected from donkeys in Liaocheng. From left to right: 
no staining, DAPI staining and Giemsa staining
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between the size and the thickness of the chitinous layer 
of the eggs indicates no correlation (|r|< 0.3, P > 0.05, 
Additional file 1: Fig. S1). It is worth noting that the eggs 
in roundworms from the horses and donkeys were signif-
icantly larger than those from the zebras (P < 0.01).

The topology of the phylogenetic trees (Fig. 4) obtained 
from the ML analysis did not conflict with the BI 
trees. The COI gene tree showed that all five haplotype 
sequences (CHS1–CHS5) representing 14 worms from 
donkeys in Liaocheng formed a distinct clade (clade B). 
Sequences of the worms isolated from the horses, zebras 
and donkeys in Chifeng were randomly dispersed within 
clade A. Meanwhile, the ITS tree did not conflict with 
the COI trees, and all sequences were divided into two 
branches (clades C and D).

The roundworms of d1−d14 and d15−d24 were iso-
lated from the donkeys, but they were split into two dif-
ferent clades (Additional file  3: Table  S2, Fig.  4), which 
indicated that there may be more than one species of 
roundworm in donkeys (P. univalens and Parascaris sp.).

Discussion
In previous work, we performed phylogenetic analysis 
without karyotyping of roundworms from horses, zebras 
and donkeys [5]. In this study, the karyotyping of eggs 
from different stages (1–4-cell stages) of Parascaris sp. 
showed that the pre-somatic cells underwent chromo-
some breaks, while the germline cell maintained intact 
chromosome morphology, consistent with the P. univa-
lens studied by Müller et al. [22].

The only morphological identification study was per-
formed more than 40 years ago by Biocca et al. [23], who 

found weak morphological differences in the terminal 
part of the spicula of the two species P. univalens and P. 
equorum. In this study, we also found differences in the 
terminal part of the spiculae in P. univalens (concave) 
and Parascaris sp. (rounded). Additionally, it was found 
that the egg’s chitinous layer of Parascaris sp. (> 5  μm) 
was significantly thicker than in P. univalens (< 5  μm) 
(F(2537) =  1967, P < 0.01). The thickness of the chitinous 
layer and the size of the eggs were not correlated (|r|< 0.3, 
P > 0.05, Additional file  1: Fig. S1). Therefore, the thick-
ness of the chitinous layer of eggs may serve as a diagnos-
tic indicator to distinguish these two Parascaris species.

The phylograms showed the relations based on COI 
(Fig. 4a) and ITS (Fig. 4b), which revealed very close rela-
tionships between most of the sequences, regardless of 
whether they were deposited in GenBank as P. univalens 
or P. equorum in clades A and C. However, Parascaris sp. 
was a mono group in clades B and D. The phylogenetic 
analysis based on these sequences confirmed the karyo-
type identification results indicating that the worms from 
the donkeys in Liaocheng were not P. univalens. This 
study also suggests that some of nucleotide sequences 
deposited as P. equorum in GenBank were actually 
derived from P. univalens specimens as Samson-Himmel-
stjerna has stated [13].

The results of the haplotype information (Additional 
file  3: Table  S2) and phylogenetic tree (Fig.  4) showed 
that donkeys could be infected not only by Parascaris 
sp. but also by another species, which may be P. uni-
valens. Unfortunately, karyotyping of the suspected P. 
univalens in the donkey could not be carried out due 
to our poor preservation. Further study is necessary to 

Fig. 4 Phylogenetic relationship among Parascaris spp. based on the COI (a) and ITS (b) sequences using maximum likelihood (ML) and Bayesian 
inference (BI). Values higher than 50 are displayed on the trees. Bold indicates the sequence of this study. For COI, the sequences of P. univalens 
samples in horses and zebras were divided into three haplotypes (CHU1–CHU3); the Parascaris sp. in donkeys in Liaocheng were divided into five 
haplotypes (CHS1–CHS5); the sequences of samples in donkeys in Chifeng were divided into three haplotypes (CH1–CH3). For ITS, the sequences of 
P. univalens were divided into two haplotypes (IHU1 and IHU2); the Parascaris sp. were divided into one haplotype (IHS1); the sequences of samples 
in donkeys in Chifeng were divided into two haplotypes (IH1 and IH2)
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investigate whether donkeys can be infected with dif-
ferent Parascaris species and whether they are repro-
ductively isolated.

Parascaris trivalens with three pairs of chromosomes 
collected from horses was first described in 1934 [9]. 
The roundworm Parascaris sp. found in the donkey in 
the present study also has three pairs of chromosomes 
and could be recognized as P. trivalens. However, P. tri-
valens was found in horses nearly a century ago. There 
was no molecular biology information and only some 
hand-drawn figures of karyotypes without chromosome 
breaks [8, 9]. Therefore, the Parascaris sp. with six 
chromosomes in the donkey in the present study may 
be the species of P. trivalens described in 1934, but the 
possibility that it is a new Parascaris species cannot be 
ruled out.

Li posited that the P. trivalens he studied may be a 
six-chromosome polyploidy, the P. equorum is a tetra-
ploid, and the P. univalens is amphiploid [9]. There 
were two possible rationales for this case. One was that 
higher polyploidy series were derived from lower ones 
by duplication; another way to explain the origin of the 
various types of Parascaris was by eliminating pairs of 
chromosomes, and the P. trivalens was the most primi-
tive form [8, 9]. The P. trivalens has not been described 
in the literature since 1937, and karyotype identification 
of P. equorum with certainty in the horse has been absent 
since 1989 [24]. Meanwhile, P. univalens with two chro-
mosomes have been recorded continuously [6]. If P. triva-
lens is a hexaploid and P. equorum is a tetraploid, why has 
P. trivalens not been recorded for nearly a century and 
why has P. equorum been absent since 1989 after it was 
karyotyped? If the P. trivalens and P. equorum were dif-
ferent Parascaris species and not the polyploidy of P. uni-
valens, had they become extinct as endangered species in 
history? These phenomena deserve further exploration in 
the future.

Conclusions
This study is the first report to describe a Parascaris spe-
cies with six chromosomes in donkeys. It is worth noting 
that the thickness of the chitinous layer of the Parascaris 
egg may serve as a diagnostic indicator to distinguish the 
two ascarids (P. univalens and Parascaris sp.). The Paras-
caris sp. with six chromosomes in donkeys in the present 
study may be the species of P. trivalens described in 1934, 
but the possibility that it is a new Parascaris species can-
not be ruled out.
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