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Abstract 

Background Veterinary diagnostics aid intervention strategies, track zoonoses, and direct selective breeding 
programs in livestock. In ruminants, gastrointestinal nematode (GIN) parasites are a major cause of production 
losses, but morphologically similar species limit our understanding of how specific GIN co‑infections impact health 
in resource‑limited settings. To estimate the presence and relative abundance of GINs and other helminths at the spe‑
cies level, we sought to develop a low‑cost and low‑resource molecular toolkit applied to goats from rural Malawi 
smallholdings.

Methods Goats were subjected to health scoring and faecal sampling on smallholdings in Lilongwe district, Malawi. 
Infection intensities were estimated by faecal nematode egg counts with a faecal subsample desiccated for DNA 
analysis. Two DNA extraction methods were tested (low‑resource magbead kit vs high‑resource spin‑column kit), 
with resulting DNA screened by endpoint polymerase chain reaction (PCR), semi‑quantitative PCR, quantitative PCR 
(qPCR), high‑resolution melt curve analysis (HRMC), and ‘nemabiome’ internal transcribed spacer 2 (ITS‑2) amplicon 
sequencing.

Results Both DNA isolation methods yielded comparable results despite poorer DNA purity and faecal contaminant 
carryover from the low‑resource magbead method. GINs were detected in 100% of samples regardless of infection 
intensity. Co‑infections with GINs and coccidia (Eimeria spp.) were present in most goats, with GIN populations domi‑
nated by Haemonchus contortus, Trichostrongylus colubriformis, Trichostrongylus axei, and Oesophagostomum columbi-
anum. Both multiplex PCR and qPCR were highly predictive of GIN species proportions obtained using nemabiome 
amplicon sequencing; however, HRMC was less reliable than PCR in predicting the presence of particular species.

Conclusions These data represent the first ‘nemabiome’ sequencing of GINs from naturally infected smallholder 
goats in Africa and show the variable nature of GIN co‑infections between individual animals. A similar level of granu‑
larity was detected by semi‑quantitative PCR methods, which provided an accurate summary of species composition.

Assessing GIN co‑infections is therefore possible using cost‑efficient low‑resource DNA extraction and PCR 
approaches that can increase the capacity of molecular resources in areas where sequencing platforms are not availa‑
ble; and also open the door to affordable molecular GIN diagnostics. Given the diverse nature of infections in livestock 
and wildlife, these approaches have potential for disease surveillance in other areas.
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Background
Within veterinary parasitology, molecular diagnostics 
have largely been limited to research environments, but 
falling costs of DNA sequencing technologies give prom-
ise for molecular diagnostics to complement or replace 
traditional morphological approaches as our under-
standing of parasite genomics improves [1–3]. Molecular 
techniques are critical for the advancement of livestock 
sciences and can facilitate improved monitoring of para-
sitic diseases and their drug resistance traits that threaten 
livestock systems and food security worldwide [4–6]. 
While a number of molecular approaches have been 
developed in recent years to monitor parasites of vet-
erinary significance [2, 3, 7, 8], there has been limited 
optimisation of approaches amenable to low-resource 
areas owing largely to the lack of capacity. However, 
the advent of COVID-19 has resulted in a push to over-
come logistical barriers limiting molecular techniques 
in lower-resource areas and has increased the capacity 
for molecular diagnostics worldwide in health settings 
[9–11]. As such, the development of approaches to moni-
tor veterinary parasites at low cost and with reduced 
resources has potential for application worldwide. Cur-
rently, the utility of molecular techniques to detect gas-
trointestinal nematode (GIN) parasites is also limited 
in commercial livestock settings, but may become more 
essential as tropical species, notably the GIN Haemon-
chus contortus, spread under climate change [12–14].

In low-income rural areas, livestock holdings are often 
inextricably linked to livelihoods. For instance, in rural 
Malawi, goat smallholdings buffer against food insecurity 
and provide supplemental income [15–17]. However, goat 
smallholdings also suffer from animal losses and reduced 
productivity driven by co-infections with a mix of gastro-
intestinal parasites including numerous GIN species [17–
21]. GINs play a major role in production losses of small 
ruminant livestock systems worldwide [22, 23], causing 
gastroenteritis and stress on the goat immune system, 
resulting in reduced weight gain, weight loss, anaemia, 
or death [24–26]. While the impact of individual species 
is known, the prevalence and relative abundance of these 
species is poorly described in smallholder systems. Addi-
tionally, the population dynamics of GIN co-infections 
and their impact on individual goats have yet to be deter-
mined. This is partly due to the fact that in low-resource 
settings like those of rural Malawi, pragmatic and acces-
sible tools such as the Five Point  Check© (FPC) are used 
to measure signs of GIN infections [27–29], but these do 

not measure infection intensity, the presence of specific 
species, or drug resistance traits. Beyond the FPC, faecal 
egg counts (FECs) can be performed on fresh faecal sam-
ples [30, 31]; however, more dominant and pathogenic 
species of strongyles, including H. contortus, Oesophago-
stomum columbianum, Trichostrongylus colubriformis, 
and Trichostrongylus axei, are not readily distinguishable 
from each other or from less pathogenic species by egg 
morphology alone. Since the presence of different GIN 
species can alter infection outcomes, as well as results of 
drug efficacy testing, it is useful to identify both the dif-
ferent species present and their relative abundance in 
co-infections. This is possible by morphological identifi-
cation of third-stage larvae (L3). However, this approach 
is time-consuming and labour-intensive, requires specific 
expertise, and critically can only be performed on fresh 
faecal material which cannot be easily biobanked, espe-
cially in tropical conditions.

Molecular approaches offer an alternative to deter-
mine GIN species from biobanked material with 
preserved DNA. Faecal DNA extractions have been 
shown to predict infection burden [32–34] and can be 
more sensitive than FECs for detection and quantita-
tion of GIN infections [35]. GINs can be identified to 
species by a number of methods including standard 
polymerase chain reaction (PCR) [32, 33, 36, 37], loop-
mediated isothermal amplification (LAMP) [38, 39], 
and high-resolution melt curve (HRMC) analyses [32, 
40–42] among others. However, quantification of GIN 
populations has so far relied on advanced and costly 
methods such as real-time PCR [34, 35, 43, 44], digital 
PCR [45, 46], or internal transcribed spacer 2 (ITS-2) 
deep amplicon sequencing [47–51]. While quantita-
tive approaches are robust, there is potential to utilise 
standard PCR techniques to estimate relative GIN spe-
cies abundance at a significantly reduced cost. Studies 
investigating the quantification of GINs by standard 
PCR techniques typically involve artificial infections 
and published studies of PCR or HRMC applications in 
rural goats in real-world settings are lacking.

To reduce the cost, effort, and expertise required to 
profile the relative abundance of different GIN species 
present in infected individual goats, we sought to probe 
low-cost molecular methods using a simple heat des-
iccation biobanking method on goat faecal pellets and 
validate findings against real-time PCR [34, 35, 43, 44] 
and nemabiome deep-amplicon sequencing techniques 
[47–51].
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Methods
Faecal sample collection and demographics
With permission from smallholder farmers in the 
Dedza region of central Malawi (Mkwinda and 
Chinkowe Group Village Head areas) a total of 47 
goats were examined across 15 farms (range = 1–6 
goats per farmer, median = 3) on February 4–5, 2020. 
To ensure goats in the study were given proper care, 
all goats included in the study were assessed by the 
Five Point  Check© [52] and were provided anthelmin-
tic intervention if in poor condition. Goat age was 
estimated by dental examination and weight was esti-
mated by calibrated goat girth weigh tape (Coburn, 
cat. 44558). Pregnancy and lactation status data were 
collected from farmers. After examination, faecal pel-
lets were collected by stimulating the anal sphincter 
using gloved hands with lubricant. Faecal samples 
from individual goats were immediately transferred to 
plastic bags (1 bag per goat) and placed in a cooler box 
with ice until processing.

Five Point  Check© (FPC) scores
Baseline goat health was measured by the FPC as 
described previously [27]. The score includes exami-
nation of (1) nasal discharge, (2) anaemia by con-
junctival examination using a Faffa Malan color chart 
(FAMACHA), (3) presence of pitting oedema or ‘bottle 
jaw’, (4) body condition score (BCS), and (5) presence 
of absence of scour or dag, i.e., perineal faecal stain-
ing (Fig.  1A). Scores are shown in Additional file  1: 
Table S1.

Faecal egg counts (FEC)
Counts of egg density using the McMaster technique 
and morphological identification of egg types were per-
formed per goat with 2 g of fresh faeces (< 24 h after col-
lection) ground through a coarse sieve with a spoon into 
28  ml of 1.2  g specific gravity sugar flotation solution 
(1290 g sucrose/1  l water). Two millilitres of the middle 
of the flotation solution was checked by McMaster slide 
to assess eggs per gram (EPG) for strongyle, Strongy-
loides, and Trichuris nematode eggs by morphology, in 
addition to qualitative coccidia counts. Coccidial oocysts 
per gram (OPG) were defined as follows: 0 = 0, 1 = 1–300, 
2 = 300–1000, 3   ≥ 1000. Raw data are presented in Addi-
tional file 1: Table S1.

Faecal DNA preservation
At the same time as FECs, ~ 0.3 g of fresh faecal material 
per goat (typically one faecal pellet) was picked by single-
use toothpicks and wrapped in pre-cut foil to avoid cross-
contamination. A single pellet was chosen because it is 
convenient to sample and limits the amount needed from 
voided samples given the limited total volume available 
and other demands on it such as for FEC, and because 
of the likelihood that at high egg densities, the main spe-
cies present are well represented in this volume. Samples 
were labelled and preserved by oven drying at 68  °C for 
24–36 h and then stored in sealed desiccant jars with sil-
ica beads until extraction.

DNA extraction
Two methods were tested, with modifications (illus-
trated in Fig. 1): a ‘low-resource’ kit  (MagaZorb® DNA 
Mini-Prep Kit, cat. MB1004, Promega, WI, USA) 

Fig. 1 Study design. Health status and GIN infections were assessed by A the Five Point  Check© score for signs of disease including (1) presence 
of nasal discharge, (2) anaemia measured by a FAMACHA card, (3) presence of pitting oedema or bottle jaw, (4) body condition scoring, and (5) 
presence of dag or scour. B Direct faecal samples from individual goats were used for faecal egg counts to detect eggs of Strongyloides, strongyle, 
or Trichuris nematodes, or coccidial oocysts. C The same faecal samples from part B were desiccated and subjected to DNA extraction using 
a low‑resource proteinase K and magbead system or a high‑resource bead homogenisation and filter centrifugation system. D Extracted DNA 
was assessed by species‑specific molecular methods on all or a subset of samples to detect the presence and relative abundance of GIN species. 
Worm symbol species‑specific nematode identities, ITS-2 pan‑nematode region of the internal transcribed spacer 2
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with an accompanying magnetic separation rack (cat. 
CD4002, Promega, WI, USA), and a ‘high-resource’ 
kit (Quick-DNA Fecal/Soil Microbe Miniprep Kit, cat. 
D6010, Zymo, CA, USA). Both were performed accord-
ing to the manufacturers’ instructions, with minor 
variations. For the MagaZorb® DNA Mini-Prep Kit, 
0.027–0.153 g of dried faeces from 13 samples was sub-
jected to extraction with extended lysis (30 min instead 
of 10  min) along with an additional wash buffer step 
and a single centrifugation step (10,000g for 1  min) 
after elution of DNA to reduce carryover debris. The 
Quick-DNA Fecal/Soil Microbe Miniprep Kit was per-
formed according to the manufacturer’s instructions 
with 0.038–0.13  g of faecal tissue across 34 samples. 
Samples were ground by mortar and pestle and sub-
sequently homogenised for 2 × 3  min cycles at 50  Hz 
in a TissueLyser LT (cat. 69980, Qiagen, Germany). 
For most samples, homogenisation efficiency was 
measured by 600  nm absorbance (A:600). A:600 was 
calculated after the addition of genomic lysis buffer 
(Zymo kit, with mixed genomic lysis buffer and bash-
ing bead buffer blank) or binding buffer (for the Pro-
mega kit with mixed lysis buffer and binding buffer 
blank). DNA quality and yields were calculated by a 
NanoDrop 1000 Spectrophotometer (Thermo Scien-
tific) with three readings taken per sample. All samples 
were standardised to 4.8 ng/μl (lowest sample average) 
in nuclease-free  H2O in a 48-well plate array (including 
a no-template control well). DNA input weight, yield, 
purity, and A:600 readings are shown in Additional 
file 1: Table S1.

Endpoint PCR
Species-specific PCR targeting H. contortus and Hae-
monchus placei [36, 53], T. axei and T. colubriformis 
[36], Fasciola gigantica and Fasciola hepatica [54], O. 
columbianum [55], Bunostomum trigonocephalum [36], 
Chabertia ovina [36], Teladorsagia circumcincta [36, 
56], Nematodirus spathiger (this study), and the genus 
Eimeria [57] using primers from cited work (Additional 
file 2: Table S2). The T. axei primer can also be used for 
Trichostrongylus vitrinus PCR, but no T. vitrinus was 
identified in this study.  GoTaq® G2 Hot Start Taq Poly-
merase (cat. M7405, Promega, WI, USA) was used for all 
PCR reactions according to the manufacturer’s instruc-
tions with 0.5 μl of DNA template per 12.5 μl PCR reac-
tion. Cycling conditions included an initial denaturation 
(95 °C/2 min), 35 cycles (detailed per primer set in Addi-
tional file 2: Table S2), and final extension (72 °C/5 min) 
on a MiniAmp™ Plus Thermal Cycler (Applied Biosys-
tems™, cat. A37835).

Semi‑quantitative PCR
Detection of the strongyle species H. contortus, T. colu-
briformis, and T. axei was performed with pan-nematode 
ITS-2 primers used as an internal reference (Additional 
file  2: Table  S2). For singleplex PCR, O. columbianum 
was also detected with a specific primer set (Additional 
file 2: Table S2). PCR was performed as described above 
but with 4.8  ng of DNA template in 50  μl reaction vol-
umes. For multiplex PCR, 2 μl Tcol R1, 2 μl Tvit F1, 2 μl 
Hcon F3, 4  μl ITS F, and 2  μl ITS R primers were used 
per reaction at recommended concentrations (Additional 
file 2: Table S2). Band intensities were assessed at 25, 29, 
and 35 cycles, with 29 cycles selected for singleplex PCR 
and 35 cycles selected for multiplex PCR.

Quantitative PCR (qPCR) and HRMC analyses
Twenty nanograms of template DNA was added per 
15  μl reaction (SYBR™ Select, Thermo Scientific, cat. 
4472937) with 0.6 μl of H. contortus, T. colubriformis, or 
ITS-2 primers (10 μM stock) at the recommended con-
centration (Additional file 2: Table S2). Cycling was per-
formed in strip tubes (Cleaver Scientific, cat. RGCS-250) 
on a Rotor-Gene Q (Qiagen) instrument with the fol-
lowing conditions: UDG activation (50 °C/2 min), initial 
denaturation (95  °C/2  min), amplification (40 cycles of 
95 °C/15 s, 54 °C/15 s, 72 °C/30 s), and melt curve (0.5 °C 
from 70–95  °C). All reactions were performed in tripli-
cate with average Ct values and melt curve peaks used 
for analysis. For qPCR analysis, the relative abundance of 
H. contortus versus T. colubriformis was calculated as a 
percentage difference from the average fold-change com-
pared to the ITS-2 internal control (ΔCt method). HRMC 
analysis was performed on melt curve average peaks 
from triplicate ITS-2 products following qPCR.

Gel electrophoresis relative abundance analysis
For all standard PCR analyses, 5 μl of PCR product or 
5  μl ladder (PCRBIO Ladder IV, cat. PB40.14-05, PCR 
Biosystems) was loaded into 1.4% agarose gels using 
Tris–boric acid-EDTA buffer pre-cast with  GelRed® 
Nucleic Acid Gel Stain (Biotium, cat. 41003) run at 
90–110  V for 30–60  min or until bands were visibly 
separated. Custom-designed laser-cut multichannel gel 
combs were produced to facilitate rapid and accurate 
loading of samples (Additional file 7: File S1). Tag image 
file format (tiff ) images were taken under a gel imager 
with automated exposure and analysed in FIJI [58]. 
Images were inverted, saturation thresholds were auto-
matically normalised with the brightness and contrast 
tool, and the background was removed with a 50-pixel 
rolling-ball radius. PCR product band intensities were 
then measured horizontally (endpoint PCR scans of 
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entire gel row) or vertically per band (singleplex and 
multiplex) as demonstrated in Fig.  3A–C using the 
GelAnalyzer tool. Relative abundance was calculated 
as the percent of total peak area among specific species 
identified with ITS-2 bands used as an internal refer-
ence only.

Nemabiome ITS‑2 deep amplicon sequencing
To assess for GINs across goat samples, 4.8 ng from each 
DNA extraction was pooled and mixed by vortex (n = 47). 
In addition, eight individuals were selected as case stud-
ies for cross-comparison with PCR findings. Amplicon 
sequencing was performed according to published proto-
cols [47] available at https:// nemab iome. ca with modifi-
cations. Twenty nanograms of template DNA was added 
per 30  μl PCR reaction  (Q5® High-Fidelity DNA Poly-
merase, NEB, cat. M0491L) with a mix of ITS-2 prim-
ers containing 0–3 ‘N’ bases and an Illumina adapter 
(10  μM stock) used at recommended concentrations. 
Cycling included 35 cycles as described with primer 
details in Additional file 2: Table S2 with a 98  °C/2 min 
initial denaturation and 72 °C/2 min final extension. PCR 
products were assessed by 1.2% gel electrophoresis as 
described above and purified  (Wizard® SV Gel and PCR 
Clean-Up System, Promega, cat. A9281). Library prep 
and sequencing were performed via NGSelect Amplicon 
2nd PCR service (Eurofins Genomics) on the MiSeq Illu-
mina platform with the 2 × 250 v2 Reagent Kit (Illumina) 
with resulting metrics from trimmed reads (by Cutadapt 
[59]) shown in (Additional file  3: Table  S3). An average 
read depth of 242,720 high-quality reads (range 201,800–
299,860) was achieved.

Bioinformatics analysis
Run quality was assessed by DADA2 [60] and phyloseq 
[61]. Phyloseq was used for comparison purposes only. 
Taxonomic sequence assessments were made in Mothur 
version 1.48.0 (https:// mothur. org/) [62] as described 
previously [47] using pipeline information at nemabiome.
ca. Trimmed reads were merged into contigs 200–450 
base pairs in length and reads containing ambiguities 
removed. Contigs were aligned to a curated nematode 
ITS-2 ribosomal DNA (rDNA) database [63] with a 90% 
sequence similarity cut-off. Non-aligned sequences were 
classified by the k-nearest neighbor algorithm where 
k = 3, with remainders classified to the next taxonomic 
level (i.e., genus level if species matching fails). PCR bias 
correction factors were applied to raw reads including T. 
axei (0.9647), T. colubriformis (1.0239), and H. contortus 
(0.6970) based on recommended protocols at nemabi-
ome.ca from prior optimisations [49].

Data presentation and statistical analyses
Data were tabulated in Microsoft Excel, with all statisti-
cal tests and graphical outputs generated with R (version 
4.0.4 ‘Lost Library Book’) or GraphPad Prism (version 
9.0.0 for Windows, GraphPad Software, San Diego, CA, 
USA). Illustrations and figure layouts were generated in 
 Adobe® Illustrator 2022 (Adobe Inc.). All cost data are 
shown in British pounds (£) and are derived from prices 
paid for reagents at the time of the study.

Results
Baseline goat health assessments
The relationship between health, GIN burden, and GIN 
species, was assessed by measuring signs of disease using 
the FPC, FECs, and by faecal DNA mixed molecular 
methods (Fig. 1). In total, 47 goats were assessed, rang-
ing in age, weight, sex, and pregnancy status across two 
village areas (Fig. 2A). FPC scores taken from individual 
goats included occasional instances of bottle jaw, nasal 
discharge and dag; and variable health status based on 
BCS (median = 2, mean = 1.89) and FAMACHA score 
(median = 2, mean = 2.49), indicative of GIN infections 
causing disease in many individuals (Fig. 2B). Overall, 10 
goats were classified as unhealthy at the time of inspec-
tion, 16 in borderline health, and 21 healthy.

FECs identified a broad range of strongyle eggs (range 
100–19,600, mean = 3457, SD = 4329 EPG) and high coc-
cidial oocyst counts on average (median = 300–1000 
OPG). Overall there were very low levels of Strongyloides 
(median = 0 EPG) and no Trichuris found (Fig. 2C).

Testing low‑resource DNA preservation and DNA 
extraction methods
To enable molecular determination of GIN popula-
tions in lower resource settings, we tested a low-cost 
desiccation approach to preserving faecal DNA by dry-
ing ~ 0.3  g of faeces > 16  h at 68  °C. Desiccation pre-
serves DNA in faeces [64] eliminating the need for 
chemicals or cold-chain infrastructure, but the impact 
of desiccation on GIN egg DNA is unknown. Bulk fae-
cal DNA was purified by a ‘low-resource’ magbead or 
a ‘high-resource’ column DNA extraction kit desig-
nated due to differences in the cost of equipment and 
reagents as well as the need for electricity (Additional 
file  4: Table  S4). The low-resource kit requires lit-
tle to no electricity since the only heating step can 
be performed with a flame and thermometer, while 
a magnetic rack is used for cleaning and purification 
steps. The high-resource column purification kit is 
approximately 3.63 times more expensive per reaction 
and requires more expensive equipment including a 

https://Nemabiome.ca
https://mothur.org/
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mechanical bead-beater and a high-speed centrifuge 
(Additional file  4: Table  S4). There was no difference 
in overall DNA yield between the methods (Additional 
file 8: Fig. S1A), but the low-resource method resulted 
in lower DNA purity (Additional file  8: Fig. S1B). The 
low-resource method also required a short low-speed 
centrifugation step in some samples to remove carry-
over PCR inhibitors that blocked detection of GIN 
DNA in samples with more faecal contamination (Addi-
tional file  8: Fig. S1C, D). However, the coloration of 
faeces during extraction (a measure of homogenisation 
and initial composition), as measured by spectrometry 

(A:600 nm), did not correlate to DNA yield (Additional 
file 8: Fig. S1E).

GIN and other helminth species identification 
by species‑specific PCR
Both the low-resource and high-resource methods of 
extraction were capable of identifying key GIN species 
by Endpoint PCR (Fig.  2D). Four of the nine strongyle 
species tested were identified in the majority of sam-
ples, with near ubiquitous prevalence of H. contortus 
(96%) and T. colubriformis (98%). Some species resulted 
in spurious off-target hits suggesting other similar spe-
cies may be present, but this could also be due to random 

Fig. 2 Individual goat health variation and co‑infection burden. Forty‑seven local breed goats assessed to determine A baseline goat 
demographics, B health as measured by the Five Point  Check© with percentage of at‑risk individuals, C faecal egg counts of eggs per gram (EPG) 
or oocysts per gram (OPG), with OPG defined as 0 = 0, 1 = 1–300, 2 = 300–1000, 3 =  > 1000, and D presence of nematode and other helminths 
in faecal DNA by endpoint PCR with species‑specific primers. Five Point  Check© scores were recorded as binary values (0 = healthy, 1 = needs 
intervention) or standardised scales FAMACHA (1/2 = healthy, 3 = borderline, 4 = needs intervention), BCS (2.5–2 = healthy, 1.5 = borderline, 1 = needs 
intervention). Goat IDs are stacked into contiguous columns for parts A–F (black arrowheads are shown for representation). Percentages from parts 
B–D are detection rates across specimens. For part D, presence was determined by band intensity as viewed by eye with faint bands deemed 
inconclusive and off‑target hits determined by the presence of bands present outside of the expected size range for the target. na = not available
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off-target hits within faecal material (Fig.  2D). Among 
non-strongyle PCR tests, Eimeria was identified in all 
samples where coccidial oocysts were detected by FEC 
(see Fig. 2C, D), but neither F. hepatica nor F. gigantica 
was reliably identified. This may be due to low egg counts 
typical of these parasites in faeces, or these goats may not 
carry patent infections.

For strongyle GIN species, the infection intensity (as 
measured by FEC) was weakly correlated to the num-
ber of GIN species detected when using endpoint PCR 
as well as singleplex semi-quantitative PCR (Additional 
file 8: Fig. S2A, B). Critically, the detection of parasites 

by standard endpoint PCR was not significantly differ-
ent between the low-resource (average 3.15 ± 0.8 spe-
cies detected) and high-resource (average 3.55 ± 0.85 
species detected) DNA extraction methods (t-test, 
P = 0.14). This result did not change when normalising 
GIN detection to infection intensity (Additional file  8: 
Fig. S2C). Overall, generalised correlations comparing 
the detection of GIN species with the strongyle FEC 
identified significant co-occurrence of T. axei alongside 
T. colubriformis and O. columbianum (Additional file 8: 
Fig. S2D). Only O. columbianum was significantly more 

Fig. 3 Cross‑validation of PCR methods to determine GIN infection species composition. PCR methods tested on faecal DNA extractions from Goat 
IDs 1–47 and a negative control = C, subjected to low‑resource or high‑resource extraction methods. Relative abundance analyses performed 
by A endpoint 35‑cycle PCR with unbalanced DNA, B singleplex 29‑cycle semi‑quantitative PCR with 4.8 ng standardised input DNA, C Multiplex 
35‑cycle PCR with 4.8 ng standardised input DNA, and D–F qPCR with standardised 20 ng input DNA. Band intensities determined from normalised 
gel images for A‑C and normalised fluorescence intensity from part D with specimen 42 shown for representation. Direction of band intensity 
scanning shown by white arrowheads. Goat IDs are stacked into contiguous columns for parts A–F (black arrowheads shown for representation)

Table 1 Costs of molecular methods tested

Reagent costs for methods trialled in the studies listed include the number of species targets and the throughput using equipment listed in the table. Consumables 
and equipment costs such as pipette tips and labour costs are not included
a Number of samples processed per run when testing for three species, excluding controls
b Cost of PCR reagents as described in the Methods section
c Cost calculated to check for three species per sample

Method Species tested Targets/RXN 
(reaction)

Replicates/
RXN

Thermocycler Throughput/
runa,c

Cost/RXN b Cost/sampleb,c Cost/runb,c

Endpoint PCR 12 1 1 96‑well MiniAmp Plus 32 £0.21 £0.63 £20.16

Singleplex PCR 4 1 1 96‑well MiniAmp Plus 32 £0.21 £0.63 £20.16

Multiplex PCR 3 3 1 96‑well MiniAmp Plus 96 £0.21 £0.21 £20.16

qPCR 2 1 3 72‑tube Rotor‑Gene Q 8 £0.53 £4.73 £37.80

HRMC Various Various 3 72‑tube Rotor‑Gene Q 24 £0.53 £4.73 £37.80
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likely to be identified in individuals with higher FECs 
(Additional file 8: Fig. S2D).

Relative quantification of GIN co‑infections by low‑cost 
PCR methods
The species composition of GIN infra-populations was 
assessed using several low-cost PCR techniques as com-
pared to qPCR (Fig.  3; Table  1). Of the different PCR 
methods tested, multiplex semi-quantitative PCR was 
the most economical and the highest throughput capable 
of detecting the relative abundance of three GIN species 
for one-third of the cost of singleplex PCR and 22.5 times 
less than qPCR methods (Table 1).

The relative abundance of the most commonly iden-
tified GIN species was assessed by PCR product band 
intensity on agarose gels, including endpoint PCR 
(Fig.  3A), singleplex semi-quantitative PCR (Fig.  3B), 
and multiplex semi-quantitative PCR (Fig.  3C) tech-
niques. Singleplex PCR and multiplex PCR methods were 
compared to pan-nematode ITS-2 PCR product band 
intensities, which varied between samples (Fig.  3B, C). 
Haemonchus contortus was the most prevalent species 
identified across all semi-quantitative PCR methods and 
was also the dominant species in the majority of samples. 
However, samples differed in the relative abundance of 
different species identified, and cases of T. colubriformis 
dominance over H. contortus were generally concordant 
between the two semi-quantitative PCR methods.

To test whether semi-quantitative methods were 
accurate, qPCR was performed on a representative sub-
set of samples to determine the relative abundance of 
H. contortus versus T. colubriformis as these two spe-
cies predominated in almost all individuals (Fig.  3D, F). 
The relative abundance of parasite DNA determined by 

semi-quantitative PCR methods was cross-validated 
against qPCR findings, focusing on H. contortus and T. 
colubriformis (Fig. 4A). All of the standard PCR methods 
significantly correlated to qPCR findings, including the 
endpoint PCR method, indicating that even non-quanti-
tative PCR may provide a generalised view of the relative 
abundance among different GIN species. Of these meth-
ods, the multiplex method was the best fit compared to 
qPCR (Fig. 4A) but also suffered from drop-out, failing to 
identify some species in some samples compared to the 
endpoint method.

The relative proportion of GINs across goats was 
assessed using the endpoint PCR method, identifying the 
most abundant species to be H. contortus (51.2% of indi-
vidual goats), T. colubriformis (39.5%), T. axei (2.3%), and 
O. columbianum (2.3%) across the dataset. These results 
were similar to singleplex and multiplex PCR results, 
although proportions differed in terms of PCR product 
band intensity (see Fig. 3A–C).

Assessing HRMC from faecal DNA
To go beyond species-specific PCR to predict predomi-
nant GIN species in a non-target-specific manner, we 
utilised pan-nematode ITS-2 primers to produce a PCR 
product pool for all target species (see Additional file 2: 
Table S2). In this instance, HRMC can present a means 
to assess specific targets by their relative peaks, as has 
been demonstrated for other helminths [40, 41]. How-
ever, this technique has not been tested in the context of 
faecal DNA screening, or in conditions where unknown 
co-infections occur. A subset of 15 samples revealed dis-
tinct melt curve patterns in cases of H. contortus-domi-
nant versus Trichostrongylus-dominant infections (Fig. 5; 
Additional file  8: Fig. S3). Haemonchus contortus was 
associated with a peak at ≈79.76  °C (see Fig.  5A) while 
Trichostrongylus species were associated with peaks at 
≈78.59  °C and ≈81.58  °C (Fig.  5B, C; Additional file  5: 
Table S5). Overall peaks varied by up to 0.24 °C from the 
average and no clear distinction between Trichostron-
gylus species could be made in this analysis. Also, peaks 
suffered from minor variation between replicates, limit-
ing the utility of specific temperatures marking the pres-
ence of particular species in unknown specimens.

Nemabiome deep amplicon sequencing from faecal DNA
While PCR methods can accurately determine the rela-
tive abundance of specific GIN species, the number of 
detectable species is limited to the number of primers 
or probes used. To see whether other GIN species are 
present in goat faecal DNA, and to measure the rela-
tive proportion of reads from each species, we turned 
to nemabiome deep amplicon sequencing for a subset of 
samples as well as a pooled sample from all 47 individuals 

Fig. 4 Cross‑validation of PCR techniques. Regression 
cross‑validation of standard PCR approaches versus qPCR using 
H. contortus versus T. colubriformis relative abundance. *P < 0.05, 
**P < 0.01, ***P < 0.001
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(Fig.  6). Nemabiome reads as assessed by the Mothur 
pipeline revealed the four main species identified by 
PCR (H. contortus, T. axei, T. colubriformis, O. columbi-
anum) to be by far the most common species detected 
by nemabiome representing 91.45% of reads from the 
pooled DNA sample (Fig.  6A). Haemonchus contortus 
was the most abundant GIN from the pooled sample rep-
resenting 51.3% of reads. However, among Trichostron-
gylus species 28% of reads could not be determined to 
species level, accounting for 8.54% of total reads for the 
pooled sample. The proportion of unclassified Trichos-
trongylus species differed between samples but made just 
over 25% of reads in samples 19 and 42 (Fig. 6A). Clas-
sifying taxa using the DADA2 pipeline with IDTAXA 
resulted in all Trichostrongylus reads assigned to either 

T. axei or T. colubriformis (Additional file  8: Fig. S4A). 
Comparing the two pipelines revealed almost all unspe-
ciated Trichostrongylus reads from Mothur to be classi-
fied as T. colubriformis by IDTAXA (Additional file  6: 
Table  S6). Conversely, IDTAXA did not identify to spe-
cies the majority of Oesophagostomum reads, which were 
all classified as O. columbianum by Mothur (Additional 
file  6: Table  S6). IDTAXA also classified a small num-
ber of reads as Ostertagia and Spiculopteragia species 
(Additional file  8: Fig. S4; Additional file  6: Table  S6). 
Overall GIN proportion differences between Mothur and 
IDTAXA pipelines were minimal when accounting for 
these differences.

Nemabiome results revealed drastic differences in spe-
cies proportions between individual goats, highlighting 

Fig. 5 High‑resolution melt curves with pan‑nematode ITS‑2 primers. Example samples include A a H. contortus‑dominant infection with a single 
peak at 79.77 °C ± SD 0.04 °C, B a Trichostrongylus‑dominant infection with peaks at 78.63 °C ± SD 0.027 °C and 81.6 °C ± SD 0.052 °C, and C a mixed 
infection with a H. contortus‑associated peak at 79.63 °C ± SD 0.113 °C and a second Trichostrongylus‑associated peak at 81.48 °C ± SD 0.04 °C. Insets 
show relative species abundance (as percentage) from EP  endpoint PCR, SP singleplex PCR, MP multiplex PCR, and Q qPCR analyses where H con  H. 
contortus, T col  T. colubriformis, O col  O. columbianum 

Fig. 6 Nemabiome ITS‑2 amplicon sequencing of faecal DNA. A Mothur‑resolved proportional GIN species and unresolved Trichostrongylus species 
from select goat samples as well as pooled DNA from all goat samples. B Bray–Curtis non‑metric multidimensional scaling (NMDS) clusters coloured 
by most abundant species detected by DADA2
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differences in GIN infra-population composition 
(Fig. 6A). To assess whether co-infections follow specific 
signatures, we performed non-metric multidimensional 
scaling (NMDS) from DADA2 analyses (Fig. 6B). Despite 
the small number of species identified distinct clusters 
formed, which appeared to be determined by the most 
abundant species detected.

Validating low‑cost PCR methods and HRMC analyses 
with nemabiome results
To validate PCR strategies used, species proportions were 
cross-correlated between quantitative PCR approaches 
and nemabiome results using the Mothur pipeline (Fig. 7) 
or the DADA2 pipeline with IDTAXA (Additional file 8: 
Fig. S5). All species predicted by PCR were significantly 
correlated to both nemabiome pipelines. The main dif-
ferences in relative detection were associated with T. 
colubriformis which could be skewed due to differences 
in Trichostrongylus read classification between pipelines. 
Predictive proportions were most accurate for H. contor-
tus for singleplex PCR (Fig. 7A) and T. axei for multiplex 
PCR (Fig. 7B; Additional file 8: Fig. S5A). qPCR was also 
highly correlated to both nemabiome pipelines but some-
what overestimated T. colubriformis abundance (Fig. 7C; 
Additional file 8: Fig. S5B).

Discussion
At the current time, the utility of molecular techniques 
for monitoring veterinary parasites is limited in low-
resource subsistence farming areas as well as in most 
commercial livestock settings [1–3]. In the present 
study, we demonstrate the utility of combining low-
resource GIN monitoring techniques (FPC and FECs) 

with molecular diagnostics on heat-desiccated preserved 
faeces and explore molecular options to determine the 
presence and abundance of different parasite species. In-
depth molecular assessment of GINs typically requires 
culture and isolation of L3 larvae, which can then be pre-
served in ethanol [47], but eggs and L1 larvae are also 
sufficient for analysis and can avoid potential biases in 
larval hatching [49]. However, extraction and purifica-
tion of eggs or larvae takes time and requires fresh fae-
cal samples. Rural communities and resource-poor areas 
may not have the capacity to process fresh samples and 
may also lack immediate access to clean ethanol or other 
preservatives which do not interfere with DNA quality. 
To develop a protocol which is as amenable as possible 
to rural settings, we turned to heat desiccation, which 
can be performed via a number of chemical- and electri-
cal-free means such as by sunlight or heating over a low 
flame.

Desiccation is a proven means of preserving DNA from 
faeces [64] and blood [65], but has yet to be utilised to 
measure GINs. Faecal DNA extractions have been shown 
to predict infection burden [32–34] and detect as low as 
500  fg of parasite DNA [35] or 10 EPG [33] and can be 
more sensitive than FEC for detection and quantitation 
of GIN infections [35]. In this study, GINs could be iden-
tified from all individuals, demonstrating that parasite 
DNA is preserved effectively by desiccation (see Fig. 2). 
Since these are natural infections, determining the limit 
of parasite detection was not possible, but a correlation 
was identified between FEC and the number of strongyle 
species detected (see Additional file 8: Fig. S2A, B).

Collection of faecal material can facilitate biobank-
ing, but low-cost and low-resource methods are also 

Fig. 7 Nemabiome validation of quantitative PCR and HRMC analyses. Cross‑validation of PCR methods to nemabiome species proportions 
normalised to number of species tested including A singleplex semi‑quantitative PCR with four species, B multiplex semi‑quantitative PCR 
with three species, and C qPCR with two species. *P < 0.05, **P < 0.01, ***P < 0.001
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needed to enable the study of goat health in develop-
ing countries. Molecular diagnostics differ drastically 
in cost, throughput, and ability to quantify outputs (see 
Additional file  2: Table  S2; Additional file  4: Table  S4). 
To this end, this study compared low-resource magbead 
and high-resource spin-column extraction methods, 
with the high-resource method yielding higher-quality 
DNA (Additional file 8: Fig. S1B). Despite differences in 
resources required, there were no noticeably different 
results regarding species identification among different 
DNA extraction methods used on the same goat popula-
tion (Additional file  8: Fig. S2C). Since there were con-
siderable differences in overall costs among the methods 
tested, the low-resource method produces satisfactory 
results for cases when the high-resource method is out of 
reach. The use of paramagnetic beads for DNA extraction 
from difficult samples also shows promise for ‘kit-free’ 
approaches [66]. However, the low-resource method did 
require centrifugation in some cases to remove carryover 
contaminants and would also require additional quality 
control steps in field or remote lab settings (Additional 
file 8: Fig. S1C, D).

Profiling co-infection species composition typically 
requires advanced and costly molecular methods [34, 
45, 47]. While standard endpoint PCR is conventionally 
considered insufficient for relative quantification of PCR 
targets, we identify that endpoint and simple semi-quan-
titative approaches closely mirror qPCR findings (Fig. 4), 
while being more amenable to increased throughput at 
a lower cost. Both the singleplex and multiplex semi-
quantitative approaches can close the gap for molecular 
detection of parasites and other diseases in cost-limited 
farming systems. Overall, semi-quantitative multiplex 
PCR was the most promising method, as multiplexing 
increased throughput, reduced reagent costs, and was the 
method most comparable to quantitative and sequenc-
ing results. However, in this study we were limited by the 
number of different target species detectable per multi-
plex reaction. Issues of throughput regarding number 
of possible target species could be overcome through 
improved separation of PCR products such as by capil-
lary electrophoresis, which is amenable to low-cost and 
field-applicable labs [67]. In rural or field settings, PCR 
is achievable from solar or battery packs [68, 69] and can 
avoid cold-chain limitations when using freeze-dried 
reagents [70]. Detection of PCR products can also forgo 
electrophoresis entirely in settings with limited elec-
tricity through DNA dipsticks, which are nucleic acid 
lateral flow assays that can be used to detect specific spe-
cies through modified probes [71–73]. There are other, 
more direct alternatives available including LAMP assays 
which have been optimised for GINs and have great 
promise for field settings [38, 39]. Whether dipstick or 

LAMP methods will be cost-effective compared to stand-
ard PCR to detect residual abundance of helminth infec-
tions requires further optimisation.

Validating PCR results by nemabiome deep amplicon 
sequencing provided the first attempt to use this plat-
form to assess GIN infections in African small ruminants 
and revealed infections to be dominated by H. contortus 
in the majority of individuals, but some individuals were 
potentially more heavily infected with T. axei or T. colu-
briformis. Interestingly, performing nemabiome on desic-
cated faecal samples resulted in high-quality reads and as 
such, DNA degradation was minimal following desicca-
tion and preservation. This method may prove useful to 
survey wildlife faecal samples when chemical preserva-
tives are out of reach. Overall, nemabiome results mir-
rored PCR results and did not reveal any other highly 
present GIN species. As such, semi-quantitative PCR 
may be a sufficient route to determine parasite popula-
tions in low-resource settings. It should be noted that 
nemabiome style amplicon sequencing can offer distinct 
advantages over species-specific PCR, principally the 
capacity to detect novel and unaccounted-for species 
that may be present in a sample. However, the cost of 
performing amplicon sequencing will always be far more 
expensive than PCR alone, since amplicon sequencing 
relies on initial production of amplicons through multi-
ple rounds of PCR, in addition to PCR product clean-up, 
quality control steps, library preparation, sequencing, 
and downstream bioinformatics analyses.

In addition to PCR and qPCR techniques, HRMC anal-
yses were performed using pan-nematode ITS-2 prim-
ers which should amplify strongyle GIN species equally 
and avoid biases such as primer binding and PCR prod-
uct size impact that can occur between primer sets and 
probes on mixed DNA samples. HRMC can also provide 
a semi-quantitative picture of parasitic nematode identi-
fication when PCR products from different species have 
distinct melting temperatures due to sequence variation 
[41, 74]. HRMC has recently been utilised to distinguish 
Trichostrongylus species [40], as well as H. contortus 
alongside other GINs from sheep [41]. In this study, we 
identify distinct melt curves for high H. contortus and T. 
colubriformis samples (see Additional file  5: Table  S5), 
but the addition of other species or mixes of species 
resulted in melt temperature shifts which could not be 
rationally deciphered in this dataset as compared to more 
controlled studies. While HRMC is more expensive than 
traditional PCR techniques, it can save costs overall by 
reducing tube numbers required for the detection of dif-
ferent species compared to qPCR (see Table 1).

The use of field-applicable techniques to monitor goat 
health and parasite burden can have lasting impacts on 
sustainable livestock farming systems. Localised goat 
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breeds are an invaluable asset to global food security, but 
determining co-infection burden along with GIN spe-
cies composition is essential to understand the potential 
limiting impacts of parasites on local breed production 
and guide intervention decisions. This is valuable con-
sidering GIN species have differential impacts on goat 
heath. For instance, the hematophagous H. contortus is 
highly fecund and can cause anaemia and death in heav-
ily infected or susceptible small ruminants [31, 75], while 
O. columbianum is a far less abundant species, but can 
cause scour and weight loss resulting from intestinal 
nodules [22]. Other GINs such as Trichostrongylus spe-
cies can damage intestinal walls resulting in enteritis and 
loss of protein through haemorrhage of the mucosal lin-
ing, mirroring signs of malnutrition [76, 77]. Knowledge 
of the main GIN species present and variation in species 
composition between individuals and across seasons can 
underpin optimised monitoring systems, for example by 
simplifying the FPC to focus on dominant GIN-driven 
pathologies, and/or support adaptive breed improve-
ment strategies. In some regions, breeding programs 
have focused on improved resistance or resilience to GIN 
species [26, 78, 79]. However, in Malawi, goats can and 
often do succumb to GIN infections (despite being resil-
ient in comparison to Boer and other exotic breed goats) 
with up to 80% of younger adult goats dying due to dis-
eases including helminthiasis [20, 21]. Development of 
GIN-resilient and/or GIN-resistant breeds requires care-
ful monitoring of GIN presence and co-infection, but 
the technology to characterise GIN co-infection burden 
is limited in rural areas. Monitoring of GIN populations 
in Malawi and other low-income areas will be bolstered 
significantly by the introduction of molecular methods 
to determine the spread and abundance of different GIN 
species. This is especially important since FPC and FEC 
offer a generalised view of the GIN infection intensity or 
burden of infection [27, 37] but are unable to determine 
the relative abundance of different species present by egg 
morphology alone. As such, monitoring of specific spe-
cies can aid monitoring and breeding programs alike, 
and also improve the accuracy of tests for anthelmintic 
drug resistance based on FEC, which are confounded by 
mixed species infections [80]. The use of a single pellet 
sample limits the amount of faeces required while fairly 
reflecting overall egg output [81], whereas preservation 
by desiccation and use of conventional PCR technology 
greatly improves the accessibility of the method, espe-
cially in remote or rudimentary settings. Overall, chemi-
cal-free biobanking of samples with later DNA extraction 
and low-cost PCR diagnostics will enable monitoring not 
only of goat GINs but potentially of other parasitic hel-
minths in remote settings.

Conclusions
We find that heat-desiccated faeces not only retains 
high-quality DNA but also enables quantitative detec-
tion of various parasitic species by PCR, qPCR, HRMC, 
and deep amplicon sequencing (nemabiome) analyses. 
Lower-cost semi-quantitative methods also highly corre-
late to more expensive methods and may prove valuable 
for use in species-specific diagnostics from rural or low-
resource biobanked samples. Low-cost techniques can 
also link GIN co-infection compositions to health checks 
and goat performance data to identify underlying causes 
of livestock losses. Given the diverse nature of infections 
in livestock and wildlife, further study is needed to tai-
lor these methods for the surveillance and monitoring of 
parasites and possibly host genetic traits in rural areas.
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