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Abstract 

Background Triatomines are blood‑sucking insects capable of transmitting Trypanosoma cruzi, the parasite 
that causes Chagas disease in humans. Vectorial transmission entails an infected triatomine feeding on a vertebrate 
host, release of triatomine infective dejections, and host infection by the entry of parasites through mucous mem‑
branes, skin abrasions, or the biting site; therefore, transmission to humans is related to the triatomine–human con‑
tact. In this cross‑sectional study, we evaluated whether humans were detected in the diet of three sylvatic triatomine 
species (Mepraia parapatrica, Mepraia spinolai, and Triatoma infestans) present in the semiarid–Mediterranean ecosys‑
tem of Chile.

Methods We used triatomines collected from 32 sites across 1100 km, with an overall T. cruzi infection frequency 
of 47.1% (N = 4287 total specimens) by conventional PCR or qPCR. First, we amplified the vertebrate cytochrome b 
gene (cytb) from all DNA samples obtained from triatomine intestinal contents. Then, we sequenced cytb‑positive PCR 
products in pools of 10–20 triatomines each, grouped by site. The filtered sequences were grouped into amplicon 
sequence variants (ASVs) with a minimum abundance of 100 reads. ASVs were identified by selecting the best BLASTn 
match against the NCBI nucleotide database.

Results Overall, 16 mammal (including human), 14 bird, and seven reptile species were identified in the diet of syl‑
vatic triatomines. Humans were part of the diet of all analyzed triatomine species, and it was detected in 19 sites 
representing 12.19% of the sequences.

Conclusions Sylvatic triatomine species from Chile feed on a variety of vertebrate species; many of them are 
detected here for the first time in their diet. Our results highlight that the sylvatic triatomine–human contact is note‑
worthy. Education must be enforced for local inhabitants, workers, and tourists arriving in endemic areas to avoid 
or minimize the risk of exposure to Chagas disease vectors.
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Background
The study of the dietary composition in sylvatic vectors 
of zoonotic pathogens is particularly relevant for public 
health because it provides indirect evidence about the 
host species involved in the maintenance of endemic 
vector-borne infections [1–3]. Triatomines (Hemiptera: 
Reduviidae: Triatominae) are hematophagous vector 
species, commonly known as kissing bugs, capable of 
transmitting Trypanosoma cruzi (Kinetoplastea: Trypa-
nosomatidae), the parasite that causes Chagas disease 
[4]. The transmission cycle involves feeding of an infected 
triatomine on a vertebrate host species, the release of its 
infective dejections, and the posterior parasitic infection 
of the host’s mucous membranes, skin abrasions, or the 
biting site [5]. In addition, oral transmission has been 
described as an important route of infection, by acciden-
tal consumption of insects or their feces in humans, by 
entomophagy in insectivorous mammals, or as a defen-
sive measure against the triatomine bite in other mammal 
species [6]. Therefore, transmission to humans is related 
to the triatomine–human contact frequency [7, 8].

In north-central Chile, there are four described tri-
atomine species, all reported as infected with T. cruzi: the 
sylvatic diurnal species Mepraia spinolai, Mepraia gajar-
doi, and Mepraia parapatrica, and the nocturnal spe-
cies Triatoma infestans [9–12]. Additionally, 25 mammal 
species (14 native and 11 exotic) and four lizard species 
have also been described infected with T. cruzi [12–15]. 
The main sylvatic vector of T. cruzi (between ~ 26.5° and 
34° S) is M. spinolai [16, 17], an abundant species whose 
preferred microhabitats include rocky outcrops, rock 
piles, burrows, and bromeliads, but it has also been found 
near human settlements and inside rural houses [18–22]. 
Along its geographical distribution, M. spinolai popula-
tions show T. cruzi infection prevalence ranging from 
1.3% to 99.0% [22]. However, prevalence and popula-
tion abundance vary temporally and spatially depending 
on the local ecological characteristics of the prospected 
sites (e.g., vertebrate composition) and climatic features 
[17, 22–24]. Mepraia spinolai feeds mostly on native 
mammals and birds [25–29]. The native rodents Octodon 
degus and Phyllotis darwini have been found infected by 
T. cruzi and they are described as the most important 
feeding sources of M. spinolai [26–30, 17]. However, 
inside houses, humans are the most frequently detected 
feeding source, followed by domestic animals [31]. Most 
previous studies have assessed the feeding profile of M. 
spinolai in a few specific localities, targeting specific host 
species in the search process and, therefore, describing 
only a part of the whole spectrum of vertebrate species 
included as prey throughout its distribution.

Mepraia gajardoi and M. parapatrica inhabit coastal 
and insular areas between 18° and 26° S [16, 32, 33]. Both 

species present low population abundance and can be 
found under rocks and associated with fishermen’s dwell-
ings. Their T. cruzi infection prevalence ranges from 5.8 
to 71.4%, depending on the prospected location [10, 11, 
32, 34, 35]. A serological study showed that on the Pan 
de Azúcar island (26°09′ S, 70°39′ W), specimens of M. 
parapatrica had fed on marine birds (78%), sea mammals 
(15%), and reptiles (7%) [36], but not on humans. Moreo-
ver, a recent DNA-based detection study carried out on 
the same island and nearby coastal locations, showed that 
61.3% of the blood meal sources corresponded to two liz-
ard species (Microlophus atacamensis and Garthia gau-
dichaudii), 35.5% to three mammal species (the rodents 
Mus musculus and Abrothrix olivaceus, and human), and 
3.2% to one bird species (the vulture Cathartes aura) 
[35]. These results highlight the importance of testing for 
the participation of humans in the kissing bugs’ diet in 
other localities where these species are occurring, espe-
cially near human settlements.

Triatoma infestans used to be associated with the 
domestic cycle of transmission of T. cruzi, due to the 
widespread colonies inside houses across the country, 
where it fed on humans and domestic animals. Currently, 
this species has been controlled by a sustained campaign 
of residual insecticide spraying in human dwellings, and 
mainly flying adults are reported invading houses within 
the endemic area of Chagas disease [37]. Domiciliary 
findings of this species show between 20 and 70% of T. 
cruzi infection [38]. The origin of these individuals is sup-
posed to be sylvatic foci, and they have been reported 
in bromeliads and rock piles [19, 20, 39]. Infection by 
T. cruzi in these sylvatic specimens varies, with reports 
ranging from 25 to 41% [12, 19, 20]. Despite the relevance 
of studying blood-feeding sources of sylvatic T. infestans, 
there is no published information describing their diet in 
Chilean foci.

Trypanosoma cruzi infection has been detected 
mainly in people from rural and suburban areas of 
Chile, between 18°30′ and 34°16′ S [40]. Chagas disease 
prevalence in children and house infestation rates have 
dropped substantially in the past two decades [41]. Even 
though Chilean intradomiciliary vector-borne transmis-
sion of T. cruzi by T. infestans was declared interrupted 
in 1999, sylvatic triatomine vectors are still an impor-
tant problem in rural areas [38, 41, 42], which has main-
tained the endemicity of the disease in the country. Thus, 
the description of the whole spectrum of natural hosts 
should be a priority in public health programs, especially 
considering the current human infection prevalence 
of 1.2% by immunoglobulin G (IgG) seropositivity and 
that ~ 800,000 people are at risk of infection in Chile [43].

Most studies reporting the feeding profile of tri-
atomines have used immunological techniques (e.g., 
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enzyme-linked immunosorbent assay [ELISA]), and only 
in the last decade DNA-based identification of blood 
meal sources (e.g., high-resolution melting, Sanger 
sequencing, next-generation sequencing [NGS]) has 
been implemented to describe the diet of these vectors 
[28, 29, 35, 44–49]. In the present study, we use DNA-
based blood meal source detection, aiming to (i) iden-
tify the vertebrate species included in the diet of sylvatic 
triatomines from most endemic areas of Chile, and (ii) 
evaluate the frequency of humans in the diet. This infor-
mation will characterize for the first time the whole 
spectrum of vertebrate species acting as prey of sylvatic 
triatomines, provide an indirect triatomine–human con-
tact frequency, and report the potential vertebrate spe-
cies involved in the transmission cycle and maintenance 
of T. cruzi in Chile.

Methods
Study sites and triatomine samples
In this cross-sectional study, we assessed the feeding 
profile of 32 sylvatic triatomine populations, across 

1100  km in the arid-semiarid-Mediterranean ecosys-
tems of the Pacific side of southern South America, 
Chile (23°25′ to 33°26′ S; Fig. 1). Triatomines were col-
lected during summer, from 2014 to 2020. Twenty-one 
populations were analyzed as part of previous research 
studies (18 from M. spinolai [N = 2992], two from M. 
parapatrica [N = 87] and one Mepraia sp. popula-
tion [N = 38]; sample size per population is shown in 
Additional file 1: Table S1 [22, 32, 35]), and 11 popula-
tions were sampled/analyzed for the present study (10 
from M. spinolai [N = 1116] and one from T. infestans 
[N = 54], sample size per population is shown in Addi-
tional file  1: Table  S1). In each study site, Mepraia 
specimens were manually collected for 3–5  days dur-
ing the daytime (10:00–18:00) by trained researchers 
using appropriate clothing to avoid triatomine–human 
contact. Triatoma infestans were collected in a single 
site, during one night (19:00–09:00), using 85 yeast-
baited traps placed underneath bromeliads [12]. Col-
lected specimens were individually stored and frozen at 
−20 °C until processing.

Fig. 1 Location of the study sites with presence of sylvatic triatomines in north‑central Chile, South America. Blue circles of Mepraia parapatrica 
include one Mepraia sp. population. Authors’ own map produced using QGIS
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Sampling procedures were authorized by the Corpo-
ración Nacional Forestal (CONAF) from the Atacama 
and Coquimbo regions (permit numbers: 049/2017, 
150/2017, 01/2018, 095/2018). This study was con-
ducted in accordance with the guidelines established 
by the Institutional Committee for the Care and Use of 
Animals, University of Chile, Chile (permit number: 
17074-FCS-UCH).

DNA extraction of triatomine intestinal content
Triatomine samples collected for the present study were 
subjected to abdominal extrusion on a clean working area 
to obtain both intestinal content and intestine samples. 
An aliquot of a maximum of 25 mg of each sample was 
mixed with 20 μl of commercial nuclease-free water (Inv-
itrogen™ UltraPure™ Dnase/Rnase-Free Distilled Water).

Whole DNA was isolated from the samples using the 
 DNeasy® Blood & Tissue Kit (QIAGEN, CA, USA). An 
internal amplification control (IAC) was added to each 
sample to assess the presence of inhibitors, consisting 
of 100 pg of Arabidopsis thaliana DNA [50]. The manu-
facturer’s recommendations were followed with a few 
modifications: the samples were centrifuged for 4 min at 
17,000 × g to dry the DNeasy Blood & Tissue Mini spin 
column, and the final elution volume was 100  μl. Sam-
ples were stored at −20 °C until molecular analysis. Tri-
atomine samples from previous studies were processed, 
as previously described in [22, 32, 35] (Additional file 1: 
Table S1).

Trypanosoma cruzi infection in sylvatic triatomine 
populations
Trypanosoma cruzi infection in triatomine samples 
obtained for this study was tested in a  QuantStudio® 
3 real-time polymerase chain reaction (PCR) system 
(Thermo Fisher, USA). All samples were analyzed in 
duplicate using 0.4 µM of T. cruzi nuclear satellite DNA 
primers Cruzi 1 and Cruzi 2 [51], 1× HOT  FIREPol® 
 EvaGreen® qPCR [quantitative PCR] Mix Plus (Solis Bio-
Dyne, Tartu, Estonia), and 5 µl of DNA template in a final 
volume of 20 µl. DNA from two different T. cruzi strains 
(TCI-CYC and TCII-CDMC, kindly provided by Dr. 
Gonzalo Cabrera, Institute of Biomedical Sciences, Fac-
ulty of Medicine, University of Chile, Chile) were used as 
positive control and water instead of DNA as a no-tem-
plate control. Cycling conditions were 15  min at 95  °C 
followed by 50 cycles at 95 °C for 15 s, 65 °C for 20 s, and 
72 °C for 20 s, finishing with a default melting curve. To 
detect false negatives, a real-time PCR assay was con-
ducted amplifying IAC DNA using IAC primers with 
a concentration of 0.4 µM [52] and the same qPCR mix 
previously described. The PCR conditions were 12 min at 
95  °C followed by 40 cycles at 95  °C for 15  s, 64  °C for 

15 s, and 72 °C for 15 s, finishing with a default melting 
curve. Individuals were considered infected when T. cruzi 
and IAC amplified, and the cycle threshold value  (Ct) 
was lower than 42. In addition, positive samples with a 
 Ct higher than 42 were corroborated by electrophoresis, 
searching for the expected 166-base-pair  (bp) amplicon 
[51]. For samples from previous studies, T. cruzi infec-
tion was detected as previously described in [22, 32, 35], 
where 121/122 or Cruzi 1/Cruzi 2 primers were used 
depending on the sampled population (see details in 
Additional file 1: Table S1).

Vertebrate cytochrome b (cytb) DNA detection 
in triatomine samples
To assess the feasibility of blood meal detection, we 
performed a real-time PCR to detect the presence of 
cytb DNA in the triatomine samples from 30 popula-
tions (N = 4200 specimens). For the other two popula-
tions (N = 87 specimens), this assay was performed as 
described in [35]. In Additional file 1, Table S1, the sam-
ple size analyzed per population is indicated (see total 
number of captures). Vertebrate cytb DNA detection was 
carried out in a  QuantStudio® 3 Real-Time PCR System 
(Thermo Fisher, USA). First, samples were analyzed in 
duplicate using 0.5  µM of vertebrate cytb gene primers 
that amplify a 383-bp fragment [53], 1× HOT  FIREPol® 
 EvaGreen® qPCR Mix Plus (Solis BioDyne, Tartu, Esto-
nia), and 2 µl of template in a final volume of 20 µl. Each 
assay included European rabbit (Oryctolagus cuniculus) 
DNA as positive control, and water instead of DNA as 
no-template control. Cycling conditions were 15  min at 
95  °C followed by 40 cycles at 95  °C for 15  s, 60  °C for 
20 s, and 72 °C for 20 s, finishing with a default melting 
curve. The samples with a  Ct value below 34 were consid-
ered feasible for blood meal identification by NGS.

Diet detection by NGS and bioinformatics
For 30 populations, we performed NGS using a pool of 10 
to 20 blood meal samples of randomly chosen triatomine 
specimens for each population, in which vertebrate cytb 
DNA had been previously detected. We included T. 
cruzi infected and uninfected triatomines in equal pro-
portions, when possible. In the other two populations, 
NGS was performed as described in [35] (Additional 
file  1: Table  S1). We performed a diversity assay using 
 bTEFAP® Illumina 20 k on cytb of vertebrates, using the 
same primers described before [53]. The demultiplexed 
reads were filtered using Sickle 1.33 (https:// github. com/ 
ucdav is- bioin forma tics/ sickle; accessed on 28 October 
2021), removing reads shorter than 200  bp or with a 
quality score lower than Q30. We removed adapter and 
primer sequences with CutAdapt 1.18 [54]. We then used 
DADA2 [55] to generate amplicon sequence variants 

https://github.com/ucdavis-bioinformatics/sickle
https://github.com/ucdavis-bioinformatics/sickle


Page 5 of 11San Juan et al. Parasites & Vectors          (2023) 16:225  

(ASVs). ASVs with less than 100 reads of abundance were 
removed [56]. Then, each ASV was compared against 
cytb sequences from the National Center for Biotechnol-
ogy Information (NCBI) database, with the BLASTn tool, 
available at https:// blast. ncbi. nlm. nih. gov/ Blast. cgi. Each 
ASV was assigned to the species corresponding to the 
highest blast score.

Data processing and analysis
Blood-feeding sources for each triatomine species were 
obtained by adding the NGS results from all popula-
tions corresponding to that species (i.e., populations 
from previous studies and those from the present study). 
Additionally, we added the previously reported NGS diet 
detection data from two populations of M. parapatrica 
[35]. The feeding sources were classified into six groups: 
(i) human, considered independently because of its pub-
lic health relevance; (ii) human-associated mammals, 
including livestock (e.g., goats, pigs), pets (e.g., dogs), and 
synanthropic rodents (e.g., rats, mice); (iii) mammals not 
associated with humans, which included native mam-
mals, as well as introduced free-ranging mammals (e.g., 
the European rabbit, European hare); (iv) human-associ-
ated bird species; (v) birds not associated with humans; 
and (vi) reptiles.

Results
Sylvatic triatomine populations and T. cruzi infection
We studied 28  M. spinolai populations (N = 4108 speci-
mens; distance to human settlements: range 59–4574 m 
and mean ± SD = 746 ± 933 m), two M. parapatrica popu-
lations (N = 87 specimens; distance to human settlements: 
range 45–2143  m and mean ± SD = 1094 ± 1484  m), one 
Mepraia sp. population (N = 38 specimens; distance to 
human settlement: 1285 m), and one sylvatic T. infestans 
population (N = 54 specimens; distance to human settle-
ment: 5 m) (Fig. 1). Given that the Mepraia sp. popula-
tion was geographically near to the two M. parapatrica 
populations [33], and all of them were coastal popula-
tions from islands or the continent, they were combined 
for the diet analysis. Trypanosoma cruzi infection fre-
quency ranged from 0.0 to 99.0% for M. spinolai, 20.7 
to 36.8% for M. parapatrica, and 55.6% for T. infestans. 
Details for each population are compiled in Additional 
file 1: Table S1.

Diet by triatomine species
Overall, we obtained between 30,654 and 78,238 reads in 
the 32 sylvatic triatomine populations. Thirty-seven ver-
tebrate species were identified as feeding sources for all 
triatomine species combined, including human, human-
associated mammals (5), not human-associated mammals 
(10), human-associated bird (1), not human-associated 

birds (13), and reptiles (7) (see complete list of ASV assig-
nations in Additional file 2: Table S2). For all populations 
of M. spinolai, the blood-feeding sources included 36 ver-
tebrate species: human, human-associated mammals (5), 
not human-associated mammals (10), human-associated 
bird (1), not human-associated birds (12), and reptiles 
(7) (Fig.  2a). For M. parapatrica populations, a total of 
four vertebrate species were detected (human, one mam-
mal, one bird, and one reptile), and no human-associated 
species was detected (Fig. 2b). Finally, the blood-feeding 
sources of T. infestans included only three vertebrate spe-
cies (human and two not human-associated mammals) 
(Fig.  2c). These three wild triatomine species shared 
only one blood-feeding source in their diet: the human 
(Homo sapiens). A complete list of the vertebrate species 

Fig. 2 Percentage of vertebrate groups in the diet of a Mepraia 
spinolai, b Mepraia parapatrica, and c Triatoma infestans calculated 
as the number of reads of each vertebrate group over the total 
number of reads for each specific triatomine species determined 
by NGS

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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detected as blood-feeding sources per triatomine species 
is included in Table  1 and per triatomine population is 
shown in Additional file 3: Table S3.

When considering the read abundance for each ver-
tebrate group detected as blood-feeding sources for the 
three species combined, humans represented 12.19%; 
human-associated mammals, 4.81%; not human-associ-
ated mammals, 54.67%; human-associated birds 0.01%, 
not human-associated birds, 11.52%; and reptiles, 
16.81%. When analyzing the feeding sources of each tri-
atomine species separately, the most represented verte-
brate group was not human-associated mammals for M. 
spinolai (59.28%), and human for M. parapatrica and T. 
infestans (48.46% and 50.69%, respectively) (Fig.  2). For 
M. spinolai, human DNA represented 6.47%.

The three most represented species in the diet of M. 
spinolai were the mammals Abrocoma bennettii (18.04%), 
P. darwini (13.21%), and O. degus (12.82%). Interest-
ingly, species such as moon-toothed degu (O. lunatus), 
human (H. sapiens), rabbit (O. cuniculus), and three rep-
tiles (Liolaemus fuscus, Gekkota sp., and L. monticola) 
were also represented in a high proportion (see details 
in Table  1). For M. parapatrica, the three most impor-
tant species in the diet were H. sapiens (48.46%), C. aura 
(34.31%), and Thylamys elegans (17.09%). Finally, in T. 
infestans, the only three species present in the diet were 
H. sapiens (50.69%), O. degus (38.01%), and O. cuniculus 
(11.30%).

Discussion
In the last decade, DNA-based identification of blood 
meal sources has been implemented to describe the 
diet of triatomine species. In this study, we used NGS 
to identify the vertebrate species included in the diet of 
three sylvatic triatomine species present in the semiarid-
Mediterranean ecosystem of Chile and evaluated the fre-
quency of humans as their blood-feeding source.

The blood-feeding sources of M. spinolai included the 
six established groups, with mammals not associated 
with humans being the most represented group. Several 
species of wild mammals are known to play crucial roles 
in the maintenance of T. cruzi in the Chilean semiarid-
Mediterranean ecosystem due to their infection fre-
quencies [12, 17], and this group of vertebrates has been 
reported as the most frequent and abundant blood meal 
source in M. spinolai populations, with O. degus and P. 
darwini as the most common [26–28]. In our study, the 
most represented species was A. bennettii, which had not 
been previously described as an important blood source; 
however, this large-sized rodent is closely associated with 
environments where M. spinolai colonies are present, 
using the same burrows dug by O. degus [57]. Their larger 
size and nocturnal habits may compensate their lower 

densities, providing a stable blood meal source in the 
semiarid Mediterranean ecosystem [58].

The European rabbit O. cuniculus, a feral invasive spe-
cies in the Mediterranean ecosystem of Chile [59], rep-
resented almost 5% of the diet of M. spinolai, and it 
deserves special attention. This medium-sized mammal 
has been previously reported as infected by T. cruzi and 
a blood-feeding source in the diet of M. spinolai from dif-
ferent populations [26–28, 60]. It is reported as a feeding 
source particularly for fifth-instar nymphs and adults of 
M. spinolai [29]. Moreover, it has also been proposed as 
a valuable blood-feeding source, due to a positive rela-
tionship between rabbit abundance and population abun-
dance of kissing bugs [22]. This suggests that invasive 
species may become reservoirs of T. cruzi, if susceptible 
to this parasite’s infection.

Three reptile species were detected in the diet of M. 
spinolai. Four lizard species have been recently described 
as naturally infected by T. cruzi [14], with at least one of 
them being capable of transmitting the parasite to kiss-
ing bugs. Therefore, understanding the role of reptiles in 
the maintenance and transmission of T. cruzi in the wild 
cycle is urgent for developing adequate predictive trans-
mission models.

It is important to mention that 11 vertebrate species 
not found in our samples had been detected by NGS, 
Sanger sequencing, and/or high-resolution melting in M. 
spinolai populations as reported in other studies [28, 29, 
31]. These species include the lizard Liolaemus pseudol-
emniscatus, the native birds Mimus thenca and Systellura 
longirostris, the  native rodents Abrothrix longipilis and 
Oligoryzomys longicaudatus, the fox Lycalopex culpaeus, 
the  domestic cat Felis  catus,  cattle Bos taurus, horse 
Equus caballus, donkey Equus asinus, and sheep Ovis 
aries [28, 29, 31]. It is possible that these species were 
part of the diet of some of our M. spinolai populations, 
but due to the random sampling method used to assess 
the blood meal source by NGS, they were not detected. 
The presence of domestic animals in one of those studies 
could be related to their proximity to human settlements; 
in our study, M. spinolai populations were on aver-
age > 740 m from the domicile, so a lower representation 
of human-associated animals was expected.

In the case of the blood-feeding sources of M. parapa-
trica, four out of the six established groups were identi-
fied. Aside from humans, all species corresponded to 
animal groups not associated with humans (one mam-
mal, one bird, and one reptile species). In addition to 
Quiroga et al. [35], only one report [36] studied the diet 
of M. parapatrica (originally referred to as M. spinolai 
by [36]), and humans were not part of this kissing bug’s 
diet. However, other vertebrate species such as the snake 
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Table 1 Vertebrate species detected by NGS as a blood‑feeding source of each sylvatic triatomine species shown by group 
classification

H humans, MAH/M mammals associated/not associated to humans, BAH/B birds associated and not associated to humans, R reptiles. The percentage of each 
vertebrate species in the diet was obtained from the number of reads for that specific vertebrate over the total reads of vertebrates within each triatomine species
a First detection in the diet of that sylvatic triatomine species in Chile

Triatomine species Group Order Scientific name % diet

M. parapatrica H Primates Homo sapiens 48.46

B Accipitriformes Cathartes aura 34.31

M Didelphimorphia Thylamys elegansa 17.09

R Squamata Gekkota sp. 0.14

M. spinolai M Rodentia Abrocoma bennettii 18.04

M Rodentia Phyllotis darwini 13.21

M Rodentia Octodon degus 12.82

M Rodentia Octodon lunatusa 7.39

R Squamata Liolaemus fuscusa 7.06

H Primates Homo sapiens 6.47

R Squamata Gekkota sp. 5.20

M Lagomorpha Oryctolagus cuniculus 4.77

R Squamata Liolaemus monticolaa 4.06

M Rodentia Phyllotis limatusa 2.94

B Passeriformes Tyrannides sp. 2.42

R Squamata Iguanidae sp. 2.14

MAH Carnivora Canis lupus familiaris 2.02

MAH Rodentia Mus musculus 1.87

B Passeriformes Sicalis olivascensa 1.69

MAH Artiodactyla Capra hircus 1.61

B Passeriformes Phrygilus alaudinusa 1.47

B Passeriformes Icteridae sp. 1.38

R Squamata Liolaemus nitidus 0.82

B Passeriformes Turdidae sp. 0.78

B Passeriformes Diuca diucaa 0.77

B Passeriformes Agriornis lividusa 0.31

B Passeriformes Pteroptochos sp.a 0.27

B Accipitriformes Vultur gryphusa 0.12

R Squamata Liolaemus platei 0.08

R Squamata Pleurodonta sp. 0.06

M Rodentia Sigmodontidae sp. 0.05

B Galliformes Callipepla californicaa 0.05

MAH Artiodactyla Sus scrofaa 0.03

M Lagomorpha Lepus europaeusa 0.02

MAH Rodentia Rattus rattus 0.02

B Passeriformes Muscisaxicola rufivertexa 0.01

B Passeriformes Pseudasthenes humicolaa 0.01

M Didelphimorphia Thylamys elegans 0.01

M Rodentia Abrothrix olivaceus 0.01

BAH Galliformes Gallus gallus 0.01

T. infestans H Primates Homo sapiens 50.69

M Rodentia Octodon degusa 38.01

M Lagomorpha Oryctolagus cuniculus 11.30
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Tachymenis peruviana, seabirds, and marine mammals 
were detected.

Regarding the blood-feeding sources of T. infestans 
from a sylvatic focus, only a few species were detected, 
probably as the result of sampling only one population, 
which has been studied intermittently since its discovery 
in 2003 [19]. Both synanthropic and wild mammals have 
been associated with T. infestans Chilean foci [12, 61]. In 
our study, only three species were found in the diet of T. 
infestans: humans and two from the group of mammals 
not associated with humans (O. degus and O. cuniculus). 
Within the few studies reporting the feeding sources of 
wild T. infestans populations from Bolivia, rodents were 
the most detected mammals; bird and reptile species 
were also represented but to a lesser extent [62].

One of the most relevant epidemiological findings 
of our study is that the only common species as a feed-
ing source among the three triatomine species was H. 
sapiens, found in different proportions for each species, 
but always present in their diet. In M. spinolai, the fre-
quency/proportion of humans in the diet was low when 
compared against sylvatic triatomine species from other 
ecosystems of South America [46, 62, 63]. On the other 
hand, humans represented almost 50% of the  blood-feed-
ing sources for M. parapatrica and T. infestans, placing 
them as the sylvatic triatomine species with the highest 
representation of humans in their diet compared to pre-
vious studies carried out in South America [46, 62, 63]. In 
Chile, T. infestans was the main vector of T. cruzi inside 
human dwellings during the twentieth century [40], and 
human has recently been reported as the most frequent 
feeding source for domiciliated triatomines from Argen-
tina [8]. According to our results, humans could also be 
the most relevant feeding source for sylvatic T. infestans 
in Chile. This high representation of humans in their diet 
might be the result of T. infestans individuals traveling to 
nearby human dwellings and returning to their refuges 
[64]. The presence of humans in the diet of M. parapat-
rica is probably the result of triatomine invasion of fish-
ermen’s dwellings or tourist’ tents, warning about the 
epidemiological risk of these sylvatic triatomine bugs in 
coastal areas of northern Chile [35].

Sylvatic triatomine species from Chile feed on a vari-
ety of vertebrate species, and many of them are detected 
here for the first time in their diet. NGS may also pro-
vide updated information on host geographical distri-
bution. The blood-feeding sources detected by NGS 
included humans as a relevant part of the kissing bugs’ 
diet. This finding, coupled with the high frequency of T. 
cruzi infection previously reported in some populations 
of sylvatic triatomine species in Chile [12, 22, 35] should 
be cause for concern. The high participation of humans 
in the diet of M. parapatrica (48.46%) and T. infestans 

(50.69%) could be an effect of sample size, given by the 
lower number of sampled populations compared to other 
reports. On the other hand, the M. spinolai diet is based 
on a large sample size and human representation was 
much lower (6.47%). However, because of the wide geo-
graphical distribution and high population abundance of 
M. spinolai, we support the longstanding idea that this 
species should be monitored, especially considering that 
constant home invasions are reported to the health ser-
vices from rural areas [21]. Future studies should attempt 
individually based triatomine diet analyses, assessing 
seasonal variations in the diet and evaluating associated 
anthropic factors to relate them with the presence of 
humans in the diet of sylvatic triatomines. Moreover, to 
assess whether there is parasite transmission occurring as 
a result of these host–triatomine contacts, both human 
populations living near triatomine foci and other poten-
tial hosts—as detected by the feeding sources—should be 
included in T. cruzi infection studies, to be able to deter-
mine whether transmission is zoonotic or enzootic.

Conclusions
Sylvatic triatomine species present in Chile feed on a 
variety of vertebrate species, including 16 mammals, 14 
birds, and seven reptiles. Human is part of the diet of all 
the analyzed triatomine species, representing 12.19% of 
the blood-feeding source. Our results based on verte-
brate host DNA detection highlight that the sylvatic tri-
atomine–human contact is noteworthy and provide an 
updated and comprehensive snapshot of the blood-feed-
ing sources of Chilean sylvatic triatomines.
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