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Abstract 

Background  Fasciolosis (Fasciola hepatica) and paramphistomosis (Calicophoron daubneyi) are two important infec-
tions of livestock. Calicophoron daubneyi is the predominant Paramphistomidae species in Europe, and its preva-
lence has increased in the last 10–15 years. In Italy, evidence suggests that the prevalence of F. hepatica in ruminants 
is low in the southern part, but C. daubneyi has been recently reported at high prevalence in the same area. Given 
the importance of reliable tools for liver and rumen fluke diagnosis in ruminants, this study evaluated the diagnostic 
performance of the Mini-FLOTAC (MF), Flukefinder® (FF) and sedimentation (SED) techniques to detect and quantify F. 
hepatica and C. daubneyi eggs using spiked and naturally infected cattle faecal samples.

Methods  Briefly, negative bovine faecal samples were artificially spiked with either F. hepatica or C. daubneyi eggs 
to achieve different egg count levels: 10, 50 and 100 eggs per gram (EPG) of faeces. Moreover, ten naturally infected 
cattle farms from southern Italy with either F. hepatica and/or C. daubneyi were selected. For each farm, the samples 
were analysed individually only with MF technique and as pools using MF, FF and SED techniques. Bayesian latent 
class analysis (LCA) was used to estimate sensitivity and accuracy of the predicted intensity of infection as well 
as the infection rate in the naturally infected farms.

Results  The outcome of this study showed that the highest number of eggs (F. hepatica and C. daubneyi) recovered 
was obtained with MF, followed by FF and SED in spiked infected samples at 50 and 100 EPG, while at lower infection 
levels of 10 EPG, FF gave the best results. Moreover, the sensitivity for all the techniques included in the study was esti-
mated at > 90% at infection levels > 20 EPG for both F. hepatica and C. daubneyi eggs. However, MF was the most 
accurate of the three techniques evaluated to estimate fluke infection intensity. Nevertheless, all three techniques can 
potentially estimate infection rate at farm level accurately.

Conclusions  Optimization and standardization of techniques are needed to improve the FEC of fluke eggs.
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Background
Among the parasitic helminths that freshwater snails (e.g. 
Galba truncatula) can transmit, Fasciola hepatica (liver 
fluke) and Calicophoron daubneyi (rumen fluke) are wide 
distributed in temperate countries. Fasciolosis is highly 
endemic mainly in Western Europe [1–4], causing losses 
of production with significant costs at > $3 billion per 
year for the global livestock farming business [5].

Paramphistomosis is considered an emerging parasitic 
disease of ruminants in Europe [6]. Over the last 20 years, 
its incidence and prevalence have increased significantly 
in Europe and many outbreaks of clinical manifestation 
have been reported in different countries mainly induced 
by C. daubneyi, the predominant Paramphistomidae 
species in Europe [7–11]. Clinical paramphistomosis is 
mostly caused by a large burden of juvenile flukes in the 
small intestine of the infected host, as adult parasites, 
generally located in rumen and reticulum, are quite well 
tolerated [12].

In Italy the prevalence of F. hepatica in ruminants 
appears to be low (0.7–6.0% in sheep and 0.9–7.8% in 
cattle); however C. daubneyi has been recently reported 
at high prevalence (4.5–51.1% in sheep and 9.6–60.9% in 
cattle) in the same area [13–15].

Diagnosis is very important in performing the most 
effective programmes for fasciolosis and paramphisto-
mosis control [16].

The results of a survey by Hoyle et  al. [17] revealed 
confusion amongst sheep and/or cattle farmers over the 
diagnosis and control of flukes, highlighting the need 
to provide best practice advice. Diagnosis and monitor-
ing of fasciolosis and paramphistomosis in ruminants 
are challenging. Usually, liver fluke presence informa-
tion on a farm occurs from liver condemnation reports 
[18], which are based on visual inspections at abattoirs, 
but these procedures are variable and potentially errone-
ous, because they are not standardized [19]. Several tests 
for ante-mortem diagnosis of flukes exist, but none can 
be considered sufficiently sensitive and specific for use 
in the field [20] as ‘pen-side test’. Coproantigen-based 
techniques are promising tools in fluke diagnosis; they 
showed 100% sensitive to detect experimental ovine fas-
ciolosis and give information about correlation between 
fluke burden and coproantigen amounts [21]. However, 
ELISA-based techniques cannot be used directly on farm 
and have not been validated extensively under field con-
ditions to confirm the sensitivity obtained in experimen-
tal infections [22].

Fluke  faecal egg counts  (flukeFECs) are, instead, sim-
ple and rapid [19] and can also be performed directly on 
farm, because neither specialist sampling techniques nor 
sophisticated laboratory equipment is required. Fluke-
FECs are routinely used in veterinary parasitic diagno-
sis, with almost 100% specificity, although they are able 
to detect only patent infections [20]. There is no gold-
standard diagnostic tool for fluke infection so often a 
combination of clinical signs, grazing history, serologi-
cal, coproantigen and flukeFECs and/or abattoir reports 
are used to confirm fluke infections. Several variations of 
flukeFECs have been developed, using simple sedimenta-
tion (SED) [23], sedimentation combined with flotation 
[23], sedimentation with fine filtration [24], Flukefinder® 
technique (FF) [25] or flotation with (Mini-) FLOTAC 
techniques [1, 26]. Given the importance of reliable tools 
for liver and rumen fluke diagnosis in ruminants, this 
study aimed to evaluate the diagnostic performance of 
the MF, FF and SED techniques to detect and quantify F. 
hepatica and C. daubneyi eggs using spiked and naturally 
infected cattle faecal samples.

Methods
Egg‑spiked faecal samples
Negative bovine faecal samples were artificially spiked 
with either F. hepatica or C. daubneyi eggs to achieve 
different egg count levels of 10, 50 or 100 eggs per gram 
(EPG) of faeces. The F. hepatica and C. daubneyi posi-
tive and negative faecal samples were collected from 
adult cattle (> 24 months old) in three farms located in 
the Campania region (southern Italy). Naturally infected 
positive samples by one of the two flukes were collected 
from grazing cattle, whilst negative samples were col-
lected from housed dairy cattle without pasture access.

To identify the positive samples for potential egg 
extraction, as well as the negative samples to be experi-
mentally infected, each sample was analysed in five rep-
licates by the FLOTAC basic technique (sensitivity = 94% 
and specificity = 98%) with a detection limit of 1 EPG 
of faeces using zinc sulphate flotation solution (specific 
gravity = 1.35) [14, 27]. The positive cattle were used as 
donors for the extraction of F. hepatica and C. daub-
neyi eggs from faeces, using the egg recovery technique 
described by Bosco et  al. [28] with some modifications. 
Briefly, four sieves of different mesh size (1 mm, 250 μm, 
212 μm and 63 μm) were employed to separate the fluke 
eggs from the faeces. The 63-μm sieve was washed with 
tap water to recover eggs and sedimented in a conical 
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beaker for 4  min. The supernatant was eliminated, and 
the sediment obtained was a purified suspension of eggs. 
The extraction method was used separately for the two 
flukes to obtain mono-infected samples. The purified 
eggs obtained for each fluke were suspended in distilled 
water to determine their concentration by calculating 
the arithmetic mean of egg counts in ten aliquots of 10 μl 
each. Three concentrations of 10, 50 and 100 EPG were 
prepared, adding appropriate egg suspensions to three 
negative faecal samples (helminth free) and homogeniz-
ing them. Six replicates of each sample were analysed 
using the three methods (MF, FF and SED) (Fig. 1).

Naturally infected faecal samples
Ten farms with fluke positive cattle (infections with 
C. daubneyi and/or F. hepatica) in southern Italy were 
selected. These farms were identified from the diagnostic 
activity of the Regional Center for Monitoring Parasitic 
infections (CREMOPAR, Campania region, southern 
Italy).

In each farm, individual faecal samples were collected 
directly from the rectum of 20 adult cattle (> 12 months). 
For each farm, the samples were analysed individually 
only with MF technique and as pools using also FF and 
SED techniques. The four pools of faeces (each consist-
ing of 5 samples) were performed using the protocol 
described by Rinaldi et al. [29] (Fig. 1).

The three copromicroscopic methods were performed 
for both the spiked and the naturally infected samples 

following the manufacturer’s instructions. The faecal egg 
counts (FECs; expressed in EPG) were obtained using a 
multiplication factor of 5 for MF (0.2  g of faeces exam-
ined = 2 ml of faecal suspension which contains 5 g in a 
total volume 50 ml), 0.5 for FF (2 g of faeces examined) 
and 0.1 for SED (10 g of faeces examined) (Table 1).

 Statistical analyses
The sensitivity of the three techniques as well as the accu-
racy in predicting the intensity of infection was estimated 
from the egg-spiked faecal samples. First, the percentage 
recovery of fluke eggs was calculated to assess the accu-
racy of FEC for each technique at each level of egg count, 
using the following formula: % egg recovery = 100 – (true 
FEC – observed FEC)/true FEC × 100 [28]. Moreover, a 
simple model was developed to estimate the overdisper-
sion of the eggs counted with the different techniques, 

Fig. 1  Number of egg-spiked and naturally infected (individually or pooled) faecal samples analysed using Mini-FLOTAC (MF), Flukefinder® (FF) 
and sedimentation (SED) techniques for detection and quantification of Fasciola hepatica and Calicophoron daubneyi eggs

Table 1  Schematic features of Mini-FLOTAC (MF), Flukefinder® 
(FF) and sedimentation (SED) techniques included in the study

FEC techniques Amount of 
faeces used 
(grams)

Quantity of faeces 
examined (grams)

Detection 
limit (EPG) and 
multiplication 
factor

MF 5 0.2 5

FF 2 2 0.5

SED 10 10 0.1
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assuming measurement error is distributed according to 
a negative binomial (such as in Prada et al. [30]), which 
is a more flexible assumption than using a Poisson, like 
in Atljia et al. [31]. As the size of the faecal sample exam-
ined (in grams) is different across the three techniques, 
the dosage in EPG needs to be transformed to the num-
ber of eggs expected in the faecal sample (Table 1). The 
model is run in a Bayesian framework using a Gibbs sam-
pling package in R [32], “jags” [33] and “runjags” [34], 
with a burn in of 1000 (discarded runs), drawing a total of 
10,000 samples with a thinning of 10.

Preliminary simulations (not shown) suggested that 
overdispersion was the same across the two parasite spe-
cies examined; thus, a single parameter was used for each 
diagnostic technique. Using the posterior distributions of 
overdispersion obtained from the model above, we simu-
lated 1000 repeated measurements across a range of true 
intensity of infection measured in EPG from 1 to 100 (at 
0.5 EPG steps, 199,000 total samples) for the three diag-
nostics. We then calculated the sensitivity (proportion of 
samples correctly identified as positive) and accuracy in 
estimating intensity of infection by comparing the true 
intensity of infection to those estimated through the dif-
ferent diagnostics.

To estimate the infection rate in the farms naturally 
infected, we developed a Bayesian latent class analysis 
(LCA) model, following recent work in other parasites 
[30]. The infection status of each individual animal is 
estimated from the different diagnostics (both individual-
level MF and their contribution to the pooled samples). 
Each infected individual will have their intensity of infec-
tion (true egg count) drawn from a gamma distribution. 
The parameters for the gamma distribution for C. daub-
neyi are estimated by the model; however, for F. hepatica, 
due to the low number of positive samples, it could not 
be estimated from these data, so it was calculated from 
the data reported in Rinaldi et  al. [1]. The number of 

eggs in each pool is assumed to be the average of the true 
number of eggs across the five individuals contributing 
to that pool. The data from the different diagnostics are 
assumed to be generated from a negative binomial draw 
of the true number of eggs (in the individual or the pool). 
The overdispersion value needed was drawn from the 
posterior distributions generated from the model above 
for the egg-spiked faecal samples. Farm-level infection 
rate can then be estimated, and the expected farm infec-
tion rate with FF and SED, which were not collected at 
the individual level, can be simulated. As before, we used 
the “jags” [33] and “runjags” [34] packages to run the 
model; we again discarded 1000 runs (burn in), drawing 
a total of 10,000 samples without thinning. All code is 
available at: https://​github.​com/​joaqu​inpra​da/​Fluke-​MF-​
FF-​SED-​Compa​rison.

 Results
Table  2 reports the outcome of the EPG levels of F. 
hepatica and C. daubneyi using egg-spiked cattle faecal 
samples at different known EPG concentrations (10, 50, 
100). The results were expressed as mean EPG of the six 
replicates comparing the performances of three different 
techniques included in the study (MF, FF and SED). The 
egg-spiking test revealed that all the methods were able 
to recover eggs of F. hepatica and C. daubneyi from cat-
tle faeces, with MF having the lowest sensitivity below 15 
EPG, and SED having the lowest above 15 EPG (Fig. 2). 
Nevertheless, all three techniques had a sensitivity > 90% 
at infection levels above 20 EPG. Moreover, when com-
paring true and estimated intensity of infection (in EPG) 
with the different diagnostics, MF was the technique that 
provided the better estimation, in terms of both accuracy 
(median estimated EPG) and precision (size of the 95% 
credible interval) (Fig. 3).

When evaluating natural infection across ten farms in 
southern Italy, while all farms appear infected with C. 

Table 2  Mean number of detection and percentage recovery of Fasciola hepatica (FH) and Calicophoron daubneyi (CD) eggs at 
the different egg count levels using spiked infected cattle faecal samples performed with Mini-FLOTAC (MF), Flukefinder® (FF) and 
sedimentation (SED) techniques included in the study

EPG eggs per gram of faeces

Fluke FEC techniques 10 EPG 50 EPG 100 EPG

Detected EPG % egg recovery Detected EPG % egg recovery Detected EPG % egg recovery

FH MF 2.5 25.0 25.8 51.6 64.2 64.2

FF 3.2 32.0 13.0 26.0 48.8 48.8

SED 0.7 7.0 1.5 3.0 10.4 10.4

CD MF 1.7 17.0 29.2 58.4 70.8 70.8

FF 3.8 38.0 15.5 31.0 52.2 52.2

SED 1.1 11.0 1.7 3.4 11.6 11.6

https://github.com/joaquinprada/Fluke-MF-FF-SED-Comparison
https://github.com/joaquinprada/Fluke-MF-FF-SED-Comparison
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Fig. 2  Estimated sensitivity of the three diagnostic techniques, Mini-FLOTAC (MF), Flukefinder® (FF) and sedimentation (SED), across a range 
of infection intensities, measured in eggs per gram (EPG) of faeces

Fig. 3  Comparison between true and estimated infection intensity in eggs per gram (EPG) of faeces. Dashed diagonal black line indicates 
where true and estimated EPGs are equal. The median estimated infection intensity is represented by the solid lines, while the shaded area shows 
the 95% credible interval, across the three diagnostic techniques, Mini-FLOTAC (MF), Flukefinder® (FF) and sedimentation (SED)
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daubneyi at a high infection rate, four appear to be neg-
ative for F. hepatica or at a low infection rate (Fig.  4). 
Overall, the infection rate estimated by the individ-
ual-level MF technique is very similar to the model 
estimated infection rate, albeit potentially underesti-
mating infection rate when infection is low (Fig. 4—left 
side). Simulated individual-level FF and SED diagnos-
tic results also yield comparable infection rate values 
across all farms for both parasite species (Fig. 4—dark 
red and dark green). The mean EPGs across the pooled 
samples were higher for MF and FF compared to SED 
(Table 3). 

 Discussion
In this study MF was compared for the first time to our 
knowledge with FF and SED for detection of liver and 
rumen flukes in spiked and naturally infected cattle fae-
cal samples. The MF was already successfully used by 
Malrait et al. [26] to assess the presence of rumen fluke 
infections and for FEC of C. daubneyi eggs, showing that 
it was a reliable method, with sensitivity and specificity 
of 94% and 98%, respectively. In our study, the MF tech-
nique permitted the recovery of the highest number of 
eggs, followed by FF and SED for spiked infected samples 
at 50 and 100 EPG, while lower infection level of 10 EPG 

Fig. 4  Infection rate of Fasciola hepatica (left) and Calicophoron daubneyi (right) across ten farms in Southern Italy. Infection rate by Mini-FLOTAC 
was calculated from the individual-level samples (purple), while median infection rate by Flukefinder® (dark red) and sedimentation (dark green) 
was estimated from the simulated individual-level data. The model estimate, considering all three diagnostic techniques, and both individual-level 
and pooled samples, is shown in black. Error bars show the 95% credible interval

Table 3  Eggs per gram (EPG) of faeces mean of Fasciola hepatica (FH) and Calicophoron daubneyi (CD) using naturally infected bovine 
faecal samples from ten farms analysed individually (no. 20 samples for each farm) only with Mini-FLOTAC (MF) technique and as 
pooled faecal samples (no. 4 pools samples for each farm) using also Flukefinder® (FF) and sedimentation (SED) techniques included in 
the study

No. cattle farm MF FF SED

Individual faecal samples
(EPG mean)

Pooled faecal samples
(EPG mean)

Pooled faecal samples
(EPG mean)

Pooled faecal samples
(EPG mean)

FH CD FH CD FH CD FH CD

1 2.50 151.50 2.50 147.50 0.73 71.33 3.88 126.25

2 1 68.5 1.25 65 0.38 32.88 3.00 52.63

3 1.50 153.25 1.25 148.75 0.40 67.25 3.13 131.38

4 1 45 1.25 40 0.13 18.70 2.38 34.88

5 0 25.25 0 22.50 0 7.25 0 20.38

6 2.25 18.25 2.50 16.25 0.58 7.98 3.38 14.88

7 0 142.75 0 135 0 45.88 0 32.63

8 0 53 0 45 0 16.13 0 32.63

9 0 171 0 168.75 0 50.55 0 132

10 1 67 1.25 65 0.2 30.63 2.13 54.88
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FF gave the best results. These abovementioned findings 
were similar for both flukes. In particular, the highest per-
centages of recovery were obtained with MF at 100 EPG, 
but the retrieved values—64.2% for liver flukes and 70.8% 
for rumen fluke—were lower than those reported in pre-
vious studies for gastrointestinal nematodes (GIN) in 
cattle (98.1% by Amadesi et al. [35]; 70.9% by Paras et al. 
[36]), sheep (100% by Bosco et al. [28] and Godber et al. 
[37]) and horses (74.2% by Napravnikova et al. [38]), but 
higher than equine strongyle eggs reported by Noel et al. 
[39] (42.6%). This difference can be explained by the fact 
that fluke eggs are heavy, while GINs of ruminants and 
horses are light eggs; therefore, the behaviour in flotation 
solutions and the recovery rate are completely different 
[27, 28, 35, 40]. However, the SED was the least efficient 
technique, recovering the lower rate of eggs. Our results 
agree with a previous study on comparison between FF 
and SED techniques showing that FF was more efficient 
than simple Becker sedimentation to retrieve F. hepat-
ica eggs in sheep and cattle faeces; in fact, it was able to 
detect 2 EPG with a higher sensitivity (100%) already at 
low levels of infection [19]. Although the sedimentation 
methods (i.e. simple, with fine filtration, followed by flo-
tation) are the most used for fluke infection detection, 
their sensitivity is low [16, 19]. The estimated sensitivity 
for all the techniques included in the study was > 90% 
when the intensity of infection was > 20 EPG (Fig.  2). 
However, at very low intensities of infection, sensitiv-
ity was estimated to drop, particularly for MF, which has 
a detection limit of 5 EPG. The findings obtained with 
MF agree with Zarate-Rendon et  al. [41], showing that 
MF and FF gave better results than Kato-Katz for FEC 
of F. hepatica also in humans, with a sensitivity of 100% 
at 96 EPG level, but the sensitivity decreased at 40% for 
MF and at 60% for FF at level of 14 EPG. In our previ-
ous studies in which MF and FLOTAC were compared 
for the detection of fluke eggs, the outcome revealed that 
FLOTAC had a higher sensitivity than MF at low levels 
of infection. The step of centrifugation in the FLOTAC 
technique, which is missing in the MF method, helped to 
increase the number of fluke eggs detected [40, 42].

On the other hand, MF is the most accurate of the 
three techniques to estimate the intensity of infection, 
which aligns with previous work on GIN in ruminants 
and horses [28, 35, 43]. FF and SED however can over- 
and under-  estimate intensity of infection more, with 
these results consistent across the whole infection inten-
sity range evaluated (from 1 to 100 EPG). In other stud-
ies [35, 44, 45], the accuracy improves when the EPG in 
faecal sample increases. However, it is very important to 
use diagnostic tools with a low detection limit and high 
accuracy also at low levels of infection, because also the 
presence of only few flukes (especially for F. hepatica and 

sheep, which are highly sensitive to this parasite) can 
cause significantly reduced productivity [46, 47].

Findings obtained by MF from naturally infected cattle 
showed that individual and pooled samples did not give 
statistically different results for all ten farms analysed for 
both flukes, as previously shown also for GINs in rumi-
nants [29, 42, 48–50]. Moreover, the estimated preva-
lence with the model, which includes the information 
across the three techniques, aligns with the infection rate 
measured with MF and the infection rate estimated from 
the simulated FF and SED techniques. All farms showed 
presence of C. daubneyi at very high infection rate, while 
F. hepatica was more moderate in most farms, four of 
which had no positive samples recovered, which would 
suggest no infection (or at a relatively low infection rate). 
Due to the low number of F. hepatica eggs detected, fur-
ther studies are needed, as it was not possible to assess 
the intensity of infection in the region.

Conclusion
Optimization and standardization of techniques are 
needed to improve the FEC of fluke eggs. The combina-
tion of sensitive, accurate, precise and standardized FEC 
techniques with a reliable automated system will permit 
not only an efficient observation, but also a quantifica-
tion of parasitic elements thanks to the use of an artificial 
intelligence software [51, 52]. MF is an accurate tech-
nique to estimate intensity of infection at moderate to 
high levels and can be recommended in endemic areas, 
for example for diagnosing C. daubneyi in southern Italy.

Finally, further studies could be important to support 
informed treatment decisions as well as to determine the 
threshold for ‘economically relevant’ infection levels and 
to evaluate the diagnostic performance of the different 
tests around this threshold.
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