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Abstract 

Background Clonorchiasis remains a non-negligible global zoonosis, causing serious socioeconomic burdens 
in endemic areas. Clonorchis sinensis infection typically elicits Th1/Th2 mixed immune responses during the course 
of biliary injury and periductal fibrosis. However, the molecular mechanism by which C. sinensis juvenile initially infects 
the host remains poorly understood.

Methods The BALB/c mouse model was established to study early infection (within 7 days) with C. sinensis juve-
niles. Liver pathology staining and observation as well as determination of biochemical enzymes, blood routine 
and cytokines in blood were conducted. Furthermore, analysis of liver transcriptome, proteome and metabolome 
changes was performed using multi-omics techniques. Statistical analyses were performed using Student’s t-test.

Results Histopathological analysis revealed that liver injury, characterized by collagen deposition and inflammatory 
cell infiltration, occurred as early as 24 h of infection. Blood indicators including ALT, AST, WBC, CRP and IL-6 indicated 
that both liver injury and systemic inflammation worsened as the infection progressed. Proteomic data showed 
that apoptosis and junction-related pathways were enriched within 3 days of infection, indicating the occurrence 
of liver injury. Furthermore, proteomic and transcriptomic analysis jointly verified that the detoxification and anti-
oxidant defense system was activated by enrichment of glutathione metabolism and cytochrome P450-related 
pathways in response to acute liver injury. Proteomic-based GO analysis demonstrated that biological processes such 
as cell deformation, proliferation, migration and wound healing occurred in the liver during the early infection. Cor-
respondingly, transcriptomic results showed significant enrichment of cell cycle pathway on day 3 and 7. In addition, 
the KEGG analysis of multi-omics data demonstrated that numerous pathways related to immunity, inflammation, 
tumorigenesis and metabolism were enriched in the liver. Besides, metabolomic screening identified several metabo-
lites that could promote inflammation and hepatobiliary periductal fibrosis, such as CA7S.
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Conclusions This study revealed that acute inflammatory injury was rapidly triggered by initial infection by C. sinensis 
juveniles in the host, accompanied by the enrichment of detoxification, inflammation, fibrosis, tumor and metab-
olism-related pathways in the liver, which provides a new perspective for the early intervention and therapy 
of clonorchiasis.
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Background
Clonorchiasis, caused by Clonorchis sinensis, remains a 
global public health problem that cannot be neglected 
with a wide epidemic range and a huge number of infec-
tions [1, 2]. Currently, an estimated 15 million people 
worldwide are infected, mainly distributed in East and 
Southeast Asia, notably in China, South Korea and north-
ern Vietnam [2]. Recent investigations demonstrated 
that the prevalence of C. sinensis infection remains high 
in endemic areas. The prevalence rate was reported 
to be as high as 60.3% and 28.9% in Hengxian and Bin-
yang counties in southern China, respectively [3, 4]. It is 
documented that the positive rate of C. sinensis among 
residents along the five major rivers in South Korea was 
up to 8.4% [5]. One study shows a high epidemic rate of 
C. sinensis (40.4%) in rural communities in Yen Bai and 
Thanh Hoa provinces, northern Vietnam [6]. In addition, 
the reinfection rate of C. sinensis in endemic areas is veri-
fied to be alarmingly high [7].

Clonorchis sinensis adults mainly parasitize in human 
hepatobiliary ducts and induce different clinical symp-
toms. The mild ones show no obvious symptoms; the 
severe ones show fever, diarrhea, hepatomegaly, jaun-
dice and other symptoms and can also cause a variety of 
complications such as cholecystitis, cholangitis, chole-
lithiasis, liver cirrhosis and even cholangiocarcinoma [1, 
8]. In 2009, C. sinensis was clearly classified as a Group 
I biological carcinogen causing cholangiocarcinoma by 
the World Health Organization (WHO) [9]. The severe 
morbidity of hepatobiliary duct and recurrent suscep-
tibility caused by C. sinensis have brought both seri-
ous disease and economic burden to endemic areas and 
countries. The WHO estimates that the global burden of 
clonorchiasis in 2010 was 522,863 disability-adjusted life 
years (DALYs) [10]. Zhao et al. evaluated that the DALYs 
of clonorchiasis in China in 2016 were up to 489,174.04 
[11]. Therefore, the global harm caused by clonorchiasis 
remains severe, the pathogenesis of C. sinensis should 
be further clarified, and effective prevention and control 
strategies need to be formulated as soon as possible.

Clonorchis sinensis infection elicits immunoinflam-
matory changes, progressive peribiliary fibrosis and 
hyperplasia of biliary epithelial cells in the host, mainly 
due to mechanical damage and excretory-secretory 
products (ESPs) of worms [12, 13]. During C. sinensis 

parasitism, massive compounds are secreted to trigger 
complex immune responses in the host, which are domi-
nated by type 1 responses in the juvenile stage and type 
2 responses in the adult stage [13, 14]. However, little is 
known about the physiological responses and pathologi-
cal manifestations caused by early infection by C. sinensis 
juveniles in the host. In this study, we employed a range 
of techniques including histopathological assessment, 
biochemical analysis, cytokine assays and multi-omics 
approaches to investigate the dynamic changes in blood 
indicators, liver pathology, gene transcriptional expres-
sion and metabolic state in a mouse model of C. sinensis 
infection. Our objective was to elucidate the pathogenic 
mechanisms by which C. sinensis infects the host during 
the early stages of infection.

Methods
Animals and parasites
SPF female BALB/c mice (6  weeks old, 17–21  g) were 
purchased from the Hunan SJA Laboratory Animal Co., 
Ltd. All the animals were raised well in a temperature-
controlled room (23 °C ± 2 °C) with a 12 h dark/light cycle 
and fed on standard diet.

Clonorchis sinensis metacercariae were collected from 
naturally infected freshwater fish of Pseudorasbora parva 
in Hengxian county, Guangxi Zhuang Autonomous 
Region, China. Living metacercariae were obtained by 
digesting fish with optimized artificial gastric juice (pH 
2.0, 0.9% NaCl, 0.8% pepsin) [15]. Briefly, the minced fish 
incubated in digestive juice was shaken overnight at 37 °C 
and 150 rpm. Then, the suspension was filtered through 
a 60–80 mesh sieve to remove indigestible residues and 
rinsed with distilled water three to four times until the 
supernatant in the triangular beaker was clear. Finally, 
the living metacercariae were picked up under an optical 
microscope and stored in PBS at 4 °C.

Animal infection and sample collection
A total of 29 BALB/c mice were first acclimatized for 
1  week before starting the experiment. The mice were 
randomly divided into the following six groups: 0 h (0 h, 
control) group, 6 h (6 h) group, 18 h (18 h) group, 24 h 
(24 h) group, 3 days (3 d) group and 7 days (7 d) group. 
Except for four mice in the 18  h group (n = 4), each of 
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the other groups consisted of five mice (n = 5). All mice, 
except for control mice, were infected with living meta-
cercariae (60 metacercariae/200  μl PBS per mouse) by 
intragastric administration. The control mice received an 
equivalent volume of PBS (200 μl) by gavage.

The mice were killed at 0 h, 6 h, 18 h, 24 h, 3 d and 7 d 
post intragastric administration to collect corresponding 
samples. First, peripheral blood samples were collected 
to preparate serum and anticoagulant whole blood, 
respectively. Serum samples were used for cytokine assay 
by ELISA. The anticoagulated blood was used to measure 
blood routine indexes and the proportion of  CD4+ T and 
 CD8+ T lymphocytes, respectively. Macroscopic photo-
graphs were taken for the livers from the mice in each 
group. The left lobe of each liver was then divided into 
quadruplicates, with one piece fixed in 4% paraformal-
dehyde for histopathological staining and the other three 
snap-frozen in liquid nitrogen for RNA sequencing, pro-
teomics analysis and metabolomics analysis, respectively. 
Strategy chart of sample collection and index detection is 
shown in Fig. 1.

Histology staining
Following death, liver tissues of mice were collected from 
the middle of the hepatic left lobe, fixed in 4% paraform-
aldehyde and embedded in paraffin. The tissues were then 
cut into 5-μm sections, and we conducted hematoxylin 
and eosin (H&E) staining and Masson’s trichrome stain-
ing, respectively. The stained sections were observed and 
evaluated under the optical microscope. Liver fibrosis 
in each group was evaluated morphologically using the 
Ishak fibrosis score [16], and the area of collagen staining 
was quantified with Image J software.

Biochemical indicator detection
The blood samples of mice from each time point were 
collected and prepared for serum and anticoagulant 
blood. Serum hepatic enzyme activities were determined 
using alanine aminotransferase (ALT) assay kit and 
aspartate aminotransferase (AST) assay kit (Jiancheng, 
Nanjing, China), respectively. The levels of white blood 
cells (WBC), lymphocytes (LYM), granulocytes (GRAN), 
monocytes (MONO), red blood cells (RBC), hemato-
crit (HCT), hemoglobin (HGB) and platelet (PLT) were 
determined using an automatic blood analyzer (Service-
bio, Wuhan, China).

Enzyme‑linked immunosorbent assay (ELISA)
To examine the immune responses, the levels of 
cytokines in serum, including IL-6, IL-1β, TNF-ɑ, IL-4 
and IL-10, were quantified by corresponding ELISA kits 
according to the manufacturer’s instructions (Thermo 
Fisher Scientific, Waltham, MA, USA). In addition, the 
levels of C-reactive protein (CRP) in serum samples were 
determined using mouse CRP ELISA kit (MultiSciences, 
Hangzhou, China).

Flow cytometry
To evaluate the proportion of  CD4+ and  CD8+ T cells, 
the anticoagulated whole blood samples of group 0  h, 
24 h, 3 d and 7 d were collected to prepare single-cell sus-
pension. Afterwards, cells were phenotypically analyzed 
by flow cytometry (BD, Franklin Lakes, NJ, USA) after 
using the anti-mouse monoclonal antibodies of CD4-
Percp, CD8-APC and CD3-PE (BD, Franklin Lakes, USA) 
for surface staining.

Fig. 1 Schematic diagram of sample collection and detection of C. sinensis-infected mice
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RNA sequencing
To evaluate gene expression levels, total RNA was 
extracted from liver tissue of three mice from each group 
by RNA extraction kit (DP761, Tiangen, Beijing, China) 
for quantitative and qualitative analysis [17]. Transcrip-
tome sequencing was performed on the BGISEQ plat-
form by MONITOR HELIX Biotechnology (Shanghai, 
China). Quality control was performed on the raw data 
with fastp software v0.23.0. The clean data were subse-
quently aligned to the mouse genome reference sequence. 
The RPKM (reads per kilobase per million reads) was 
used as a measure of gene expression [18]. Finally, tran-
script information was analyzed using public data base 
gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG).

Quantitative real‑time PCR (qPCR)
According to the instructions, the total RNA of mouse 
liver tissue was extracted using the Animal Total RNA 
Isolation Kit (Foregene, Sichuan, China). The cDNA 
was generated using TransScript® Uni All-in-One First-
Strand cDNA Synthesis SuperMix for qPCR (One-Step 
gDNA Removal) (TransGen, Beijing, China). QPCR was 
performed using the  StepOnePlus™ Real-Time fluores-
cent quantitative PCR system (Thermo Fisher Scientific, 
Waltham, MA, USA). Gene expression levels were nor-
malized to the housekeeping gene β-actin. The primer 
sequences of Col1a1, Col1a2, Spp1, Hmmr, Cdc20 and 
Ccnb2 used in the qPCR analysis were given in Addi-
tional file 1: Table S1.

Proteomic analyses
To explore the protein expression levels, mouse liver 
tissues from four groups of 0 h, 6 h, 24 h and 3 d were 
extracted. For each time point, three mice were used 
from each group. Tissue proteins were extracted with 
RIPA lysis buffer (Beyotime, Shanghai, China) [19]. The 
samples were run on Q Exactive HF mass spectrom-
eter (ThermoFisher Scientific, Waltha, MA, USA), and 
the raw data were searched using MaxQuant platform 
(https:// maxqu ant. org/). The search results were then 
imported into Skyline software to generate the spec-
tral library used for data independent acquisition (DIA) 
analysis. For DIA, the method consisted of a full MS1 
scan (400–1200 m/z, resolution 45,000, maximum injec-
tion time 35  ms, AGC target 1E6) followed by 31 DIA 
windows (resolution 15,000, AGC target 1E5, maxi-
mum injection time of auto). NCE (normalized collision 
energy) was set to 28. The data were acquired by MONI-
TOR HELIX Biotechnology (Shanghai, China).

The identified proteins were classified by GO anno-
tation, including biological process (BP), cellular 

component (CC) and molecular function (MF). The 
KEGG database was used to identify the enriched func-
tional pathways.

LC‑MS/MS‑based untargeted metabolomics analyses
Liver tissues were prepared from three groups of 0  h, 
24  h and 3 d for metabolite detection using untar-
geted liquid chromatography tandem mass spectrom-
etry (LC-MS/MS). Sample preparation was performed 
as previously reported with minor modifications [20, 
21]. Briefly, samples were injected into Dionex Ultimate 
3000 UHPLC (Dionex, Sunnyvale, CA, USA) and run on 
a poroshell 120 EC-C18 reversed phase column. Detec-
tion was carried out on a Q Exactive HF Hybrid Quad-
rupole-Orbitrap mass spectrometer (Thermo Fisher 
Scientific, Waltham, MA, USA) with data acquisition 
executed using Xcalibur 3.1 software. Samples were ana-
lyzed by positive and negative electrospray ionization 
(ESI +/−) Full-MS scan mode (resolution 60,000, maxi-
mum injection time 200 ms, spray voltages 2.7 and 3.6 kV 
for negative and positive modes, respectively). ESI +/−
data-dependent MS2 spectra were generated for samples 
at resolution, 15,000 FWHM; maximum injection time, 
50  ms; isolation window, 2.0  m/z. The metabolomics 
data were acquired and analyzed by MONITOR HELIX 
Biotechnology (Shanghai, China), including differen-
tial metabolite analysis, significant difference metabolite 
screening and KEGG pathway enrichment analysis of dif-
ferential metabolites.

Statistical analyses
All results were represented as mean ± standard devia-
tion (SD). SPSS 23.0 software was used for data analysis. 
Student’s t-test was employed to analyze histological, 
biochemical and qPCR data. For transcriptomic data, 
significantly enriched items in differentially expressed 
genes (DEGs) were tested with hypergeometric distri-
bution. For proteomic data, the number of differentially 
expressed protein (DEP) (a), number of all quantitative 
protein (b) in each GO/KEGG term, total number of 
DEP (c) annotated by GO/KEGG terms and total num-
ber of all quantitative protein (d) annotated by GO/
KEGG terms were calculated, and then the four num-
bers (a, b, c, d) were used to calculate Fisher’ exact test 
P values and enrichment folds. Fold enrichment = (a/c)/
(b/d). For metabolomic data, FC analysis and t-test/non-
parametric test were employed to analyze the difference 
between two groups of samples. VIP values of metabo-
lites were obtained using orthogonal partial least squares 
discrimination analysis (OPLS-DA). Metabolic pathway 

https://maxquant.org/
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analysis was carried out using the well-established mum-
michog algorithm. P < 0.05 was considered statistically 
significant.

Results
Gross and histopathological changes of mouse liver caused 
by C. sinensis infection
On day 3 post C. sinensis infection, 1–2 white nodules 
(thin black arrows) were observed on the liver surface of 
mice, and similar white foci (thin black arrows) were also 
found in the 7 d group (Fig. 2a).

Histologically, juvenile worms (red arrows) were 
found in liver tissue staining sections of 24 h, 3 d and 

7 d groups (Fig.  2b and c). The phenomena of inflam-
matory cell infiltration (thick black arrows), biliary 
epithelium hyperplasia (green arrows) and collagen 
deposition around the bile duct (blue arrows) were first 
observed in the 24  h group and more pronounced in 
the 3 d and 7 d groups (Fig. 2b and c). The area of col-
lagen deposition increased gradually as the duration of 
infection progressed (Fig.  2d). In addition, compared 
with the control group, all the infection groups showed 
a significant increase in Ishak score (24  h vs. 0  h: 
t(4) = -5.29, P = 0.034, 3d vs. 0 h: t(4) = – 5.284, P = 0.034, 
7d vs. 0 h: t(4) = – 5, P = 0.038, Fig. 2e).

Fig. 2 Gross observation and histopathological changes of liver in mice infected with Clonorchis sinensis at different time points. a Gross 
morphology of livers. Inflammatory nodules are marked by thin black arrows. b Liver sections of C. sinensis-infected mice were stained with H&E 
staining (× 100). Red arrows and heavy black arrows represent adult worms and inflammatory cell infiltration, respectively. c Liver sections were 
prepared for Masson trichrome staining (× 100). Red, green and blue arrows indicate C. sinensis juvenile, biliary epithelial hyperplasia and collagen 
deposition, respectively. d Percentage of collagen fiber area in liver tissue. e Ishak score of Masson staining. Data are shown as mean ± SD (n = 3). 
*P < 0.05
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Changes of biochemical enzymes, blood routines, 
cytokines and T lymphocyte proportions in blood after C. 
sinensis infection
The serological tests showed an increase in both ALT 
and AST levels from 24  h of infection, with ALT levels 
significantly elevated on day 7 (t(8) = −3.656, P = 0.021, 
Fig. 3a). Blood routine data demonstrated that the num-
ber of WBC, LYM, GRAN and MONO increased at all 
infection time points except for 6 h and reached the high-
est point on the 7th day (WBC: t(6) = −2.740, P = 0.034, 
LYM: t(6) = −2.470, P = 0.048, MONO: t(6) = −2.782, 
P = 0.032, GRAN: t(6) = −3.138, P = 0.02, Fig.  3b). The 
blood indexes of RBC, HCT and HGB increased at all 
time points, among which RBC and HCT increased 
significantly at 24  h of infection (RBC: t(6) = −2.967, 
P = 0.025, HCT: t(6) = −3.028, P = 0.023), while HGB 
increased significantly at both 24 h and 3 d (HGB: 24 h 
vs. 0  h: t(6) = −4.586, P = 0.004, 3d vs. 0  h: t(6) = −3.258, 
P = 0.017, Fig. 3b). However, except for 7 d, the number of 
PLT decreased at all the other infection points, especially 
on 3 d (t(6) = 2.717, P = 0.035, Fig. 3b).

The results of ELISA detection showed that, com-
pared with the 0  h group, the levels of serum acute 
inflammatory reaction protein CRP significantly 
increased at 24 h post infection (t(7) = −2.97, P = 0.021, 
Fig. 3c). The levels of pro-inflammatory cytokines (IL-6, 
IL-1β and TNF-α) in serum increased with the exten-
sion of infection time, and the level of IL-6 significantly 
increased on the 7th day of infection (t(8) = −3.246, 
P = 0.012, Fig.  3c). However, no significant changes of 
anti-inflammatory cytokines (IL-4 and IL-10) were 
detected (Fig.  3c). Additionally, the results of flow 
cytometry verified that the proportions of  CD4+ and 
 CD8+ T cells in peripheral blood showed a fluctuat-
ing trend (Additional file 2: Fig. S1). The proportion of 
 CD4+ T cells decreased at 24 h of infection, increased 
on 3 d and then decreased again on 7 d (Additional 
file  2: Fig. S1b), while the trend of  CD8+ T cells was 
exactly the opposite (Additional file 2: Fig. S1c). There-
fore, the ratio of  CD4+/CD8+ T cells also presented a 
fluctuating trend (Additional file 2: Fig. S1d).

Fig. 3 Levels of serum biochemical enzymes, blood routine indexes and serum cytokines. The mice were killed at 0 h, 6 h, 18 h, 24 h, 3 d and 7 d 
to prepare corresponding serum or anticoagulation samples for detection of the activities of ALT and AST (a), content of WBC, LYM, GRAN, MONO, 
RBC, HCT, HGB and PLT (b) and levels of CRP, IL-6, IL-1β, TNF-ɑ, IL-4 and IL-10 (c), respectively. Each symbol in each graph represents a sample. Data 
are presented as mean ± SD. *P < 0.05, **P < 0.01
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DEGs in mouse liver induced by C. sinensis infection
To elucidate the effects of early C. sinensis juvenile infec-
tion on mouse liver at transcriptomic level, cluster and 
enrichment analyses of DEGs were performed. A total 
of 3268 DEGs were detected. The heatmaps of differ-
ential expressions in different infection time points are 
presented in Fig.  4a. Among them, the change trend of 
DEGs at 3 d and 7 d time points was consistent, with 
the most pronounced change observed in the 7 d group. 
The volcano diagram analysis revealed that the DEGs of 
6 h vs. 0 h, 18 h vs. 0 h, 24 h vs. 0 h, 3 d vs. 0 h and 7 d 
vs. 0  h were 454 (117 up- and 337 downregulated), 428 
(218 up- and 210 downregulated), 235 (121 up- and 114 

downregulated), 482 (308 up- and 174 downregulated) 
and 1669 (1314 up- and 355 downregulated), respectively 
(|logFC|> 1, P < 0.05, Additional file  2: Fig. S2). Conse-
quently, the number of DEGs was lowest at 24 h of infec-
tion and highest on 7 d.

According to the KEGG analysis, signaling pathways 
related to immunity, inflammation, tumor and metabo-
lism were significantly enriched, some of which appeared 
at multiple continuous or discontinuous time points and 
some at a single time point. Immune and inflammation-
related pathways were mainly enriched in pathways of 
antigen processing and presentation (6 h, 24 h and 3 d), 
phagosome (6 h, 18 h, 3 d and 7 d), NOD-like receptor 

Fig. 4 Comparative analysis of DEGs and changes of main signaling pathways in mouse liver induced by Clonorchis sinensis infection at different 
time points. a Heatmap and hierarchical clustering of DEGs. Red and blue represent genes up- and downregulated, respectively. b–f KEGG pathway 
enrichment analysis of the identified DEGs between 6 and 0 h groups, 18 h and 0 h groups, 24 h and 0 h groups, 3 d and 0 h groups and 7 d and 0 h 
groups, respectively. The top 20 most-enriched pathways are shown
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(NLR) (6  h, 18  h and 24  h), Th17 cell differentiation 
(18 h and 24 h), Ras (24 h), MAPK (3 d), inflammatory 
mediator regulation of TRP channels (7 d) and cytokine-
cytokine receptor interaction (7 d). Tumor-related signal-
ing pathways were mainly concentrated in cancer (18 h, 
24  h, 3 d and 7 d), chemical carcinogenesis (18  h, 24  h 
and 7 d), PI3K-Akt (18 h, 24 h, 3 d and 7 d), hepatocelleu-
lar carcinoma (18  h) and p53 (3 d). Metabolism-related 
pathways mainly included metabolic (18 h, 24 h, 3 d and 
7 d), retinol metabolism (18 h, 24 h and 3 d), PPAR (24 h 
and 3 d), thyroid hormone (18  h), steroid biosynthesis 
(18 h), drug metabolism-cytochrome P450 (18 h), linoleic 
acid metabolism (24  h), cholesterol metabolism (24  h) 
and glycine, serine and threonine metabolism (3 d). 
Moreover, pathways closely related to cell proliferation, 
differentiation and pathology were also enriched, includ-
ing cell cycle (3 d and 7 d), ECM-receptor interaction (7 
d) and focal adhesion (7 d) (Fig.  4b–f). In addition, the 
qPCR results showed that the transcriptional expression 
trends of key genes (Col1a1, Col1a2, Spp1, Hmmr, Cdc20 
and Ccnb2) involved in the above important pathways 
were consistent with the RNA sequencing results, con-
firming the credibility of the sequencing data (Additional 
file 2: Fig. S3).

DEPs annotation and functional enrichment of C. 
sinensis‑infected mouse liver
For insights into the liver-expressed protein altered by 
C. sinensis infection, proteome analyses of mouse liv-
ers from 0 h, 6 h, 24 h and 3 d groups were performed. 
The volcano analysis revealed that the DEPs of 6  h vs. 
0 h, 24 h vs. 0 h and 3 d vs. 0 h were 222 (135 up- and 87 
downregulated), 202 (57 up- and 145 downregulated) and 
346 (268 up- and 78 downregulated) with absolute value 
of FC ≥ 1.2 and P < 0.05, respectively (Fig. 5a–c). The first 
six differential proteins (orange rectangles), proteins sig-
nificantly involved in GO and KEGG enrichment (purple 
rectangles), and the protein corresponding to both con-
ditions (blue rectangle) between each infection group 
and the 0  h group were marked on volcano diagrams 
(Fig. 5a–c).

GO analysis revealed that at 6 h post infection, changes 
in MF of transferase activity (mainly glutathione trans-
ferase) and BPs of nitrobenzene metabolic process and 
cellular detoxification of nitrogen compound were mark-
edly triggered, primarily caused by high expression 
of Gstm1, Gstm2, Gstm4, Gstm5 and Gstm7 proteins 
(Fig. 5a, b and e). At 24 h of infection, CC of Arp2/3 pro-
tein complex involved in the BP of positive regulation of 
actin filament polymerization was significantly enriched, 
which was closely associated with the significant expres-
sion of Actr3 protein (Fig.  5b, e and f ). On the 3rd day 
of infection, the CCs of cell division site and cell surface 

furrow, MFs of GTPase activity and GTP binding, and 
BPs of epiboly involved in wound healing, wound heal-
ing, spreading of cells and mitotic cytokinetic process 
were mainly triggered because of the high expression of 
Ras- and Rho-related proteins (e.g. Rhoa, Rhoc, Rab11a 
and Rab11b) (Fig. 5c–e).

KEGG analysis of the mouse liver DEPs triggered by C. 
sinensis infection
The DEPs were subjected to KEGG pathway enrich-
ment analysis. In DEPs of 6  h vs. 0  h, the pathways of 
glutathione metabolism, drug metabolism-cytochrome 
P450, metabolism of xenobiotics by cytochrome P450, 
chemical carcinogenesis, apoptosis and gap junction 
were dominantly enriched (Fig.  6a and b). The highly 
enriched signaling pathways between 24 and 0 h groups 
included linoleic acid metabolism, serotonergic synapse, 
steroid hormone biosynthesis, tight junction, arachidonic 
acid metabolism and inflammatory mediator regula-
tion of TRP channels (Fig. 6a and c). On 3 d post infec-
tion, immune response-related pathways were observed, 
including pathways of Toll-like receptor (TLR), T cell 
receptor (TCR), chemokine, TNF and NLR, all of which 
were mainly related to the significant upregulation of 
Ikbkg protein (NF-κB essential modulator) (Fig.  5c, 
Fig.  6a and d). Additionally, pathway-related cancer, 
apoptosis and metabolism (histidine and thyroid hor-
mone) were also significantly enriched on the 3rd day of 
infection (Fig. 6a and d).

Screening of differential metabolites in mouse liver elicited 
by C. sinensis infection
To detect metabolite changes during C. sinensis infection, 
livers from 0  h, 24  h and 3 d groups were subjected to 
untargeted LC-MS/MS analysis. The evaluation of three 
quality control contents showed that the error caused by 
the experimental instrument was small, and the repeat-
ability of the experiment was excellent (Additional file 2: 
Fig. S4). A total of 850 metabolites were detected, of 
which 330 were detected in positive ion mode and 520 in 
negative ion mode. In the principal component analysis 
(PCA) and partial least squares discrimination analysis 
(PLS-DA) models, the samples were dispersed among 
groups and gathered within groups, indicating that 
metabolites among groups were different (Fig. 7a and b).

The volcano diagrams revealed that in nega-
tive ion mode, comparing the 24  h group and 0  h 
group, the metabolites of citric acid, isocitric acid, 
D-threo-isocitric acid, diketogulonic acid, 2,3-diketo-
L-gulonate, fructosamine, beta-D-glucosamine, 
2-vinyl-4H-1,3-dithiin (2VD), oxypurinol, xanthine and 
6,8-dihydroxypurine were significantly upregulated, 
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while 7-sulfocholic acid (CA7S) and other metabo-
lites (most not included in the HMDB database) were 
significantly downregulated (Fig.  7c). Comparing the 
3 d group and 0  h group, uridine diphosphate glucose 
(UDP-glucose) and uridine diphosphate galactose 
(UDP-galactose) were significantly upregulated, while 
N-acetylneuraminic acid, sciadonic acid, retinyl ester, 
eicosapentaenoic acid and methyltestosterone were sig-
nificantly downregulated (Fig. 7d). The analysis results 
of the changes of liver metabolites among different 
groups under positive ion mode are shown in supple-
mentary material (Additional file 2: Fig. S5).

Hierarchical cluster and enrichment analysis of mouse liver 
differential metabolites evoked by C. sinensis infection
Hierarchical cluster analyses of all metabolite alterations 
among 0  h, 24  h and 3 d groups are shown in Fig.  8a. 
Similarly, significant differential metabolites (VIP > 1, 
P < 0.05) detected in negative ion mode are showed in 
Fig.  8b. In addition, hierarchical clustering results of 
the changes of liver metabolites among different groups 
under positive ion mode were shown in supplementary 
material (Additional file 2: Fig. S6).

The differential metabolites in negative and positive ion 
mode were merged to further perform KEGG pathway 

Fig. 5 Volcano plots and GO enrichment analysis of DEPs in mouse liver at different time points post Clonorchis sinensis infection. Top three for each 
of up- and downregulated proteins and representative proteins are labeled in each volcano plot. a Volcano plot of DEP analysis between 6 and 0 h 
groups (135 up- and 87 downregulated). b Volcano plot of DEP analysis between 24 and 0 h groups (57 up- and 145 downregulated). c Volcano plot 
of DEP analysis between 3 d and 0 h groups (268 up- and 78 downregulated). d Enriched GO terms in MF. e Enriched GO terms in BP. f Enriched GO 
terms in CC. The more obvious the green is, the more significant the change
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analysis. In the enrichment analysis of 24 h group vs. 0 h 
group, the top nine related metabolic pathways were dis-
played, among which pathways of pyruvate metabolism, 
amino sugar and nucleotide sugar metabolism, and gly-
oxylate and dicarboxylate metabolism were considered to 
be the main metabolic pathways (Fig. 8c). In the enrich-
ment analysis of the 3 d group vs. 0 h group, the top 19 
related metabolic pathways were displayed, among which 
pathways of biosynthesis of unsaturated fatty acids, pen-
tose and glucuronate interconversions and galactose 
metabolism were considered to be the major metabolic 
pathways (Fig. 8d). Additionally, compared with the 0 h 
group, pathways of amino sugar and nucleotide sugar 
metabolism and glycolysis or gluconeogenesis were 
significantly enriched in both the 24  h and 3 d groups 
(Fig. 8c and d).

Discussion
Our results showed that small white nodules were mac-
roscopically observed in the left lobe of mouse liver from 
3 d post infection. Histopathological changes, including 
inflammatory cell infiltration, biliary hyperplasia and 
collagen deposition, were observed as early as 24 h post 
infection. Serological test data confirmed a gradual eleva-
tion in the levels of ALT and AST, which are biomarkers 

of hepatocyte injury [22], starting from 24 h of infection. 
Furthermore, in our experiment, inflammation-related 
indicators in blood, such as WBC, CRP, IL-6, IL-1β and 
TNF-α, exhibited varying degrees of elevation since 18 h 
of infection. WBC and CRP are commonly used as sys-
temic inflammatory indices [23, 24]. CRP is an acute 
phase plasma protein which can be activated by pro-
inflammatory cytokines of IL-1β, IL-6 and TNF-α [24, 
25]. Additionally, the ratio of  CD4+/CD8+ T cells in 
peripheral blood tended to gradually decrease with pro-
longed infection, indicating the possibility of persistent 
infection [14, 26, 27]. Therefore, the above results sug-
gested that infection by C. sinensis juveniles could trigger 
acute liver injury and systemic inflammatory responses 
within a very short period of time.

Next, a combination of transcriptomics, proteom-
ics and metabolomics was used to reveal the molecular 
changes in the liver caused by the early infection by C. 
sinensis juveniles. By comparing the heatmap of DEGs in 
transcriptomics from 6 h to 7 d after infection, we found 
that both the 3 d and 7 d groups showed similar trends 
compared to the 0  h group. Therefore, selecting time 
points within 3 days for further proteomic and metabo-
lomic analysis is highly representative. In general, our 
analyses showed that many crucial biological changes 

Fig. 6 KEGG enrichment analysis of the DEPs identified in mouse liver from different infection time groups. a Heatmap indicating the KEGG 
pathway enrichment analysis of identified DEPs among 0 h, 6 h, 24 h and 3 d groups. b KEGG pathway enrichment analysis of DEPs between 6 
and 0 h groups. c KEGG pathway enrichment analysis of DEPs between 24 and 0 h groups. d KEGG pathway enrichment analysis of DEPs between 3 
d and 0 h groups
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in the liver during C. sinensis infection were simultane-
ously reflected in our transcriptomic, proteomic and 
metabolomic results. Therefore, compared with a single-
omics, our multi-omics analyses provided a more com-
prehensive view in the digging of key molecular events 
and genes involved in the infection, allowing us to better 
unveil its mechanism [28–30]. Briefly, our multi-omics 
results demonstrated that acute liver injury caused by C. 
sinensis juvenile forced the liver to activate detoxification 
and antioxidant defense system and respond to the injury 
by enhancing cell deformation, proliferation, migra-
tion and tissue repair. During this process, we observed 
enrichment of many immunity, inflammation, tumor and 
metabolism-related genes and signaling pathways.

Proteomic analysis revealed a significant enrichment 
of the apoptosis pathway, particularly on 3rd day post 
infection, implying the occurrence of cell death and liver 
injury [31, 32]. In addition, pathways of gap and tight 
junctions were enriched at 6 and 24 h, respectively, sug-
gesting potential impacts on liver homeostasis, blood-
biliary barrier and intercellular communication [33–35]. 
In addition, GO analysis showed that MF of glutathione 
transferase activity and BP of cellular detoxification of 
nitrogen compound were primarily concentrated at 6  h 
of infection. Correspondingly, KEGG analysis at this 
time mainly focused on glutathione metabolism and 
cytochrome P450-related pathways. The upregulated 
proteins involved in the aforementioned MF, BP and 

Fig. 7 Multivariate analysis and differential metabolite analysis in negative ion mode of mouse liver from different infection time groups. The overall 
trend, difference degree and differential metabolites of samples were observed among groups. a PCA score diagram of 0 h, 24 h and 3 d groups. 
b PLS-DA score diagram of 0 h, 24 h and 3 d groups. c Volcano plot of metabolite change of 24 h group compared with 0 h group. d Volcano plot 
of differential metabolites of 3 d group compared with 0 h group. PCA Principal component analysis. PLS-DA Partial least square discrimination 
analysis
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pathways were detoxifying enzymes of Gstm1, Gstm2, 
Gstm4, Gstm5 and Gstm7, which can protect against 
exogenous toxins and endogenous oxidative stress [36]. 
Moreover, transcriptomic data also showed significant 
enrichment of cytochrome P450 pathway at 18 h of infec-
tion. Cytochrome P450 enzymes are the most abundantly 

expressed in hepatocytes, where they play important 
roles in metabolizing xenobiotics and regulating intra-
cellular stress responses [37]. Glutathione, the most 
common small-molecule antioxidant in hepatocytes, 
participates in important physiological processes such 
as free radical scavenging, antioxidant and detoxification 

Fig. 8 Cluster, annotation and KEGG enrichment analysis of differential metabolites of mouse liver from different time points post infection. 
a Cluster analysis of all differential metabolites. b Heat map of significant metabolite hierarchical clustering in the negative ion mode. c KEGG 
enrichment analysis of the differential metabolites between 24 h group and 0 h group. d KEGG enrichment analysis of differential metabolites 
between 3 d group and 0 h group
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[38]. Based on these findings, we hypothesized that the 
host liver rapidly initiates the detoxification and antioxi-
dant defenses against acute injury caused by infection by 
C. sinensis juveniles.

Proteomic data of 24 h showed that CC of Arp2/3 pro-
tein complex and BP of positive regulation of actin fila-
ment polymerization were obviously enriched, indicating 
the occurrence of cell deformation, migration and pro-
liferation in the liver [39]. At 3 d post infection, the CC 
of cell division site, MF of GTPase activity and the BPs 
of epiboly involved in wound healing and mitotic cytoki-
netic process were dominantly activated. Among them, 
Ras- and Rho-related proteins were significantly upregu-
lated. Previous studies have shown that Rho GTPases are 
crucial regulators of actin cytoskeleton and affect multi-
ple biological functions, including cell migration, division 
and wound healing [40, 41]. Jiang et al. demonstrated that 
Ras GTPases may play important roles in the regulation 
of cell cycle and immune-related pathways [42]. Consist-
ently, transcriptomic analysis revealed significant enrich-
ment of the cell cycle pathway at both 3 and 7 d post 
infection. Thus, infection of C. sinensis juveniles trig-
gered biological processes involving cell division, migra-
tion and wound healing in the host liver.

Both proteomic and transcriptomic analysis confirmed 
that C. sinensis juvenile infection stimulated the enrich-
ment of multiple immune, inflammatory and tumor-
related signaling pathways in the liver. The pathways 
of NLR and inflammatory mediator regulation of TRP 
channels were significantly enriched in bi-omics analyses. 
NLRs, as the major cytosolic pattern recognition recep-
tors (PRRs) for innate immunity, are critical intracellu-
lar sensors for host defense against bacteria, viruses and 
parasites. Moreover, NLRs drive inflammatory responses 
through activation of MAPK and NF-κB signaling path-
ways [43, 44]. There is a wealth of evidence suggesting 
that TRP channels such as TRPV1, TRPV3 and TRPM8 
may play vital roles in the progression of fibroprolif-
erative diseases in the lung, liver and heart and promote 
both acute and chronic inflammatory processes [45–47]. 
Proteomic results showed that pathways of TLR, TCR, 
TNF, cancer and chemokine were significantly enriched 
on the 3rd day of infection, all of which were associated 
with upregulation of Ikbkg. Ikbkg (also known as IKKγ) is 
essential for rapid activation of NF-κB by pro-inflamma-
tory signaling cascades [48]. Previous reports have con-
firmed the upregulation of both TLR2 and TLR4 during 
C. sinensis infection, and TLR4 can promote pathogen-
associated biliary fibrosis [49, 50]. Additionally, KEGG 
analysis of transcriptomics also revealed the enrichment 
of numerous immune-inflammatory and tumor-related 
pathways, such as Th17 cell differentiation, PI3K-Akt, 
MAPK, p53 and cancer. The PI3K/Akt/mTOR pathway 

has been reported to be overexpressed in nearly 50% of 
hepatocellular carcinomas, and it plays a crucial role in 
tumorigenesis and progression [51].

Additionally, the three omics analyses collectively 
showed that early infection by C. sinensis juveniles had 
significant impacts on the metabolism of lipids, carbohy-
drates and amino acids in the liver. Transcriptomic results 
proved that the metabolic pathway was significantly 
enriched from 18  h to 7 d after infection with the larg-
est input number of DEPs, especially at the 24 h point. At 
the 24 h time point, proteomic and transcriptomic results 
jointly showed a significant enrichment of linoleic acid, 
arachidonic acid and cholesterol metabolism and steroid 
hormone biosynthesis pathways. Proteomic and metab-
olomic data collectively displayed that the pathway of 
amino sugar and nucleotide sugar metabolism was signif-
icantly enriched at 24 h and 3 d post infection. Further-
more, transcriptomic analysis enriched the glycine, serine 
and threonine and retinol metabolism pathways at the 3 
d time point, proteomic analysis enriched the histidine 
(6 h and 3 d) and arginine and proline (6 h) metabolism 
pathways, and metabolomic analysis enriched pathways 
of pyruvate metabolism (24  h), glycolysis or gluconeo-
genesis (24  h and 3 d) and biosynthesis of unsaturated 
fatty acids (3 d). Moreover, both transcriptomic and prot-
eomic data revealed a significant enrichment of pathways 
regulating liver metabolism, such as PPAR and thyroid 
hormone, upon stimulation by C. sinensis. PPAR is criti-
cal for hepatic lipid metabolism [52]. Thyroid hormone is 
essential for maintaining hepatic metabolic homeostasis 
and normal body development [53, 54].

Besides, the metabolomic analysis identified several 
functional metabolites. Metabolomic data displayed that 
at 24 h post infection, CA7S, a bile acid metabolite, was 
significantly downregulated, whereas metabolites of glu-
cosamine and 2VD were significantly upregulated. CA7S 
has been reported as an agonist of Tgr5 and can increase 
the expression of Tgr5, thereby preventing cholestasis 
and suppressing the inflammatory responses [55–57]. 
Glucosamine, as an amine sugar, has been reported to 
stimulate immune cells and mediate immune function 
by activating NF-κB, p38 and PKA pathways [58]. It was 
reported that 2VD could reduce intracellular ROS and 
increase total antioxidant status in vivo [59]. At 3 d post 
infection, metabolites of UDP-glucose and UDP-galac-
tose were upregulated; both are crucial extracellular sign-
aling molecules acting as potent agonists of extensively 
expressed P2Y14 receptor [60]. It has been documented 
that P2Y14 not only plays an important role in the 
immune and inflammatory responses but also promotes 
toxicity and hepatobiliary fibrosis [60, 61].

Different developmental stages of C. sinensis stimu-
late the host to generate complex and specific immune 
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responses, characterized by a predominance of type 1 
immune response in the early stage of infection and a 
predominance of type 2 immune response in the late 
stage of infection [13, 14]. Our study showed that sys-
temic acute inflammatory responses and progressive 
liver injury were induced within 7  days of C. sinensis 
juvenile infection. In addition to abundant enrichment of 
immune-inflammatory pathways, the liver transcriptom-
ics results verified that fibrosis-related pathways such as 
ECM-receptor interaction and focal adhesion were also 
significantly observed on the 7th day of infection [62, 
63]. However, Zhang et  al. detected increased hepatic 
Th2 and Treg subsets in different strains of mice infected 
with C. sinensis for 28 days, presumably strongly associ-
ated with biliary periductal fibrosis [64]. Furthermore, 
Kong et  al. revealed that an increased Treg/Th17 ratio 
during the late stage of infection was conducive to the 
pathogenicity of C. sinensis [65]. Therefore, as the infec-
tion progresses, the host undergoes a switch from pro- to 
anti-inflammatory responses, which further contributes 
to the survival and pathogenesis of parasites. However, 
the specific immune switching mechanism requires fur-
ther in-depth study.

Conclusion
In summary, early infection by C. sinensis juveniles could 
rapidly trigger an acute systemic inflammatory response 
and cause liver injury and hepatobiliary lesions in the 
host. The multi-omics analysis suggested that the liver 
would quickly initiate detoxification and antioxidant 
stress response systems to combat the acute damage. 
In addition, biological processes such as cell apoptosis, 
deformation, division, migration, connection change and 
wound healing were obviously induced during the early 
stage of worm infection. Furthermore, KEGG analysis of 
multi-omics showed numerous immune, inflammation, 
fibrosis, tumor and metabolism-related signaling path-
ways enriched in the liver. In general, our research reveals 
the mechanism of early infection of C. sinensis in the host 
from multiple perspectives, which provides valuable 
insights into the study of the C. sinensis-host interaction.
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