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Abstract 

Background The ticks Ixodes ricinus and Dermacentor reticulatus are two of the most important vectors in Europe. Cli-
mate niche modelling has been used in many studies to attempt to explain their distribution and to predict changes 
under a range of climate change scenarios. The aim of this study was to assess the ability of different climate niche 
modelling approaches to explain the known distribution of I. ricinus and D. reticulatus in Europe.

Methods A series of climate niche models, using different combinations of input data, were constructed 
and assessed. Species occurrence records obtained from systematic literature searches and Global Biodiversity 
Information Facility data were thinned to different degrees to remove sampling spatial bias. Four sources of climate 
data were used: bioclimatic variables, WorldClim, TerraClimate and MODIS satellite-derived data. Eight different model 
training extents were examined and three modelling frameworks were used: maximum entropy, generalised addi-
tive models and random forest models. The results were validated through internal cross-validation, comparison 
with an external independent dataset and expert opinion.

Results The performance metrics and predictive ability of the different modelling approaches varied significantly 
within and between each species. Different combinations were better able to define the distribution of each 
of the two species. However, no single approach was considered fully able to capture the known distribution 
of the species. When considering the mean of the performance metrics of internal and external validation, 24 models 
for I. ricinus and 11 models for D. reticulatus of the 96 constructed were considered adequate according to the follow-
ing criteria: area under the receiver-operating characteristic curve > 0.7; true skill statistic > 0.4; Miller’s calibration slope 
0.25 above or below 1; Boyce index > 0.9;  omission rate < 0.15.

Conclusions This comprehensive analysis suggests that there is no single ‘best practice’ climate modelling 
approach to account for the distribution of these tick species. This has important implications for attempts to predict 
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climate-mediated impacts on future tick distribution. It is suggested here that climate variables alone are not suffi-
cient; habitat type, host availability and anthropogenic impacts, not included in current modelling approaches, could 
contribute to determining tick presence or absence at the local or regional scale.

Keywords Species distribution modelling, Climate niche modelling, Ticks, Climate niche, Climate change, Ixodes, 
Dermacentor

Introduction
Ticks are obligate hematophagous arthropods of global 
importance because of their public and veterinary health 
impacts [1]. Ixodes ricinus is the most widespread tick in 
Europe, with its distribution extending across much of 
the continent [2]. It is considered to be of serious health 
concern due to its extensive range of vertebrate hosts 
and ability to transmit a variety of pathogens, including 
the causative agents of several important zoonotic dis-
eases such as Lyme borreliosis, tick-borne encephalitis 
and anaplasmosis [3, 4]. The second most-reported tick 
in Europe is Dermacentor reticulatus, and although there 
is overlap in the ranges of I. ricinus and D. reticulatus, 
the latter has a narrower distribution based in central 
Europe [5]. Dermacentor reticulatus is a vector of causal 
agents of diseases, such as canine babesiosis and equine 
piroplasmosis [6]. As a result of the risks these tick spe-
cies pose to humans, livestock and companion animals, 
understanding their distributions and how these may 
change in future are issues of research importance.

As generalist parasites that spend most of their life 
cycle off their hosts, these three-host ticks are particu-
larly sensitive to temperature and humidity, since these 
affect the rates of physiological activity and desiccation, 
and this determines their ability to quest and survive [7, 
8]. Ixodes ricinus requires an environment where the 
relative humidity is > 80% [7], and the mean daily air 
temperature exceeds 5  °C for approximately 170  days a 
year [9]; therefore, the species extends from Scandinavia 
to the Mediterranean basin in Europe [2]. Dermacentor 
reticulatus is more cold-tolerant than I. ricinus [7, 10] 
and may be active throughout winter [10].

The role of climate in determining tick behaviour, sur-
vival and distribution has made them popular subjects for 
species distribution modelling. Species distribution mod-
els (SDMs), also known as ecological and climate niche 
models, are potentially powerful research tools that can 
be used to estimate the suitability of a region for a species 
in time and space [11]. Species distribution models work 
on the assumption that species are in equilibrium with 
their environment and hence aim to define the environ-
mental parameters of the species’ niche by finding statis-
tical associations between key environmental variables 
and the presence and absence of a species in that location 
[12, 13]. Once the species’ niche has been captured, it can 

be projected onto different spatial or temporal spaces to 
predict the suitability of different environments for the 
species of interest. Although the resultant maps are often 
referred to as the predicted distribution of the species, 
they represent a measure of statistical similarity between 
the environmental variables in each grid cell, or pixel, and 
the niche of the species derived from the input data [13]. 
Due to their simplicity and rapidity, these models have 
been widely integrated into ecological studies mapping 
the distribution of vectors, including ticks [11], particu-
larly under different climate change scenarios [14–16].

However, SDM output is heavily influenced by the 
modelling algorithm and parameters [17], the size of the 
region used to train the model [18], species data [19] 
and the ability of the environmental variables to fully 
capture the niche of the species [20]. As a result, studies 
that have attempted to explore the distribution of ticks in 
Europe, and their future climate-mediated changes, differ 
widely in the areas predicted as environmentally suitable 
[14–16]. It is important to determine which modelling 
approach best captures the niche of the species to effec-
tively predict environmental suitability across Europe. 
This is particularly significant if the niche is going to be 
projected to estimate future suitability. In a medical and 
veterinary context, and given the clinical risk, confi-
dence in the reliability of SDM outputs is important if the 
maps are to be used as a proxy for the distribution of the 
species.

This study aimed to compare multiple modelling 
approaches in their ability to capture the niche of two 
important tick species in Europe, I. ricinus and D. retic-
ulatus, to assess their potential usefulness in predict-
ing climate suitability. Three modelling algorithms, four 
sets of explanatory variables and eight different training 
extents were used in different combinations to construct 
96 modelling approaches. Each approach was subjected 
to internal and external statistical validation as well as a 
more subjective expert review.

Methods
Occurrence data
Four sets of tick occurrence data were combined to build 
the models: data held by the Global Biodiversity Informa-
tion Facility [21], data extracted from a systematic review 
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of the literature published between 1970 and 2014 [22], a 
systematic review of the more recent literature between 
2015 and 2021 [23] and additional publications which 
filled gaps in the previous sources. The additional publi-
cations were found through targeted searches for occur-
rence data in regions where tick distribution was not 
reflected in previous sources, for example the presence of 
I. ricinus in Portugal [24–27]. The combined occurrence 
dataset was then cleaned in sequential steps in R (v.4.2.1) 
[28, 29] to increase reliability and quality by removing 
entries which met the following criteria: (i) missing or 
errors in coordinates; (ii) duplicated; (iii) coordinates fell 

within 1000 m of country/province centroids, institutions 
or capital cities; (iv) coordinates outside of the area of 
interest (see Fig. 1 for area of interest) (Additional file 1: 
Dataset S1).

It is important for SDMs that the entire study area 
has been systematically or randomly sampled. To meet 
this assumption, the data were randomly spatially rare-
fied using several distance thresholds (10 km–100 km in 
10-km increments). The spatial distribution of the result-
ant datasets was quantified using the nearest neighbour 
index (NNI) and the thinning distance threshold which 
resulted in a dataset with the NNI closest to 1, which 
represents a random distribution, was chosen for the 

Fig. 1 The georeferenced occurrence data for the complete Ixodes ricinus (A) and Dermacentor reticulatus dataset (C) and the spatially rarefied data 
used for model training for I. ricinus (B) and D. reticulatus (D). Points may overlap in panels (A and C)
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occurrence data [30]. As true absence data for ticks are 
difficult to obtain, these presence data were then com-
bined with 10,000 randomly generated pseudo-absence 
and background points for the use in presence-absence 
and presence only models, respectively [31–33]. The 
method of randomly selecting pseudo-absence and back-
ground points from across the training extent was cho-
sen as it has the fewest assumptions and has proven to be 
adequate for different modelling algorithms [32, 33].

Explanatory variables
Explanatory variables were obtained from four sources 
and included interpolated data and satellite imagery 
(Table  1). These variables were chosen as they had pre-
viously been used to capture the climatic niche of dif-
ferent tick species in Europe [16, 34, 35]. Monthly time 
series data, from WorldClim, TerraClimate and MODIS, 
were reduced by temporal Fourier transformation using 
an amended version of the R script provided by Estrada-
Peña et al. [35, 36]. This technique reduces the time series 
data into annual harmonics (sine and cosine waves) with 
characteristic frequencies, amplitudes and phase angles 
which capture the annual behaviour of individual envi-
ronmental variables including the start of spring and 
autumn as well as the duration of the summer [35]. This 
method is advantageous as it retains ecologically relevant 
information while being statistically sound and reducing 
the number of variables [35, 36].

All the variables were resampled to the same resolution 
(10 km × 10 km) and clipped to the study extent (Europe). 
Due to the pervasive influence of the training extent on 

model output, and as no consensus on the delimitation 
of this area has been made for ticks, several model train-
ing extents were tested by creating a 100  km, 200  km, 
300  km, 400  km, 500  km, 600  km and 700  km buffer 
around the occurrence data for each species as well as 
using the whole study region [37, 38].

For the Fourier transformed datasets, the variables 
and numbers of coefficients used were based on previ-
ous studies defining the climatic niche of tick species 
[20, 34, 39]. However, different combinations of the 19 
available bioclimatic variables have been used in pre-
vious studies; hence, a new selection was used here. To 
limit autocorrelation between bioclimatic variables, the 
variance inflation factor (VIF) of individual variables was 
assessed [40]. Due to the nature of climatic variables, it 
is impossible to eliminate correlation, but a VIF thresh-
old of 10 can exclude the variables which would cause 
the greatest problems [40]. The collinearity was assessed 
over the whole extent of Europe to prevent a collinearity 
shift when projecting training extents [41]. However, one 
issue with the automated selection of variables is losing 
biologically relevant information. To avoid this, the VIF 
results were taken along with the ecological relevance of 
the variable, which was established through knowledge 
of the species’ ecology and principal component analy-
sis (Additional files 2, 3). The final explanatory variables 
used in these models are shown in Table 1.

Model implementation
Modelling methods
The choice of model can influence the predicted suit-
ability for a species [17, 42]. Here, three SDM algorithms 

Table 1 Data source of a range of explanatory variables used for the tick distribution modelling plus the reference for the published 
data source

* Fourier transformed.  Threea or  fiveb coefficients from the Fourier transformation were used

Data source Explanatory variable Refs.

Bioclimatic variables
(1970–2000)

Isothermality (BIO3) [65]

Temperature seasonality (BIO4)

Maximum temperature of warmest month (BIO5)

Annual precipitation (BIO12)

Precipitation of driest quarter (BIO17)

MODIS satellite *a

(2000–2020)
Normalized difference Vegetation Index (MOD13X2 v061) [57]

Day land surface temperature/emissivity (MOD11C3 v061)

Night land surface temperature/emissivity (MOD11C3 v061)

WorldClim *a

(1970–2020)
Average temperature (AvgT) [66]

Precipitation (Prec)

TerraClimate *b

(1970–2021)
Maximum temperature (MaxT) [67]

Minimum temperature (MinT)

Water vapour deficit (WVP)

Soil moisture (SoilM)
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were assessed: generalised additive model (GAM) [43], 
random forest (RF) [44] and maximum entropy (Max-
Ent) [45]. Individual model fitting and tuning were 
implemented for each algorithm. Default settings and 
equally weighted presence and pseudo-absence points 
were used for the GAM models implemented using the 
mgcv R package (v.1.8-38) [17, 32, 46]. Random forest 
models were run with 1000 trees and a down-sampling 
approach was employed, whereby each classification tree 
was made with equal presence and pseudo-absence data 
points, and pseudo-absences were randomly sampled 
with replacement from the training data [47]. RF models 
were implemented using the randomForest package in R 
(v4.6-14) [48]. The MaxEnt models were run with 10,000 
background points and default parameters of the dismo 
R package (v.1.3-5) [49], as they have been shown to pro-
duce robust, well-performing models [50]. All models 
were trained with each set of explanatory variables and at 
each training extent referred to above and then projected 
to the whole of the Europe.

Validation
Spatial cross-validation was performed by geographi-
cally splitting the occurrence data into five systematically 
selected and assigned folds (300 km × 300 km), meaning 
that for each replication, 80% of the data was used for 
model training and the remaining 20% for model testing 
[51]. Therefore, for each combination of species, mod-
elling algorithm, training extent and explanatory vari-
able source, five SDMs were generated, resulting in 960 
model outputs. Model performance was assessed using 
the discrimination metric, area under the receiver-oper-
ating characteristic curve (AUC), and the classification 
metric and true skill statistic (TSS), where performance 
thresholds were set at 0.7 and 0.4, respectively [52]. The 
goodness of calibration metrics, Miller’s calibration slope 
(MCS), Continuous Boyce Index (CBI) and omission rate 
(OR) were also used in model evaluation [53, 54]. The 
performance threshold for MCS was 0.25 above or below 
1 and models with CBI values exceeding 0.9 were consid-
ered well performing [52]. The OR performance thresh-
old was set to below 0.15. All performance metrics were 
generated using the internal test data from cross-valida-
tion and then averaged across the five folds [51]. Binary 
models were made using a threshold optimised for TSS.

An independent tick occurrence dataset for valida-
tion was acquired through a pan-European tick sur-
veillance projects supported by regional MSD Animal 
Health divisions [55, 56]. Veterinary practices across 
Europe were asked to submit ticks found on pets and 
record their geographic location (for details, see other 
papers in this volume). These surveillance projects 
ran for varying periods between 2015 and 2022 in 15 

European countries: Austria, Belgium, Czech Republic, 
Denmark, Finland, France, Germany, Hungary, Italy, 
The Netherlands, Norway, Poland, Portugal, Romania, 
Slovakia, Spain and UK [57–59]. Ticks were then mor-
phologically or molecularly identified by the study co-
authors. This independent dataset was thinned so that 
no points were closer than 30  km and resulted in 570 
occurrence points for I. ricinus and 133 for D. reticula-
tus. The same performance metrics used in the internal 
validation dataset were employed here.

An uncertainty index was generated by finding the 
range between the minimum and maximum value of 
predicted environmental suitability for each cell within 
the five replicates for each modelling combination. This 
was to show the uncertainty in the results derived from 
different subsets of occurrence data. The sum of the 
uncertainty was then normalised between 0 and 1 to 
allow for comparison.

Although quantitative analysis can provide a good 
estimation of the value of the model, expert qualita-
tive analysis of the resultant maps is also a useful guide 
[60]. Here, the top performing model outputs, accord-
ing to the performance metrics, were further critiqued 
by each of the co-authors and their national research 
groups to offer local knowledge.

Comparison of models
The performance metrics of different modelling 
approaches were compared statistically using a non-
parametric Friedman test [61]. For each of the mod-
els built using different modelling algorithms, training 
extents and explanatory variables, the statistical dif-
ference in the AUC, TSS, OR, MCS and CBI, uncer-
tainty index and the proportion of Europe considered 
suitable based on binary maps produced using the TSS 
optimised threshold were tested to determine whether 
the different input variables and modelling algorithms 
are equal in performance. Following this, a Dunn’s post 
hoc analysis, with Bonferroni correction of P-values, 
allowed for pairwise comparisons of models [62].

Results
Occurrence data
The combination of occurrence data from the litera-
ture reviews, GBIF data and additional publications 
provided 7668 georeferenced locations of I. ricinus 
and 2733 for D. reticulatus (Fig.  1). After cleaning, 
the datasets were reduced to 4908 and 858 records, 
respectively (Additional file  1). Finally, following the 
removal of spatial bias, the resultant datasets con-
sisted of 638 locations for I. ricinus (optimal thinning; 
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50 km, NNI = 0.996, Z = − 0.176) and 153 for D. reticu-
latus (optimal thinning; 60 km, NNI = 1.014, Z = 0.337) 
(Additional file 1).

Model performance
Model performance varied widely, depending on the 
modelling algorithm, training extent and explanatory 
variables used, as well as the validation dataset. Further-
more, the different modelling combinations varied in 
their uncertainty index and the area of Europe predicted 
as suitable (Figs. 2, 3, 4 and 5) (Additional files 4, 5, 6, 7 
and 8). The modelling approach also influenced the pat-
tern of suitability across Europe. For I. ricinus, western 
Europe, specifically Germany, had the greatest consensus 
between modelling approaches and was always consid-
ered of high suitability, whereas western Russia had con-
sistently low suitability values (Fig. 4). There were pockets 
of high variation in predicted I. ricinus suitability; for 
example, northern Scandinavia and southern Turkey 
had high uncertainty indexes. Central Ireland, south-
east England and eastern regions in Spain were among 
those where suitability varied substantially depending 
on the modelling approach (Fig.  4) (Additional file  7). 
The results for D. reticulatus were similar, with Central 
Europe having high agreeability between different mod-
elling approaches; Germany and Poland consistently had 
high suitability values. Similarly, the low suitability of 
regions of high altitude, such as the Alps, was consistent 
between methods (Fig.  5). However, there was greater 
and more widespread variation in predicted suitability for 
D. reticulatus compared to I. ricinus. Southern Europe 
varied significantly between methods, specifically south-
ern Turkey, central Italy, northern Greece and southern 
Spain (Fig. 5) (Additional file 8).

Training extent
The training extent heavily influenced model perfor-
mance for both I. ricinus (TSS: X2 = 419.90; df = 7; 
P < 0.005 | MCS: X2 = 72.40; df = 7; P < 0.005 | CBI: 
X2 = 32.12; df = 7; P < 0.005 | OR: X2 = 117.38; df = 7; 
P < 0.005) and D. reticulatus (TSS: X2 = 494.08; df = 7; 
P < 0.005 | MCS: X2 = 76.01; df = 7; P < 0.005 | CBI: 
X2 = 134.71; df = 7; P < 0.005 | OR: X2 = 185.14; df = 7 
P < 0.005). Area under the ROC curve was not considered 
in the comparison of training extents as it is influenced 
by training extent [63]. When considering the internal 
validation, no models were adequate when using a 300-
km buffer for I. ricinus or extents below a 500 km buffer 
for D. reticulatus. The training extent continued to influ-
ence the discrimination and classification performance 
of models positively for D. reticulatus, but performance 
plateaued at a 500-km buffering region for I. ricinus. 
However, with external validation, performance metrics 

peaked at around a 600-km buffering region for both 
species (Figs.  2, 3). The goodness of calibration metrics 
for I. ricinus and D. reticulatus improved with training 
extent, with the exception of I. ricinus internal valida-
tion. The variability in the CBI and MCS metrics between 
modelling approaches decreased with increasing train-
ing extent. The training extent also influenced the uncer-
tainty index for I. ricinus (X2 = 33.75; df = 7; P < 0.005) and 
D. reticulatus (X2 = 58.28; df = 7; P < 0.005) model pre-
dictions. This effect was more obvious for D. reticulatus 
(Fig. 3). The proportion of Europe considered as suitable 
for each species changed with different training extents. 
For I. ricinus, there was a slight increase in suitable area 
with increasing extent (X2 = 53.94; df = 7; P < 0.005). For 
D. reticulatus, however, there was an initial decrease in 
predicted suitable area from a 100-km to 200-km buff-
ering region, after which it increased (X2 = 50.08; df = 7; 
P < 0.005). The suitability maps produced using a 100-km 
training extent were not reflective of the distribution of 
D. reticulatus, with high suitability in northeast Scandi-
navia and Southern Spain (Additional file 8: Figure S13). 
Therefore, the analysis shows that the model training 
extent can impact model performance and predictions 
significantly.

Modelling algorithm
The effects of modelling algorithm on model perfor-
mance were less pronounced than training extent (Figs. 2, 
3). For I. ricinus, differences in the classification (TSS: 
X2 = 52.97; df = 2; P < 0.005) and discrimination (AUC: 
X2 = 61.54; df = 2; P < 0.005) results for internal valida-
tion were less obvious than external, but RF consist-
ently performed worse than MaxEnt and GAM (Fig. 2). 
However, this difference was most obvious when assess-
ing the uncertainty index (X2 = 49.56; df = 2; P < 0.005). 
Despite performing better, there were still differences 
in the resultant suitability maps between models gener-
ated using either GAM or MaxEnt, with the suitability 
of whole countries, such as Ireland, differing with each 
modelling algorithm (Additional file  5: Figure S10). The 
goodness of calibration of I. ricinus models also sig-
nificantly varied depending on the modelling algorithm 
(MCS: X2 = 334.21; df = 2; P < 0.005 | CBI: X2 = 135.13; 
df = 2; P < 0.005) with RF performing significantly better 
than GAM. However, the poor classification, discrimina-
tion and uncertainty performance of RF was mirrored in 
the suitability maps produced, where output was over-
simplified (Additional file 5: Figure S5-12). Compared to 
I. ricinus, differences in the classification (TSS: X2 = 29.96; 
df = 2; P < 0.005) and discrimination (AUC: X2 = 65.83; 
df = 2; P < 0.005) performance of the modelling algo-
rithms were less evident for D. reticulatus, although RF 
models were still among some of the worst performing 
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Fig. 2 Comparison of model performance metrics for Ixodes ricinus using three modelling algorithms [generalised additive models (GAM), 
maximum entropy (MaxEnt) and random forests (RF)], with four explanatory variable sets (bioclimatic variables, WorldClim, TerraClimate and MODIS 
satellite-derived variables) and with eight training extents (100 km–700 km buffering extents around occurrence data increasing in increments 
of 100 km and the European extent). The area under the receiver-operating characteristic curve (AUC), true skill statistic (TSS), omission rate (OR), 
Miller’s calibration slope (MCS) and Continuous Boyce Index (CBI) were derived from the mean values from cross-validation folds. The uncertainty 
index represents the range in predictions between folds and the area suitable shows the percentage of Europe predicted as suitable for the species 
using binary maps made using a threshold optimised for TSS. Note that the y-axes are different in each panel and the data points are jittered 
around the x-axis to allow for better visualisation
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Fig. 3 Comparison of model performance metrics for Dermacentor reticulatus using three modelling algorithms [generalised additive models 
(GAM), maximum entropy (MaxEnt) and random forests (RF)], with four explanatory variable sets (bioclimatic variables, WorldClim, TerraClimate 
and MODIS satellite-derived variables) and with eight training extents (100 km–700 km buffering extents around occurrence data increasing 
in increments of 100 km and the European extent). The area under the receiver-operating characteristic curve (AUC), true skill statistic (TSS), 
omission rate (OR), Miller’s calibration slope (MCS) and Continuous Boyce Index (CBI) were derived from the mean values from cross-validation 
folds. The uncertainty index represents the range in predictions between folds and the area suitable shows the percentage of Europe predicted 
as suitable for the species using binary maps made using a threshold optimised for TSS. Note that the y-axes are different in each panel and the data 
points are jittered around the x-axis to allow for better visualisation
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Fig. 4 Mean predicted environmental suitability for Ixodes ricinus in Europe derived from 96 modelling approaches (A). The uncertainty in results 
between modelling approaches is also presented (B). The bottom graphics show the predicted environmental suitability for I. ricinus in Europe 
using a model trained with TerraClimate data from the extent of Europe and run using a MaxEnt modelling algorithm (C). The uncertainty in these 
results is also presented (D). This model was selected as best representing the current distribution of the species by a panel of experts; the output 
of all 96 models evaluated can be found in Additional file 7
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Fig. 5 Mean predicted environmental suitability for Dermacentor reticulatus in Europe derived from 96 modelling approaches (A). The uncertainty 
in results between modelling approaches is also presented (B). The bottom graphics show the predicted environmental suitability for D. reticultus 
in Europe using a model trained with TerraClimate data from the extent of Europe and run using a MaxEnt modelling algorithm (C). The uncertainty 
in these results is also presented (D). This model was selected as best representing the current distribution of the species by a panel of experts; 
the output of all 96 models evaluated can be found in Additional file 8
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(Fig. 3). However, when assessing the MCS and CBI met-
ric (MCS: X2 = 352.93; df = 2; P < 0.005 | CBI: X2 = 145.33; 
df = 2; P < 0.005), MaxEnt and GAM were the worst per-
forming modelling algorithms, respectively. MaxEnt also 
had higher uncertainty indexes at smaller training extents 
(X2 = 12.06; df = 2; P < 0.005) and the resultant suitability 
maps were inaccurate with the northeastern regions pre-
dicted as highly suitable to D. reticulatus (Fig. 3) (Addi-
tional file 8: Fig S13). The modelling algorithm can have a 
pervasive influence on the performance of SDM.

Explanatory variables
The classification and discrimination performance of 
models was significantly influenced by the explana-
tory variables for both I. ricinus (AUC: X2 = 250.64; 
df = 3; P < 0.005 | TSS: X2 = 278.39; df = 3; P < 0.005) and 
D. reticulatus (AUC: X2 = 158.09; df = 3; P < 0.005 | TSS: 
X2 = 95.24; df = 3; P < 0.005). However, the goodness of 
calibration of I. ricinus (OR: X2 = 4.25; df = 3; P = 0.24 
| CBI: X2 = 7.53; df = 3; P = 0.06 | MCS: X2 = 92.43; 
df = 3; P < 0.005) and D. reticulatus (OR: X2 = 11.39; 
df = 3; P = 0.01 | CBI: X2 = 18.49; df = 3; P < 0.005| MCS: 
X2 = 11.41; df = 3; P = 0.01) models was less influenced 
by explanatory variables. Overall, I. ricinus models built 
with interpolated WorldClim data performed best, statis-
tically, in both internal and external validation, although 
qualitative interpretation of the resultant maps suggests 
that TerraClimate variables were able to predict the suit-
ability best (see below: Expert Opinion). Models trained 
with TerraClimate variables performed best, statisti-
cally, for D. reticulatus. For both species, models built 
with bioclimatic variables were consistently among the 
lowest performing, especially when used in conjunc-
tion with RF (Figs. 2, 3). They also predicted the highest 
proportion of Europe as suitable for I. ricinus. For both 
I. ricinus (X2 = 9.05; df = 3; P = 0.03) and D. reticulatus 
(X2 = 11.35; df = 3; P = 0.01), the areas predicted as suit-
able were influenced by the explanatory variables, as each 
set captured different portions of their niches (Additional 
file 7, 8). For both species, maps produced with MODIS 
variables had a coarser appearance, while the suitability 
of ticks using the interpolated datasets had a smoother 
gradient of suitability across Europe. Models trained 
with MODIS variables also had an artefactual line across 
northern Scandinavia, due to cloud, ice and snow cover, 
which interrupted suitability predictions [64, 65].

Expert opinion
When assessing the resultant suitability maps of the best 
fit models, the consensus from expert opinions was that, 
although several modelling combinations performed well 
in general terms, none of the maps reflected the cur-
rent distribution of either species in its entirety. This was 

most apparent for models generated with RF, which had 
oversimplified results that did not reflect the distribu-
tion of I. ricinus, particularly at the geographic margins 
of each species’ distribution, such as the south of Spain 
and northern Scandinavia (Additional file 7). These devi-
ations were also evident in the models with D. reticulatus 
(Additional file 8).

The models which were considered by the experts to be 
most appropriate to describe I. ricinus and D. reticulatus 
are presented in Figs.  4 and 5 as well as the mean suit-
ability derived from all 96 modelling approaches. Models 
trained with TerraClimate data from the extent of Europe 
and run using a MaxEnt modelling algorithm best 
described the current distribution of both I. ricinus and 
D. reticulatus. For I. ricinus, large regions of Central and 
Western Europe were considered suitable with decreas-
ing suitability towards the Northern and Eastern Regions. 
There were limitations in the ability to capture the distri-
bution for particular regions; for example, the suitability 
in Eastern Finland is likely greater than presented, as well 
as the northern region of Spain. For D. reticulatus, the 
area predicted as suitable is more conservative compared 
to their expected range, especially in Southern Europe. 
However, the high predicted climatic suitability in Ger-
many and Poland accurately reflects the high abundance 
of D. reticulatus in these regions.

Discussion
This study aimed to compare multiple modelling 
approaches in their ability to capture the niche of two 
important tick species in Europe, I. ricinus and D. retic-
ulatus, to assess their potential usefulness in predicting 
spatial variability in the climate suitability. Using an array 
of modelling approaches and datasets, and three valida-
tion/verification methods, it was possible to identify the 
most useful model for each species, balancing statisti-
cal performance and plausibility. However, the overall 
evaluation showed that the performance and predictive 
ability of SDMs is highly dependent on the modelling 
algorithm and input variables and, although some models 
were broadly accurate in some regions, there was limited 
success in defining the species distribution to a localised 
level using any modelling approach (Figs. 2, 3, 4 and 5). 
This work also demonstrates the importance of using dif-
ferent validation techniques when assessing the overall 
performance of SDMs.

The predictive performance of each modelling 
approach was dependent on the validation technique 
used. There were differences when considering the inter-
nal vs. external validation here, showing the importance 
of considering both. Independent validation provides the 
benefit of assessing the predictive ability of the model 
against an external dataset, but this is often omitted from 
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SDM studies [55, 66, 67]. The use of reliable citizen sci-
ence may assist in the generation of more independent 
datasets for SDM validation [55]. Furthermore, as shown 
here (especially for RF models), models may perform 
well statistically, but the resultant accuracy of the maps 
generated may be poor. Inspection of the predictive 
performance of the model by local experts can be help-
ful in this respect [60]. The uncertainty index also high-
lighted regions of unreliability in the predictions. Model 
evaluation therefore should be based on multiple valida-
tion metrics and techniques, adding confidence to SDM 
conclusions.

The influence of modelling algorithm shows that there 
is not necessarily an ideal approach for all species. Within 
SDM literature, MaxEnt is often used without consid-
ering alternatives [68]. However, recent interest in this 
area has shown that the choice of algorithm can heav-
ily influence the predictive ability of the SDM, and this 
is dependent on the species occurrence data and training 
extent [17, 42]. For example, here RF produced plausible 
predictions for D. reticulatus but overfitted and underes-
timated suitability of Europe to I. ricinus despite reason-
able performance metrics. Interestingly, RF was the best 
performing algorithm when using SDM for estimating 
suitability for D. variabilis in the USA [42]. Research-
ers considering the use of SDM should compare several 
modelling algorithms for the species of interest and study 
region to ensure an appropriate one is used.

The spatial extent used in model training greatly influ-
ences model outputs [18, 37, 63]. The area the species 
has access to, in biogeographic history terms, is the 
most appropriate for SDM as theoretically all suitable 
environments should be occupied [69]. However, the 
delimitation of this area is often unknown and conse-
quently different training extents have been used in tick 
SDM [70, 71]. The variation in predictions from mod-
els trained with different training extents in the present 
study reflects previous work whereby narrow or exces-
sively broad training extents can decrease model perfor-
mance [18, 37]. The Europe training extent, although not 
the largest used here, achieved good performance met-
rics and suitability maps, suggesting that European-wide 
modelling is realistic for I. ricinus and D. reticulatus spe-
cies. Ticks are largely dispersed by their hosts; hence, it is 
likely they have successfully occupied most of the suitable 
regions in Europe [72]. This appears to be true for I. rici-
nus. However, rapid recent range expansion of D. reticu-
latus in central Europe and the patchy distribution of this 
species in some parts of its range suggest that this may 
not be the case for D. reticulatus [5, 10] (Fig. 1).

When using environmental variables, there is an 
assumption that the data are free from statistical error 
and fully capture the species’ niche [33]. However, both 

satellite-derived and interpolated data have limitations, 
as well as advantages. First, although there has been a 
recent increase in the use of satellite imagery in vector 
and vector-borne disease modelling, it often has a short 
temporal range (2000–present) and contains artefacts 
due to cloud, ice and snow cover [64, 65] (Additional 
files 7, 8). In contrast, the interpolated datasets are eas-
ily downloaded, span a greater temporal range (1970—
present depending on the source) and are free from the 
aforementioned artefacts [73–75]. Furthermore, interpo-
lated datasets have a greater range of variables available 
which can be used to describe the environmental con-
straints on the species, such as vapour pressure and defi-
cit [8, 10]. The main limitation of interpolated data is that 
it is derived from networks of ground weather stations 
and hence there are inherent issues associated with col-
linearity [76]. Consequently, the results of models built 
with interpolated data should be viewed with caution, 
especially where no attempt has been made to reduce 
collinearity.

Despite multiple modelling algorithms, training extents 
and explanatory variables, none of the models produced 
reflected the current distribution of I. ricinus or D. reticu-
latus accurately across their entire known ranges. Many 
of the models were adequate according to performance 
metrics and the general pattern of suitability matched the 
recognised distribution of each species, but there were 
localised discrepancies between predicted suitability and 
known distributions. These were also species specific, 
with the resultant maps being less representative for D. 
reticulatus, possibly because of its narrower spatial range 
and fragmented distribution throughout Europe, mak-
ing it harder to capture its complex niche [5, 10]. This, 
and the possibility that species may adapt to local cli-
matic conditions (e.g. as has been demonstrated with I. 
ricinus [77, 78]), suggests that if researchers require more 
localised, sensitive tick predictions, regional SDM may be 
more appropriate [14, 79, 80]. Nevertheless, the valida-
tion completed here demonstrates that broadly accurate 
models can be developed for larger regions, which may 
be useful for larger scale climate impact assessments.

The use of singular climatic datasets, such as those 
used here, may not fully capture the environmental niche 
of the ticks. Although relative humidity and tempera-
ture are key variables influencing tick presence, habitat 
and host variables are also important determinants [79, 
80]. For example, the sandy west coast of Denmark had 
greater predicted suitability for I. ricinus compared to the 
wooded eastern regions of Denmark when models were 
trained with bioclimatic variables, which is the opposite 
of the known distribution of I. ricinus in this region [79]. 
These local discrepancies could result from the lack of 
habitat variables. The inclusion of additional variables 
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such as host distribution or abundance, vegetation cover 
and soil type may increase the accuracy of SDM at local 
levels [79, 80]. However, these data are often not freely 
available at high resolution across the whole extent of 
Europe and, more importantly, cannot be used in pre-
dicting future suitability because of the uncertainty in 
anthropogenic changes, extreme weather events and host 
distributions [81–83].

As SDMs work by defining the species occurrence 
dataset in environmental spaces, inaccuracies in this 
dataset may cause erroneous results. The misidentifica-
tion of ticks and the emergence of new species, which 
closely resemble well-established species, such I. inopi-
natus, introduce ambiguity into the historical records 
[84, 85]. A recent study showed that researchers in the 
Western Palearctic and North Africa misidentified 29.6% 
of ticks [86]. An alternative source of error is through 
the documentation of ticks from migrating hosts which 
do not represent permanent populations. For example, 
Hyalomma species have been introduced to the UK on 
migratory birds and including such data would distort 
the species niche in environmental space [87]. Further-
more, these models rely on pseudo-absence data as col-
lecting true absence data for ticks is likely to cause type 
II statistical errors (false negatives) [31]. Collecting ticks 
depends on sampling method, time of collection and 
weather conditions; hence, their absence is not always 
representative of an unsuitable habitat [88]. The inability 
of these climate models to effectively capture the species 
niche may in part be due to subtle errors in occurrence 
data and the lack of true absence data for ticks.

Conclusion
SDMs are powerful tools in identifying the suitability 
of environmental spaces to species of interest, such as 
ticks. However, despite considering multiple modelling 
approaches, there is no single modelling approach, using 
climatic variables alone, which can accurately capture 
the entire niche of I. ricinus or D. reticulatus throughout 
Europe. This is an important consideration when inves-
tigating the impacts of climate-mediated changes on 
tick distribution and the risk of tick-borne disease, since 
other factors such as host distribution, vegetation type, 
land use or other anthropogenic disturbance, are all likely 
to play critical roles within the broad habitat/climate 
envelope and should be included in a next-generation 
modelling approach.

Abbreviations
GAM  Generalised additive models
MaxEnt  Maximum entropy
RF  Random forests
AUC   Area under the receiver-operating characteristic curve

TSS  True skill statistic
OR  Omission rate
SDM  Species distribution models
MCS  Miller’s calibration slope
CBI  Continuous Boyce index

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13071- 023- 05959-y.

Additional file 1: Dataset S1. Species occurrence data for Ixodes ricinus 
and Dermacentor reticulatus used for model training (prior to thinning). 

Additional file 2: Figure S1. Principal component analysis decomposi-
tion of the contribution of each variable in the four datasets, bioclimatic 
variables (A), MODIS satellite-derived variables (B), WorldClim variables (C) 
and TerraClimate variables (D), which were used in determining the niche 
of Ixodes ricinus. The direction, length and colour of the arrows represent 
the contribution of each variable that was used in determining the niche 
of Ixodes ricinus.

Additional file 3: Figure S2. Principal component analysis decomposi-
tion of the contribution of each variable in the four datasets, bioclimatic 
variables (A), MODIS satellite-derived variables (B), WorldClim variables (C) 
and TerraClimate variables (D), which were used in  determining the niche 
of Dermacentor reticulatus. The direction, length and colour of the arrows 
represent the contribution of each variable that was used in determining 
the niche of Dermacentor reticulatus.

Additional file 4: Dataset S2. The model performance metrics for 96 
modelling approaches for Ixodes ricinus and Dermacentor reticulatus. Per-
formance metrics include the area under the receiver-operating character-
istic curve, true skill statistics, Miller’s calibration slope, continuous Boyce 
index and omission rate. The different modelling approaches included 
three modelling algorithms [random forests (RF), maximum entropy 
(MaxEnt) and generalised additive models (GAM)], with four explanatory 
variable sets (bioclimatic variables, WorldClim, TerraClimate and MODIS 
satellite-derived variables) and with eight training extents (100 km–700 
km buffering extents around occurrence data increasing in increments of 
100 km and the European extent).

Additional file 5: Figure S3. The statistical comparison of Ixodes ricinus 
model performance metrics using a Friedman test and post hoc Dunn’s 
test, with Bonferroni correction. The performance of the three modelling 
algorithms [random forests (RF), maximum entropy (MaxEnt) and gener-
alised additive models (GAM)] (A–E), eight training extents (100 km–700 
km buffering extents around occurrence data increasing in increments 
of 100 km and the European extent) (F–J) and four sets of explanatory 
variables (bioclimatic variables, WorldClim, TerraClimate and MODIS 
satellite-derived variables) (K–O) were compared using the area under the 
receiver-operating characteristic curve, true skill statistic, omission rate, 
Miller’s calibration slope, Boyce index, uncertainty index and the percent-
age of Europe considered as suitable for Ixodes ricinus in Europe. The text 
inside each cell shows the P-value of the Dunn’s test, and darker colours 
indicate lower P-values.

Additional file 6: Figure S4. The statistical comparison of Dermacentor 
reticulatus model performance metrics using a Friedman test and post 
hoc Dunn’s test with Bonferroni correction. The performance of the three 
modelling algorithms [random forests (RF), maximum entropy (MaxEnt) 
and generalised additive models (GAM)] (A–E), eight training extents 
(100 km–700 km buffering extents around occurrence data increasing 
in increments of 100 km and the European extent) (F–J) and four sets of 
explanatory variables (bioclimatic variables, WorldClim, TerraClimate and 
MODIS satellite-derived variables) (K–O) were compared using the area 
under the receiver-operating characteristic curve, true skill statistic, omis-
sion rate, Miller’s calibration slope, Boyce index, uncertainty index and the 
percentage of Europe considered as suitable for Dermacentor reticulatus in 
Europe. The text inside each cell shows the P-value of the Dunn’s test, and 
darker colours indicate lower P-values.
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Additional file 7: Figure S5-12. The predicted environmental suitability 
for Ixodes ricinus in Europe using 96 different modelling approaches, using 
three modelling algorithms [random forests (RF), maximum entropy 
(MaxEnt) and generalised additive models (GAM)] with four explanatory 
variable sets (bioclimatic variables, WorldClim, TerraClimate and MODIS 
satellite-derived variables), with eight training extents (100 km–700 km 
buffering extents around occurrence data increasing in increments of 100 
km and the European extent).

Additional file 8: Figure S13-20. The predicted environmental suit-
ability for Dermacentor reticulatus in Europe using 96 different modelling 
approaches, using three modelling algorithms [random forests (RF), maxi-
mum entropy (MaxEnt) and generalised additive models (GAM)] with four 
explanatory variable sets (bioclimatic variables, WorldClim, TerraClimate 
and MODIS satellite-derived variables) with eight training extents (100 
km–700 km buffering extents around occurrence data increasing in incre-
ments of 100 km and the European extent).

Additional file 9: Text S1. The ODMAP (overview, data, model, assess-
ment, prediction) protocol for reporting species distribution modelling 90.
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