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Abstract 

Background Understanding coupled human-environment factors which promote Aedes aegypti abundance is criti-
cal to preventing the spread of Zika, chikungunya, yellow fever and dengue viruses. High temperatures and arid-
ity theoretically make arid lands inhospitable for Ae. aegypti mosquitoes, yet their populations are well established 
in many desert cities.

Methods We investigated associations between socioeconomic and built environment factors and Ae. aegypti abun-
dance in Maricopa County, Arizona, home to Phoenix metropolitan area. Maricopa County Environmental Services 
conducts weekly mosquito surveillance with  CO2-baited Encephalitis Vector Survey or BG-Sentinel traps at > 850 loca-
tions throughout the county. Counts of adult female Ae. aegypti from 2014 to 2017 were joined with US Census data, 
precipitation and temperature data, and 2015 land cover from high-resolution (1 m) aerial images from the National 
Agricultural Imagery Program.

Results From 139,729 trap-nights, 107,116 Ae. aegypti females were captured. Counts were significantly positively 
associated with higher socioeconomic status. This association was partially explained by higher densities of non-
native landscaping in wealthier neighborhoods; a 1% increase in the density of tree cover around the trap was associ-
ated with a ~ 7% higher count of Ae. aegypti (95% CI: 6–9%).

Conclusions Many models predict that climate change will drive aridification in some heavily populated regions, 
including those where Ae. aegypti are widespread. City climate change adaptation plans often include green spaces 
and vegetation cover to increase resilience to extreme heat, but these may unintentionally create hospitable micro-
climates for Ae. aegypti. This possible outcome should be addressed to reduce the potential for outbreaks of Aedes-
borne diseases in desert cities.
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Background
Aedes aegypti mosquitoes are key vectors for dengue, 
chikungunya, Zika, and yellow fever viruses. These mos-
quitoes thrive in urban environments. They are highly 
anthropophilic and exploit small breeding sites near 
human habitation. They are also highly adaptable, devel-
oping the ability to exploit previously uninhabited niches, 
such as larval development in septic tanks, and to alter 
diurnal feeding patterns [1, 2]. These characteristics have 
facilitated the widespread distribution of the vectors 
and viruses they transmit [3]. Vector control efforts are 
critical to reduce the health burden of these diseases in 
endemic areas and to prevent their expansion into new 
regions. Understanding factors that facilitate the propa-
gation of these important disease vectors is critical to 
planning surveillance, vector containment, and disease 
prevention.

The success of Ae. aegypti in urban settings has 
prompted research into the coupled human-natural sys-
tems that support their oviposition, development, and 
survival. Ae. aegypti distributions and related disease 
outbreaks are known to be associated with temperature, 
humidity, and rainfall/precipitation [4, 5]. Ae. aegypti 
abundance is associated with human-linked factors such 
as socioeconomic status, water storage, and other aspects 
of the built environment [6]; however, most research has 
occurred in humid, tropical climates [7–10]. Investiga-
tions in desert contexts are limited. We hypothesize that 
relationships between human and environmental factors 
with mosquito abundance and disease transmission risk 
may differ in magnitude and direction in regions where 
water resources are scarce and weather conditions are 
inhospitable.

Climate suitability has constrained the distribution of 
Ae. aegypti, but vulnerable regions are expected to shift 
in response to climatic change, and possibly urbaniza-
tion, over the coming decades [11]. Global predictions 
of Ae. aegypti distributions are primarily driven by pro-
jected average changes in temperature and rainfall/
humidity at coarse spatial scales. Laboratory experiments 
indicate upper temperature thresholds of 38–42 °C for 
the development and survival of Ae. aegypti which are 
attenuated with higher humidity [12–14]. Vector popu-
lation models are sensitive to that upper threshold limit, 
leading to predictions of population crashes in areas in 
which temperatures exceed that threshold. Such models 
prompt hypotheses that Aedes-borne disease risk may 
decrease in areas where climate change will lead to aridi-
fication and higher temperatures [15, 16]. However; while 
intense heat, low rainfall, and low humidity theoretically 
make desert areas inhospitable to mosquitoes, popula-
tions of important vector species, including Ae. aegypti, 
are well established, and transmission of Aedes-borne 

diseases has been reported in desert cities [17]. Although 
temperatures in the Arizona-Sonora desert region regu-
larly exceed laboratory-derived survival thresholds dur-
ing summer months, Ae. aegypti populations have been 
detected consistently in Sonoran desert cities like Tucson 
and Phoenix, Arizona, since their reintroduction to the 
area more than 25  years ago [18–20]. In 2022, the first 
locally confirmed case of dengue virus was detected [21]. 
Not only was there a confirmed human case, but virus-
positive mosquites were also discovered. Anthropogenic 
water sources in arid environments provide aquatic habi-
tat for the immature life stages and are associated with 
dengue transmission in dry months [22, 23]. The extent 
to which other built environment factors contribute to 
Ae. aegypti abundance in desert cities remains unclear.

Maricopa County, Arizona, is home to the Phoenix 
metropolitan area, the sixth largest US city. West Nile 
virus has been transmitted annually since its introduc-
tion in 2003 with sporadic outbreaks [24]. In response, 
the Maricopa County Vector Control Division (MCVCD) 
performs weekly surveillance of adult mosquito abun-
dance with a network that now includes over 800 vec-
tor traps distributed across the county. This surveillance 
was heavily utilized during an unprecedented outbreak 
of West Nile virus in 2021, with over 1400 confirmed 
cases in Maricopa County alone [25]. The initial focus on 
Culex species was expanded to include adult Ae. aegypti 
mosquitoes. These robust data offered the unique oppor-
tunity to investigate predictors of localized Ae. aegypti 
abundance in a large desert city through a secondary data 
analysis.

Understanding the relative distribution of the mos-
quitoes across the arid urban environment can identify 
heterogeneity in risks for epidemics of Aedes-borne dis-
eases and guide future vector control recommendations 
in desert settings. As climate change is predicted to cause 
widespread aridification, these results may apply more 
broadly to urban arid environments globally. Our analy-
sis complements a recent study that spatially examined 
presence/absence of Ae. aegypti in Maricopa County 
[26] to further investigate the coupled human-natural 
factors that explain heterogeneity in adult Ae. aegypti 
abundance. Given the heat and aridity of the setting, 
our primary hypothesis was that built water features 
and non-native landscaping like grass and dense trees 
support higher adult Ae. aegypti abundance by creating 
microclimate oases in this desert city.

Methods
Study site
The study was based in Maricopa County, home to met-
ropolitan Phoenix, with a population of ~ 4.6 million peo-
ple. Maricopa County falls within the Arizona-Sonora 
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Desert; it is classified as a subtropical desert with sea-
sonal monsoon rainstorms between June and September, 
with lighter rainfall in December and January. The sum-
mer months coincide with extremely high temperatures, 
with the daily high temperatures commonly exceeding 
40 °C and sometimes nearing 48 °C June through Septem-
ber. Native vegetation includes cacti and desert shrubs, 
but much of the region is bare earth. Maricopa County 
has one of the fastest growing populations in the US [27], 
with widespread commercial and residential structures 
and alterations to the native landscape for both residen-
tial and agricultural purposes. Maricopa County has had 
consistently high incidence of West Nile virus (WNV) 
since its introduction in 2003. The first confirmed case of 
locally acquired dengue was identified in November 2022 
[21].

Aedes aegypti count data
In response to the endemic WNV threat, the MCVCD 
undertakes extensive surveillance and control efforts, 
including weekly mosquito collections from geolo-
cated traps distributed throughout the county (from 
765 to 932 unique locations between 2014 and 2017). 
Although the MCVCD has undertaken surveillance 
since 2006, the number of traps has increased over the 
years. This analysis concentrates on the counts of adult 
female Ae. aegypti mosquitoes captured during weekly 
trapping events between 2014 and 2017, when the num-
ber of trap locations had become highly distributed. In 
densely populated areas, mosquito traps are allocated to 
blocks of approximately 1 square mile. Most mosquito 
data from 2014 to 2017 (> 99% of trap collections) were 
collected using  CO2-baited Encephalitis Vector Survey 
(EVS) traps, with BG-Sentinel traps, baited with both 
BG lures and dry ice, incorporated at a limited num-
ber of locations starting in the year 2016 (278 of 38,177 
trap-nights [0.73%] in 2016 and 997 of 38,972 trap-nights 
[2.56%] in 2017). Unpublished experiments run by Mari-
copa County Vector Control Division and published data 
by Williams et al. demonstrate that EVS trap counts and 
relative BG Sentinel trap counts correlate well, allowing 
relative abundance patterns to be examined using EVS 
trap data[28]. Traps are set weekly for 24 h. Adult mos-
quitoes are counted, identified, and pooled for virus test-
ing. Counts exceeding species-specific thresholds–50 or 
more per trap-night for Aedes and 30 or more per trap-
night for Culex–or any trap pool testing positive for 
WNV or St. Louise Encephalitis virus trigger targeted 
insecticide treatments.

Potential predictor variables
Given the known association between climate and 
mosquito abundances, all models were adjusted for 

temperature and rainfall. Estimates of the total precipi-
tation (in mm) and average temperature (in degrees Cel-
sius) at each trap location by month during the study 
period were obtained from freely accessible estimates 
of the PRISM Group at Oregon State University at a 
4-km grid resolution (https:// prism. orego nstate. edu/). 
Though we had mosquito captures from one night weekly 
for each trap, these climate data were only available as 
monthly averages. To account for anticipated delayed 
impacts on mosquito development, our analysis tested 
the values lagged from one calendar month prior to the 
calendar month of the date of collection rather than the 
month corresponding to the night of collection.

Based on the relatively short expected flight distances 
of Ae. aegypti mosquitoes [29], we analyzed the values of 
demographic and land cover predictors of interest using 
a 50-m buffer around each trap. Demographic charac-
teristics of the human population surrounding each trap 
were estimated from US Census Bureau American Com-
munity Survey 5-Year Estimate for the years 2011–2015, 
based on the 2010 census [30]. Sociodemographic varia-
bles including population density, average household size, 
age, sex, race, income/poverty, and education were calcu-
lated as the weighted average value for all census blocks 
falling within each trap’s 50-m buffer weighted by the 
percent area covered by each census block. Land cover/
land use was estimated based on one-meter resolution 
aerial images of Maricopa County taken by the National 
Agriculture Imagery Program (NAIP) during May and 
June of 2015. The NAIP image included four bands (red, 
blue, green, and infrared) and enabled calculation of the 
normalized differential vegetation index (NDVI) [31]. We 
performed iterative self-organizing (Iso) cluster unsuper-
vised classification in ArcGIS v.9.4 on the four-band plus 
NDVI composite allowing for 100 potential categories. 
Two of the authors collaboratively reviewed the output 
categories against a visual overlay of the original NAIP 
image to manually reclassify the 100 categories into nine 
groups: structures, roads/pavement, bare earth, cacti/
shrubs, crops/grass, trees, lake/water, swimming pool, 
and shadow. Grass and crops could not be consistently 
distinguished from the classification and had to be ana-
lyzed collectively. Finally, we used zonal statistics (Tabu-
late Area 2) to calculate the percentage of each land cover 
type within the 50-m buffer zone around each trap. The 
procedure distinguished water and green vegetation 
from structure, pavement, and bare earth, though visual 
examination revealed some misclassifications between 
the latter three categories. Dense tree cover was some-
times misclassified as shadow, though we did not observe 
instances of shadows being misclassified as tree cover. 
Models were explored in which shadow and tree cover 
were included independently or in combination.

https://prism.oregonstate.edu/
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Statistical analyses
Data management and analyses were completed in Sta-
tistical Analysis Systems (SAS) version 9.4 (SAS Insti-
tute, Cary, NC). The primary outcome of interest was 
the count of adult female Ae. aegypti per night per trap, 
with most of the traps having repeated measurements on 
a weekly basis after their introduction. These values were 
highly skewed—significantly overdispersed and with a 
highly inflated number of nights where zero Ae. aegypti 
were captured. Simple summary statistics were calcu-
lated for all trap-nights occurring within each month 
of collection to visualize seasonality in figures. We built 
a multi-level zero-inflated negative binomial (ZINB) 
regression model to evaluate climate, socioeconomic, 
demographic, and land cover relationships with Ae. 
aegypti counts using each day of collection as a separate 
observation, with a random effect to account for repeated 
observations at the same location. The logistic portion 
of the ZINB models incorporated the strongest predic-
tive factors: rainfall, temperature, and population density. 
Crude models for all predictors of counts per trap-night 
were run in negative binomial and ZINB regression for 
comparison.

Spline regression was used to fit non-linear associa-
tions between the 1-month lagged average temperature 
and total rainfall and Ae. aegypti counts. Rainfall had a 
generally linear association with count, but temperature 
had distinct non-linearity, with a positive association 
increasing to a monthly average temperature of 29  °C 
and a negative association for increasing temperatures 
> 29  °C (Additional file  1: Fig. S1). An interaction term 
was incorporated into all models involving temperature 
to allow for this threshold effect.

Final model selection considered collinearity between 
predictors, a priori knowledge about factors influencing 
Ae. aegypti breeding like population density and climate, 
and the strength of associations from crude ZINB models 
to build a parsimonious set of covariates of interest. The 
strongest predictors from crude regression were added 
first to the ZINB model using proc genmod, with addi-
tional variables incorporated one by one and retained 
if they lead to significant improvement of the model 
fit based on Akaike’s information criterion (AIC). For 
highly collinear predictors like the various measures of 
socioeconomic status, we added each to the same base 
model and retained the one that led to the best fit based 
on the AIC. The best fit final set of predictors from the 
fixed effects model was then run in a multi-level ZINB 
regression using the proc nlmixed command with a ran-
dom error term to adjust for clustering attributable to 
repeated sampling of the same trap locations [32, 33]. 
The goodness of fit was assessed for all unique trap loca-
tions by comparing the observed relative frequencies of 

each count with the maximum likelihood estimates of 
their probabilities [32].

Results
Summary of Ae. aegypti data
The number of unique trap locations ranged from 765 to 
932 between the years 2014 and 2017 (Table 1). Two trap-
nights of 139,731 total were extremely high outliers, with 
counts four and six times the next highest trap-night and 
approximately 150 and 250 standard deviations above 
the mean. Because these were thought to be related 
to unusual hatch events, these two observations were 
removed from all tables and analyses. More than 109,000 
Ae. aegypti females were counted from the remaining 
139,729 trap-nights. Counts peaked annually between 
August and October following monsoon rains (Fig.  1). 
Trap abundance varied spatially during monsoon season 
(July–October) 2014 to 2017 (Fig. 2). The percent of trap-
nights with Ae. aegypti female presence increased from 
13.6% in 2014 to 18.3% in 2017 (Table 1). Median count 
per trap-night in positive traps was 2 or 3 each year, but 
maximums in a trap-night exceeded 200 each year.

Characteristics of trap locations
Demographic and land cover values surrounding trap 
locations are summarized in Table  2. Trap locations 
were distributed throughout Maricopa County, includ-
ing dense urban areas (population density maximum 
26,133 people per square mile) and sparsely populated 
areas (0.74 people per square mile). The median percent 
of the population comprised of non-Hispanic white was 
70.0%, but ranged from 1.1 to 100%. The median percent 
of people > 65 years of age was 9.6%, but ranged from 0 
to 95.2%. Census blocks were divided into quartiles based 
on the percent of the block whose income was < 200% of 
the federal poverty line (range: 0–100%, median 22.5%).

Traps were often placed in open common areas of 
neighborhoods, such as parks. The median of grass/crop 
cover was 17.4% (interquartile range [IQR]: 11.4–26.6%) 
and that of tree cover was 6.4% (IQR: 4.0–9.6%) in the 
area within 50 m surrounding traps. Shadow was strongly 
correlated with tree cover (r = 0.75, P < 0.0001), which 
could reflect both creation of shadows by trees and occa-
sional misclassification of dense tree cover as shadow, 
but it comprised a small amount of ‘land’ cover around 
the traps, with a median of 1.4% (IQR 0.7–2.5%). Water 
bodies were also uncommon near traps, with medians of 
0.1% for pool cover (IQR: 0–0.5%) and 0% for lake cover 
(IQR: 0–0.1%). Road, structures, and bare earth covered 
relatively high proportions of land around the traps com-
pared to the water features and vegetation (Table 2).
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Predictors of Ae. aegypti mosquito counts
All exploratory analyses indicated significant overdisper-
sion, so only negative binomial distributions were con-
sidered to model the count of Ae. aegypti females per 
trap-night. We incorporated zero-inflation given that 
83.6% of all trap-night observations found no Ae. aegypti 
mosquitoes. The logistic portion of the model was built 
based on a priori knowledge and included the total rain-
fall in the previous month, the average temperature in the 
previous month, and the population-density at the trap 
location [26]. Temperature effects were modeled sepa-
rately above and below the threshold of 29  °C based on 
data exploration with spline regression. The zero-inflated 
negative binomial (ZINB) model was preferred given the 
notable zero-inflated distribution of the data, though the 
direction and magnitude of the associations with predic-
tors were largely consistent with those produced by the 
crude negative binomial models. Adjusted models were 
built using only ZINB distributions.

Table  3 reports all crude associations between pre-
dictors and Ae. aegypti counts from the negative bino-
mial portions of the ZINB models as well as the results 
of the final adjusted model, which included rainfall and 
temperature lagged from the previous month, popula-
tion density, average household size, percent of census 
block that was female, poverty quartile of the census 
block, the percentage of bare earth within 50  m of the 
trap, and percentage of tree cover within 50  m of the 

trap. Average household size and percent female were 
included in the final ZINB model based on significance 
in the fixed effects model, though they were not statis-
tically significant after incorporating the random error 
term for repeated measurements at trap locations in the 
multi-level adjusted ZINB model (Table 3). The trap-level 
random error term in the final model was significantly 
different than 0 (1.93, P < 0.0001), suggesting that addi-
tional trap-level factors contribute to Ae. aegypti vari-
ability. Model validation plots indicated a good fit for the 
frequencies of counts at all trap locations.

BG-Sentinel traps were positive for at least one Ae. 
aegypti mosquito significantly more often than the EVS 
traps (38.6% vs. 16.2%, Chi-square P < 0.0001, Table  1) 
but constituted < 1% of trap-night observations. EVS 
trapping was evenly distributed through the year, but the 
BG-Sentinel traps were deployed much more often dur-
ing the rainy season months of July to October (66.8% 
of BG-Sentinel traps vs. 35.5% of EVS traps, Chi-square 
P < 0.0001). BG-Sentinel traps were associated with 
higher counts of Ae. aegypti than EVS traps, but the dif-
ference was not statistically significant in the crude nega-
tive binomial portion of the ZINB model after adjusting 
for temperature, rainfall, and population density in the 
logistic component (incidence rate ratio [IRR] = 1.12, 95% 
confidence interval [CI]: 0.96–1.30).

Counts of Ae. aegypti were strongly associated with 
land cover in the 50-m radius surrounding the traps. The 

Table 1 Summary of data on Aedes aegypti from Maricopa County surveillance activities, 2014—2017

EVS Encephalitis vector survey

Year

2014 2015 2016 2017

All traps

 Number of unique trap locations 765 913 932 881

 Number of trap-nights 28,131 34,447 38,177 38,972

 Total count of adult female Ae. aegypti 27,208 24,155 28,986 28,934

 Trap-nights with any adult female Ae. aegypti present 13.6% 16.3% 16.7% 18.30%

 Number of females per trap-night when positive, median (range) 3 (1–215) 2 (1–375) 2 (1–300) 2 (1–325)

EVS traps

 Number of unique trap locations 765 913 914 808

 Number of trap-nights 28,131 34,447 37,899 37,975

 Total count of adult female Ae. aegypti 27,208 24,155 28,732 27,291

 Trap-nights with any adult female Ae. aegypti present 13.6% 16.3% 16.6% 17.8%

 Number of females per trap-night when positive, median (range) 3 (1–215) 2 (1–375) 2 (1–300) 2 (1–325)

BG-Sentinel (Biogents) traps

 Number of unique trap locations 0 0 19 73

 Number of trap-nights 0 0 278 997

 Total count of adult female Ae. aegypti 0 0 254 1,643

 Trap-nights with any adult female Ae. aegypti present N/A N/A 32.4% 40.3%

 Number of females per trap-night when positive, median (range) N/A N/A 2 (1–20) 2 (1–158)
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percentage of bare earth around the trap was a strong 
negative predictor of Ae. aegypti counts in the crude 
ZINB analysis, though the magnitude of the association 
was weakened in the final adjusted model. An increase 
of 5% in the amount of bare earth surrounding a trap 

was associated with a 6% reduction in the counts of Ae. 
aegypti (95% CI: 4–10%). Increasing quartiles of tree 
cover displayed a clear positive trend with Ae. aegypti 
counts. Differences were greatest during summer mon-
soon months but extended into November and even 

Fig. 1 Counts of adult female Ae. aegypti mosquitoes captured per trap-night by month, Maricopa County, Arizona, 2014–2017. Intervals for trap 
counts were manually defined for consistency across months and because of the extremely right skewed nature of the data
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weakly into December (Fig. 3). The relationship between 
grass cover quartile and Ae. aegypti counts did not display 
such a clear trend (Fig. 4). Both were associated with Ae. 
aegypti  counts in crude ZINB regression (Table  3), but 
the association with tree cover was larger and remained 
significant in the final adjusted model (incidence rate 
ratio [IRR] = 1.07 for a 1% increase in tree cover, 95% CI: 
1.06–1.09). Percent of land cover classified as shadow was 
also strongly associated with the count of Ae. aegypti in 
the crude ZINB models. Areas classified as shadow on 
the satellite images were strongly correlated with dense 
tree cover (r = 0.75, P < 0.0001). We investigated compos-
ite variables that combined tree and shadow percentages 
as shade cover and tree and grass coverage percentages 
as vegetation cover, but neither composite variable fit the 
data better than tree cover alone, and thus these compos-
ites were excluded from the final model.

Population density was one of the strongest predic-
tors of Ae. aegypti counts. In the final adjusted model, 

Ae. aegypti counts were 21% higher with every increase 
of 1000 people per square mile (95% CI: 18–25%). Cen-
sus block wealth was positively associated with Ae. 
aegypti counts. Wealthier areas had higher counts than 
census blocks with larger proportions of residents liv-
ing in households below 200% of the federal poverty 
line. Population density confounded the crude relation-
ship between wealth and Ae. aegypti counts toward null, 
i.e. reducing the magnitude of the crude association 
compared to the association after adjusting for popula-
tion density, as less dense suburban areas tended to be 
wealthier (correlation between population density and 
percent living below 200% of the federal poverty line, 
r = 0.364, P < 0.0001). The relationship was reflected most 
clearly in an earlier and steeper seasonal increase in Ae. 
aegypti counts for traps in the wealthiest quartile of cen-
sus blocks (Fig. 5). Tree cover and grass cover tended to 
be significantly higher in wealthier census blocks (p for 
both correlations < 0.0001) and explained part of the 

Fig. 2 Locations of mosquito traps and average count per trap night during rainy season months (July–October), Maricopa County, 2014–2017
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association between wealth and Ae. aegypti counts; how-
ever, the association with wealth was highly significant 
even in the final model that adjusted for tree cover, with 
the wealthiest quartile of census blocks having 2.60 times 
the counts of Ae. aegypti as blocks in the quartile with 
highest poverty levels (95% CI: 2.06–3.28).

Discussion
Despite exceedingly high temperatures and aridity, Ae. 
aegypti populations are abundant in developed urban 
areas of Maricopa County (Phoenix), Arizona. Coupled 
human-natural factors explained spatial heterogeneity 
in counts of female Ae. aegypti mosquitoes even after 
accounting for variability in rainfall and temperature. 
Counts of female Ae. aegypti mosquitoes in this desert 
city most notably increased with human population den-
sity, census block wealth, and nearby tree cover. These 
factors contributed to seasonal increases in Ae. aegypti 
counts that started earlier in the year, lasted later, and 
peaked with greater abundance. Our findings differ from 
relationships reported in other climates, as described 

below, and have important implications for Ae. aegypti 
control strategies in desert cities.

These results suggest that Ae. aegypti abundance in 
Maricopa County was not absent at the temperature 
thresholds previously identified in laboratory experi-
ments [12, 13]. Depending on the life stage of the mos-
quito, such experiments have found Ae. aegypti mortality 
to increase above 38–42  °C; even brief laboratory expo-
sure (15–30  min) to temperatures > 42  °C is typically 
highly fatal to adults and to > 43.3 °C (110°F) is universally 
fatal [12, 13]. Weather stations in urban central locations 
of Maricopa County regularly measured daytime tem-
peratures that exceeded 43.3  °C in the summer months 
of 2014 to 2017, with temperatures up to 49  °C being 
detected [34]. The strikingly high counts of Ae. aegypti 
mosquitoes during and immediately after these hot sum-
mer months defy anticipated heat impacts. Recent mod-
eling efforts using the Dynamic Mosquito Simulation 
Model (DyMSiM) found that model predictions are sen-
sitive to the temperatures chosen as the upper threshold 
for survival, particularly in areas at the margins of these 
thresholds like the Arizona-Sonora Desert [16]. Climate 

Table 2 Demographic and land cover characteristics in the 50 m radius surrounding each mosquito trap under surveillance by the 
Maricopa County Vector Control Division, 2014—2017

IQR interquartile range, USD US dollars

*Estimates for traps whose buffer included more than one census block were calculated as an average of the characteristics of overlapping census blocks weighted by 
the percent contribution of each block to the total area of the buffer zone

**Classified in ArcGIS from 1 m resolution aerial images taken May/June 2015

Variable Median (range) IQR

Demographic characteristics in census blocks surrounding mosquito traps*

 Population density (people/mile2) 3,451.9 (2.85–28,114.5) 1,652.5–5,268.4

 Average household size (no. of residents) 2.9 (0–5.5) 2.5–3.4

 Median age (years) 36.0 (17.1–77.9) 30.9–42.9

 Percent ≥ 65 years old 9.6% (0%–95.2%) 5.9%–15.4%

 Percent female 50.6% (2.7%–94.3%) 47.5%–53.7%

 Percent non-Hispanic white 70.0% (1.1%–100%) 51.4%–80.7%

 Percent adults > 25 years old with only high school degree or less 19.0% (0%–61.0%) 12.3%–28.2%

 Percent with limited English proficiency 4.2% (0%–47.9%) 1.7%–10.2%

 Median household income (USD) $65,961.5 ($0–$205,536.0) $48,056.0–$90,417.0

 Percent with income < 200% of poverty level 22.5% (0%–100%) 13.2%–39.7%

 Percent vacant houses 9.6% (0%–50.7%) 4.9%–15.3%

Land cover**

 Percent bare earth 21.6% (0%–89.3%) 14.3%–30.5%

 Percent grass/crops 17.4% (0%–93.6%) 11.4%–26.6%

 Percent trees 6.4% (0%–37.9%) 4.0%–9.6%

 Percent cactus/shrub 4.1% (0%–54.6%) 2.8%–5.9%

 Percent pool 0.1% (0%–14.3%) 0%–0.5%

 Percent lake 0% (0%–32.2%) 0%–0.05%

 Percent road/pavement 24.7% (0.2%–85.8%) 17.2%–32.7%

 Percent structure 14.3% (0.6%–84.4%) 10.4%–19.4%

 Percent shadow 1.4% (0%–13.2%) 0.7%–2.5%
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Table 3 Predictors of adult female Aedes aegypti counts by multi-level zero-inflated* negative binomial regression, Maricopa County, 
Arizona, 2014—2017

CI  confidence interval, IRR incidence rate ratio, USD US dollars

*The logistic portion of the zero-inflated models incorporated rainfall lagged 1 month, average temperature lagged 1 month, and population density. Odds ratios for 
the logistic portion of the final model are included in Additional file 2: Table S1

**Variables included in the final model were those that significantly improved the model fit by Akaike’s information criterion (AIC) after adjustment for other strong 

Variable (units in regression model) Crude zero-inflated negative binomial Adjusted** zero-inflated negative 
binomial with random error 
term***

IRR (95% CI) P-value IRR (95% CI) P-value

Climate and other logistical characteristics

 Cumulative rainfall, lagged 1 month (5 mm increase) 1.09 (1.08–1.09)  < 0.0001 1.110 (1.106–1.14)  < 0.0001

 Average monthly temperature, lagged 1 month (1 °C increase)

 < 29 °C 1.27 (1.26–1.28) < 0.0001 1.17 (1.15–1.18) < 0.0001

 ≥ 29 °C 0.91 (0.90–0.93)  < 0.0001 0.97 (0.96–0.99)  < 0.0001

Trap type

 Encephalitis vector survey (EVS) 1.0 (ref.)

BG-Sentinel 1.12 (0.96–1.30) 0.16

Year

2014 1.0 (ref.) 1.0 (ref.)  < 0.0001

2015 0.67 (0.63–0.72)  < 0.0001 1.23 (1.16–1.30)  < 0.0001

2016 0.78 (0.73–0.82)  < 0.0001 1.42 (1.32–1.51)  < 0.0001

2017 0.70 (0.66–0.74)  < 0.0001 1.23 (1.15–1.31)  < 0.0001

Land cover

 Percent pool (1% increase) 1.18 (1.13–1.23)  < 0.0001

 Percent lake (1% increase) 0.96 (0.95–0.97)  < 0.0001

 Percent road/pavement (5% increase) 0.997 (0.99–1.01) 0.55

 Percent bare earth (5% increase) 0.84 (0.84–0.85)  < 0.0001 0.94 (0.90–0.96)  < 0.0001

 Percent structure (5% increase) 0.88 (0.87–0.90)  < 0.0001

 Percent grass/crops (5% increase) 1.09 (1.08–1.10)  < 0.0001

 Percent trees (1% increase) 1.10 (1.10–1.11)  < 0.0001 1.07 (1.06–1.09)  < 0.0001

 Percent cactus/shrubs (1% increase) 0.99 (0.98–0.995) 0.0008

 Percent shadow (1% increase) 1.31 (1.29–1.33)  < 0.0001

 Composite percent grass/crops and trees (5% increase) 1.13 (1.12–1.14)  < 0.0001

 Composite percent trees and shadow (1% increase) 1.08 (1.08—1.09)  < 0.0001

Demographic characteristics

 Population density (1000 people mile² increase) 1.08 (1.07–1.10)  < 0.0001 1.21 (1.18–1.25)  < 0.0001

 Average household size (increase of 1 person) 0.96 (0.93–0.994) 0.019 0.84 (0.73–1.04) 0.012

 Median age (5 year increase) 1.03 (1.01–1.04)  < 0.0001

 Percent 65 years or older (10% increase) 0.95 (0.94–0.97)  < 0.0001 0.98 (0.92–1.05) 0.63

 Percent female (10% increase) 0.86 (0.83–0.90)  < 0.0001 0.88 (0.76–1.02) 0.079

 Percent NHW (10% increase) 1.10 (1.09–1.12)  < 0.0001

 Percent adults > 25 years with high school degree or less (10% increase) 0.80 (0.78–0.81)  < 0.0001

 Percent vacant houses (5% increase) 0.95 (0.93–0.97)  < 0.0001 0.88 (0.80–0.98) 0.015

 Percent with limited English proficiency (5% increase) 0.91 (0.89–0.93)  < 0.0001

 Median household income (10,000 USD increase) 1.06 (1.05–1.07)  < 0.0001

 Percent income below 200% of poverty level (10% increase) 0.93 (0.92–0.94)  < 0.0001

 Poverty quartile (based on percent of the census block with income 
at below 200% of the poverty level)

  Most poverty 1.0 (ref.) 1.0 (ref.)

  Moderate poverty 1.08 (1.02–1.14) 0.005 1.38 (1.10–1.73) 0.0058

  Moderately low poverty 1.30 (1.23–1.37)  < 0.0001 1.91 (1.52–2.40)  < 0.0001

  Least poverty 1.59 (1.51–1.69)  < 0.0001 2.60 (2.06–3.28)  < 0.0001
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predictors. All IRR values are adjusted for the full set of variables included in the column

***A random error term was included in this multi-level model to adjust for repeated measurements at the same trap location

Table 3 (continued)

Fig. 3 Counts of Aedes aegypti females per trap-night by month and quartile of tree cover within 50 m of the trap (Q4 = highest), Maricopa County, 
2014–2017. Intervals for trap counts were manually defined for consistency across months and because of the extremely right skewed nature 
of the data

Fig. 4 Counts of Aedes aegypti females per trap-night by month and quartile of grass cover (Q4 = highest), Maricopa County, 2014–2017. Intervals 
for trap counts were manually defined for consistency across months and because of the extremely right skewed nature of the data
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change-driven increases in temperature and aridity may 
only reduce Aedes-borne virus transmission potential 
after surpassing higher thresholds than those derived 
from laboratory experiments. These complex associa-
tions between human modification of the environment 
to maintain thermal comfort and the indirect impact on 
suitability for Ae. aegypti survival need more exploration 
to better parameterize climate change projection models.

The persistent abundance of Ae. aegypti in Maricopa 
County may be explained by biological adaptations pro-
moting heat tolerance, behavioral tendencies to exploit 
microclimate oases with more favorable conditions, or 
a combination of the two [35]. The exact mechanisms 
driving the relationships between land use/landcover 
and Ae. aegypti abundance are likely moderated by tem-
perature, humidity, water sources, and food sources. As 
noted in previous work, higher humidity associated with 
monsoons could blunt the impact of these high tem-
peratures, but our model adjusted for rainfall and that 
explanation does not fully account for rising abundance 
as early as June and July, prior to monsoon rainfall [14]. 
While larger scale climate metrics predict mosquito pop-
ulation dynamics, several studies have noted that micro-
climatic variations may be most relevant to mosquito 
survival [4, 7, 8]. In Phoenix, and other locations, veg-
etation significantly reduces day and nighttime ambient 
temperature [36]. Our results demonstrate a clear posi-
tive trend between tree cover and mosquito abundance. 
The strong association between increasing land cover by 
dense trees and trap counts of Ae. aegypti and the weaker 

association with grass/crops suggest that transformation 
of native desert land through increased vegetation and 
landscaping may create favorable microclimates. Such 
landscaping requires added water, potentially increasing 
oviposition sites and increasing local humidity. Dense 
tree cover also creates shade, which modulates tempera-
ture significantly [36]. In a few preliminary observations 
with thermal imaging cameras, we observed daytime 
temperature gradients of > 10  °C between bare earth/
pavement and shaded areas. The strong crude association 
between land cover classified as shadow and Ae. aegypti 
counts provides further support for this mechanism, as 
does a recent study from tropical Machala, Ecuador, 
which found patios with shade to be associated with 
dengue incidence [37]. Further research into the specific 
mechanisms by which vegetation promotes Ae. aegypti 
abundance in the desert would be useful to inform con-
trol efforts, which might include replacement or selection 
of specific tree species, improved drainage for oviposition 
site reduction, pesticide spraying in targeted landscaping, 
or an overall shift to xeriscaping.

Maricopa County identified its first case of locally 
acquired dengue in November 2022 illustrating the 
potential for Aedes-borne disease outbreaks in the 
county [21]. Notable dengue and chikungunya outbreaks 
were reported within the Arizona-Sonora desert region, 
including a binational outbreak in the US-Mexico bor-
der town of San Luis Rio Colorado, Sonora [38]. Pre-
vious binational studies indicate socioeconomic and 
cultural differences that impact vector-human contact 

Fig. 5 Counts of Aedes aegypti females per trap-night by month and quartile of poverty (Q4 = most poverty), Maricopa County, 2014–2017. Intervals 
for trap counts were manually defined for consistency across months and because of the extremely right skewed nature of the data
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may partially explain this discrepancy [39, 40]. Our study 
identified higher abundance in higher income neighbor-
hoods which may also translate into lower transmission 
risk because of reduced vector-human contact. We are 
limited by outdoor trap collections. A recent study in LA 
County indicated higher indoor abundance was associ-
ated with lack of AC and screens on doors and windows 
[6].

Several of our findings about predictors of Ae. aegypti 
abundance mirror those of previously published litera-
ture. Given their importance to biological development, 
breeding, and survival, temperature and precipitation are 
widely linked to the abundance of Ae. aegypti, whether 
larvae or adults [7, 41–45]. We found human popula-
tion density to be another strong predictor of Ae. aegypti 
presence and count in Maricopa County, similar to ear-
lier studies that have linked Ae. aegypti with metrics of 
urbanicity/human residence [10, 26, 41, 42, 46, 47]. This 
corresponds with the highly anthropophilic nature of 
the species, particularly in this setting where the native 
desert ecosystem is inhospitable.

Alternatively, the associations with vegetation are con-
text-specific. Vegetation and tree cover have also been 
found to be positively associated with Ae. aegypti pres-
ence or abundance in a few other desert cities [26, 45, 
48], whereas the opposite has been reported from cities 
in more tropical or temperate zones [7, 8, 46]. These dif-
ferences are reasonable if tree cover does not play a major 
role in creating habitable microclimates in those con-
texts, and instead the greater density of natural vegeta-
tion simply reflects lower degrees of urban development/
human residence, as suggested by Lorenz et al. [46]. This 
distinction emphasized the limited generalizability of 
such findings and the need for research across a variety 
of climatic and cultural settings to inform best practices 
for local vector management.

The finding that Ae. aegypti counts were higher in 
wealthier census blocks in Maricopa County, Arizona, 
also differed from other settings where Ae. aegypti counts 
and dengue risks have been higher in poorer areas [6, 10, 
38, 46]. This association was partially explained by the 
higher density of non-native vegetation (grass and trees) 
we observed in wealthier blocks in Phoenix, but the asso-
ciation with socioeconomic status persisted even after 
adjustment for land cover in the final model. Additional 
research should evaluate whether the positive associa-
tion between wealth and Ae. aegypti counts in Maricopa 
reflect residual confounding from land cover microcli-
mate effects, possibly through increased water use and 
micro-variability in humidity or whether other mecha-
nisms play a role.

This study complements a recently published analy-
sis of MCVCD Ae. aegypti data. Holeva-Eklund et  al. 

utilized a Maxent species distribution model to identify 
locations in Maricopa County that are consistently suit-
able for Ae. aegypti presence, examining socioeconomic 
predictors, temperature, precipitation, and elevation 
[26]. Our model adds to theirs by evaluating the predic-
tors of abundance using detailed high resolution satellite 
imagery to characterize specific habitat characteristics 
proximal to trapping locations after accounting for key 
presence-absence predictors (temperature, rainfall, and 
population density) in a ZINB model. They similarly 
found population density to be an important predictor 
for habitat suitability but found median income to be a 
weak predictor. In our analysis, we observed that socio-
economic status indicators, including the proportion of 
people living below 200% of the poverty line from the 
final model, were significantly associated with Ae. aegypti 
counts. The relationship was confounded toward the null 
by population density, as wealthier neighborhoods in 
the metropolitan area tended to be less dense, and was 
stronger in the adjusted final model than the crude ZINB 
model for that reason.

These analyses utilized an extremely large, systematic 
mosquito surveillance dataset, linked to high-resolu-
tion land cover and sociodemographic data, and give 
insight into abundance of this critical vector species in 
an understudied desert region. However, as a secondary 
analysis of data collected for other purposes, our study 
had several limitations. First, the vast majority of the 
Ae. aegypti count data came from EVS traps, which are 
not  as effective as BG traps for capturing Ae. aegypti 
mosquitoes[28]. Trap type was not a significant predic-
tor of Ae. aegypti counts in the final adjusted model, 
although this was likely due to the relatively small num-
ber of data points from BG-Sentinel traps (< 1%). Valid-
ity of trap type comparisons was further limited by the 
exploratory rather than systematic nature of BG-Senti-
nel trap deployment, with BG traps being introduced 
only in 2016, having approximately twice as many 
observations during rainy season months as dry season 
months, and being placed responsively after exceed-
ances of Ae. aegypti in EVS traps, all likely factors con-
tributing to relatively high counts. Second, temperature 
and rainfall were the only time-varying predictors in 
our analysis, with census estimates derived from a 2015 
projection and land cover classified based on an image 
from early summer 2015. This could lead to some mis-
classification, particularly in areas of the city that were 
undergoing urbanization. Temperature and rainfall data 
were also only available on a monthly scale and could 
not be lagged 30 days from each individual trap-night 
observation, so they represented coarse adjustments 
in the modeling. Third, the location of traps within 
blocks was not random, tended to be near open public 
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areas like parks, and may have been associated with 
wealth. By relying on socioeconomic variables at the 
census block level, our results may be affected by arbi-
trary census block lines (Modifiable Areal Unit Prob-
lem). Fourth, though it enabled the county-wide scale 
of the analysis, the unsupervised classification method 
was imperfect for delineating land cover. The program 
could not reliably distinguish grass from agricultural 
crops, so the two had to be assessed jointly. Very dense 
tree cover was also noted to be misclassified as shadow 
on visual examination. Though we did not quantify 
these misclassifications, shadow, trees, and grass/crops 
appeared to be reliably distinguished from other surface 
types–water sources, structures, roads, shrub/cacti, 
and bare earth–by visual examination. Since the classi-
fication was automated for the entire study area, errors 
are unlikely to be biased by the Ae. aegypti abundance 
within the buffer zones and therefore should limit the 
precision of the estimated associations for each of the 
three categories rather than creating the appearance of 
associations that do not truly exist. Finally, this analysis 
concentrated on specific hypotheses with a fairly lim-
ited set of predictors, some quite coarse in their tem-
poral and spatial scales, and there was considerable 
heterogeneity in the data unaccounted for in the final 
model, leaving fertile ground for future research. While 
this analysis of secondary data carries limitations for 
detailed exploration of survival mechanisms, the large 
geographic area covered and the high frequency of 
trap-nights provided a rich dataset in an understudied 
environment that demonstrates that Ae. aegypti mos-
quitoes can be abundant in urbanized desert settings.

In an effort to mitigate the impact of urban heat islands, 
Maricopa County set a goal of increasing tree cover from 
10% in 2010 to 25% by 2030 [49]. While increasing veg-
etation demonstrably reduces ambient temperature, a 
critical need in the face of increasing extreme heat [36], 
it may have unintended consequences by increasing vec-
tor densities. Additional research is being undertaken to 
understand the relationships between vegetation cover 
and the most immediate mosquito-borne disease threat 
to Maricopa County, West Nile virus. Despite mosquito-
borne disease risk, heat currently is a larger public health 
burden, with the deaths of 172 people in Phoenix in 2017 
attributed to extreme heat [50], and with the burden 
expected to increase with climate change [51]. Additional 
analyses to determine the specific causal link between 
tree cover and Ae. aegypti abundance (tree height, den-
sity of shade cover, choice of tree species) could provide 
options to adapt to increasing heat while minimizing the 
unintended consequences of increased vector density. 
However, our results suggest that surveillance and vec-
tor-control measures should be supplemented in areas 

with tree cover to minimize the risk for local Aedes-borne 
virus transmission.

Conclusions
Despite the exceedingly high temperatures and aridity of 
the desert climate, Ae. aegypti populations are abundant 
in urban areas of Maricopa County (Phoenix), Arizona, 
particularly during the summer monsoon season when 
rainfall is markedly increased, and temperatures are often 
> 38 °C. Coupled human-natural factors explained spatial 
heterogeneity in counts of female Ae. aegypti mosqui-
toes even after accounting for variability in rainfall and 
temperature. Counts of female Ae. aegypti mosquitoes 
in this desert city most notably increased with human 
population density, census block wealth, and nearby tree 
cover. These factors contributed to seasonal increases in 
Ae. aegypti counts that started earlier in the year, lasted 
later, and peaked with higher abundance. These findings 
differ from relationships reported in other climates and 
have important implications for projections of arboviral 
disease risk and Ae. aegypti control strategies in desert 
cities.
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