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Abstract 

Background Tick control is a worldwide challenge due to its resistance to acaricides. Essential oils (EOs) and isolated 
compounds (EOCs) are potential alternatives for tick control technologies.

Methods A review with EOs and EOCs, under field and semi‑field conditions, was performed based on Scopus, Web 
of Science and PubMed databases. Thirty‑one studies published between 1991 and 2022 were selected. The search 
was performed using the following keywords: "essential oil" combined with "tick," "Ixodes," "Argas," "Rhipicephalus," 
"Amblyomma," "Hyalomma," "Dermacentor," "Haemaphysalis" and "Ornithodoros." The words "essential oil" and "tick" 
were searched in the singular and plural.

Results The number of studies increased over the years. Brazil stands out with the largest number (51.6%) of pub‑
lications. The most studied tick species were Rhipicephalus microplus (48.4%), Ixodes scapularis (19.4%), Amblyomma 
americanum and R. sanguineus sensu lato (9.7% each). Cattle (70%) and dogs (13%) were the main target animal spe‑
cies. Regarding the application of EOs/EOCs formulations, 74% of the studies were conducted with topical application 
(spray, pour‑on, foam, drop) and 26% with environmental treatment (spray). Efficacy results are difficult to evaluate 
because of the lack of information on the methodology and standardization. The nanotechnology and combination 
with synthetic acaricides were reported as an alternative to enhance the efficacy of EOs/EOCs. No adverse reactions 
were observed in 86.6% of the studies evaluating EOs/EOCs clinical safety. Studies regarding toxicity in non‑target 
species and residues are scarce.

Conclusions This article provides a comprehensive review on the use of EOs and EOCs to reduce tick infestations, 
in both the hosts and the environment. As future directions, we recommend the chemical characterization of EOs, 
methodology standardization, combination of EOs/EOCs with potential synergists, nanotechnology for new formula‑
tions and safety studies for target and non‑target organisms, also considering the environmental friendliness.
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Background
In livestock animals such as cattle, ticks cause economic 
losses linked to lower body weight, live weight gain, 
milk production and leather quality. In addition, it leads 
to losses by the transmission of pathogens, mortality of 
cattle and costs associated with control [1, 2]. The lower 
productivity in herds directly impacts food production, 
thus representing a challenge based on the increase in 
world population, which is expected to reach the 9 billion 
mark by 2050 [3, 4].

In companion animals, ticks are responsible for blood 
spoliation and work as vectors of numerous pathogens 
(e.g. Anaplasma platys, Babesia vogeli, B. canis, Ehrlichia 
canis and Hepatozoon canis), impacting animal welfare 
and even causing death [5–7]. The increase in human 
population has led to a higher number of pets, as one 
third of families worldwide own a dog [8]. In addition, 
some families consider their animals as true family mem-
bers because of their emotional bond [9]. Furthermore, 
ticks are also very important for public health, and cases 
of diseases generated by tick-borne pathogens in humans, 
such as anaplasmosis, ehrlichiosis, Lyme disease, spotted 
fever and tularemia, have increased considerably. There-
fore, technologies to control these arthropods must be 
developed [10–12].

The control of ticks is mainly carried out with synthetic 
acaricides, composed of molecules belonging to the class 
of organophosphates, amidines, pyrethroids, phenylpyra-
zoles, macrocyclic lactones, growth inhibitors and isoxa-
zolines [13, 14]. However, the continuous and irrational 
use of these drugs has resulted in tick populations resist-
ant to almost all commercially available chemical classes. 
The occurrence of acaricide-resistant tick populations 
has been documented worldwide and for several tick spe-
cies [15]. For example, there are already records of resist-
ance for Rhipicephalus microplus [16–21], R. sanguineus 
s.l. [22–24], R. annulatus [25–29], R. decoloratus [30] and 
Hyalomma anatolicum [31].

In addition to the problem of tick resistance, the con-
sumer market has increasingly demanded pest con-
trol technologies that are eco-friendly and aligned with 
the concepts of “One Health” and “Sustainability.” Such 
aspects reinforce the development of new technologies 
to control these ectoparasites in a manner that is safe 
for humans, animals and the environment (One Health), 
in addition to being economically viable (Sustainability) 
[13, 32–34]. Essential oils (EOs) have shown potential 
for the development of ecofriendly acaricides [35]. These 
oils are natural products resulting from the secondary 
metabolism of aromatic plants, containing a mixture of 
about 20 to 60 volatile, fat-soluble and strongly odorous 
compounds [36]. In plants, EOs work by attracting pol-
linators and seed dispersers, repelling and combating 

parasites, pathogens and predators, in addition to assist-
ing against abiotic stressors (Fig. 1) [35, 37, 38]. The com-
pounds found in EOs (EOCs) can be divided mainly into 
two groups according to their biosynthesis: terpenes/ter-
penoids (such as monoterpenes and sesquiterpenes) and 
aromatic and aliphatic compounds, such as phenylpropa-
noids [36, 39].

The first studies regarding the use of EOs/EOCs for tick 
control [40–43] were published in the 1990s. Since then, 
several papers have been published demonstrating their 
acaricide and/or repellency activity [44–51], eventually 
demonstrating alterations in tick biological parameters 
and tissues [52–55]. Other studies provided details about 
the action mechanisms [56, 57] and formulation develop-
ment using EOs or EOCs [58–60]. Finally, some review 
articles have been published on the subject [13, 61–66].

Although many studies have been produced, products 
on the market containing EOs or EOCs are still limited. 
This may be linked to the lack of studies on formulation 
development and efficacy evaluation under field con-
ditions, as well as challenges related to the chemistry, 
manufacturing and control guidance. This review aimed 
to compile studies using EOs and EOCs (1991–2022) for 
tick control under field and semi-field conditions, pre-
senting a critical analysis of the real state of the art of this 
research line, as well as suggesting priorities and direc-
tions for further studies. In addition, we present the point 
of view of the antiparasitic industry regarding the use of 
EOs and EOCs for tick control.

Search strategy
A literature review was carried out on articles published 
over the last 31 years (1991–2022) by searching in the fol-
lowing databases: Scopus, Web of Science and PubMed. 
The search considered the following keywords: “essential 
oil” combined with “tick,” “Ixodes,” “Argas,” “Rhipicepha-
lus,” “Amblyomma,” “Hyalomma,” “Dermacentor,” “Haem-
aphysalis” and “Ornithodoros.” The terms “essential oil” 
and “tick” were searched in both the singular and plural 
(Fig. 2).

The inclusion criteria considered studies that used EOs 
or EOCs in field and semi-field studies for tick control. 
The exclusion criteria considered the following situa-
tions: articles reporting studies only under laboratory 
conditions, studies evaluating repellent activity, articles 
using plant extracts, duplicate articles, review articles, 
books, book chapters and meeting abstracts. In addition 
to the authors’ expertise, a manual search process was 
performed by checking the list of references of the stud-
ies included in the review to identify and add eligible arti-
cles that were not retrieved by the initial search strategy. 
By the final search and application of the inclusion and 
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exclusion criteria, 31 articles were selected for this review 
(Fig. 2).

Data from each article were compiled in a Microsoft 
Excel® spreadsheet, and the following parameters were 
evaluated: (1) year of publication; (2) country of the 
study; (3) type of trial; (4) number of animals; (5) host 
species; (6) tick species; (7) plant species used for extrac-
tion of the EOs/EOCs; (8) chemical characterization of 
the EOs; (9) concentration of the EOs/EOCs; (10) volume 
applied per animal or plot; (11) results of the acaricidal 
effect/efficacy on ticks; (12) clinical safety evaluation; (13) 
plot size; (14) evaluation in non-target organisms; (15) 
residue evaluation. A map showing the locations of the 
studies was produced using Microsoft Excel® software.

Research with EOs and EOCs for tick control 
under field and semi‑field conditions
Publications per year
Thirty-one scientific articles were included in this review, 
with research using EOs from 19 plant species and stud-
ies using seven EOCs (Additional file 1: Figure S1, S2, S3, 
S4, S5 and S6). Between 1991 and 2000, only two articles 
(6.5%) were found, while for the following decade (2001 
to 2010), six articles (19.4%) were featured. Most articles 
(15 publications, 48.4%) were published between 2011 

and 2020, indicating a higher number of studies and 
greater interest in this research area. Notably, for the first 
2 years of the current decade (2021–2022), eight publi-
cations were found, indicating this trend of increase in 
studies should remain over the next few years (Fig.  3). 
Such growth in the number of publications over the dec-
ades might be linked to multiple factors, including the 
increased number of acaricide-resistant tick populations 
and the need for new control technologies aligned with 
the concepts of One Health and Sustainability.

The number of publications worldwide has increased, 
thus addressing different species of ticks resistant to 
commercial acaricides [15], such as Rhipicephalus micro-
plus [16–18, 21, 30, 67–75], R. sanguineus s.l. [22–24, 
76–79], R. annulatus [59], R. australis [80], H. anatoli-
cum [31], R. appendiculatus, R. bursa, R. decoloratus, R. 
evertsi, Amblyomma mixtum and A. hebraeum [81].

Publications by country
The research studies using EOs and EOCs in both field 
and semi-field conditions were conducted in eight 
countries, in the following order: Brazil (51.6%), the US 
(22.6%) and Egypt (9.7%) (Fig. 4). The greater representa-
tion of Brazil might be linked to multiple factors, includ-
ing the particular severity of ticks regarding the livestock 

Fig. 1 Ecological interactions of plants mediated by essential oils. Circles in green represent the attraction of seed dispersers and pollinators. Red 
circles represent repellency and mortality of predators and pathogens. Circle in purple represents abiotic stress factors such as dry spells
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Fig. 2 Search methodology for studies with essential oils (EOs) and essential oil compounds (EOCs) for tick control under field and semi‑field 
conditions (n = 31) published from 1991 to 2022

Fig. 3 Number of publications per decade (1991–2022) using essential oils (EOs) and essential oil compounds (EOCs) for tick control under field 
and semi‑field conditions
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industry and animal health in the country, the huge plant 
diversity and culture of using natural products for health 
issues and the interest of some Brazilian researchers. Bra-
zil has the largest commercial cattle herd in the world 
(224.6 million cattle) [82], being one of the biggest pro-
ducers of beef (2.975 million tons per year) [83] and the 
fourth largest producer of milk [84] (35.3 billion liters per 
year) [82]. In addition, Brazil has the second largest dog 
population in the world (estimated at 58.1 million dogs) 
and takes in the sixth highest revenue in the global pet 
market [85, 86]. Therefore, there is a great demand for 
new technologies to control ticks on livestock and dogs 
in this country. Regarding plant biodiversity, Brazil has 
the largest number of described species in the world (55% 
of endemic terrestrial plant species) [87], hence the great 
biodiversity of raw material for studies on the activities of 
botanical compounds on ticks.

Publications by tick species
Rhipicephalus microplus (48.4%) was the most stud-
ied tick species, followed by I. scapularis (19.4%), A. 
americanum and R. sanguineus s.l. (9.7% each) and R. 
annulatus (6.5%). Research was also conducted with 
Rhipicephalus lunulatus, R. evertsi, R. appendiculatus, 
Amblyomma sculptum, H. anatolicum, Haemaphysa-
lis bispinosa and R. haemaphysaloides (3.2% = one study 

with each species). All studies targeted ticks of economic 
or public health importance (Fig. 4, Tables 1, 2, 3).

Rhipicephalus microplus (cattle tick) was the most stud-
ied tick species, probably because of its wide geographic 
distribution and great economic importance for the cat-
tle industry worldwide [88]. The annual losses attributed 
to this tick in Brazil and Mexico were estimated at $3.24 
billion and $573.61 million, respectively [2, 89]. In addi-
tion, it is notable that most of the tick control products 
available on the market show low efficacy in controlling 
this tick [16, 71, 90] based on the increasing records of 
resistant populations, especially multidrug-resistant 
populations, in Central American, South American and 
Asian countries [15, 17, 18, 68–70, 73, 91, 92].

Ixodes scapularis (black-legged tick) was the second 
most studied species, followed by A. americanum (lone 
star tick) and R. sanguineus s.l. (brown dog tick). These 
first two species have great public health importance in 
the US as vectors of disease agents to humans [93]. The 
black-legged tick is the vector of the causative agents of 
diseases such as Lyme disease (Borrelia burgdorferi), 
human granulocytic anaplasmosis (Anaplasma phagocy-
tophilum) and babesiosis (Babesia microti). The lone star 
tick is the vector of Ehrlichia chaffeensis (human mono-
cytic ehrlichiosis) and E. ewingii (human granulocytic 
ehrlichiosis), Borrelia lonestari (tick-associated rash ill-
ness) and Francisella tularensis (tularemia) [12, 94, 95].

Fig. 4 Geographic distribution of 31 field and semi‑field studies using essential oils (EOs) or essential oil compounds (EOCs) for tick control 
between 1991 and 2022. Colored circles, with sizes proportional to the number of studies, represent different species of ticks. Abbreviation of tick 
genera: Amblyomma (A.); Ixodes (I.); Hyalomma (H.); Haemaphysalis (Ha.); Rhipicephalus (R.). Source: adapted from the Bing platform, 2022



Page 6 of 24Gonzaga et al. Parasites & Vectors          (2023) 16:415 

Ta
bl

e 
1 

G
en

er
al

 d
at

a 
(t

re
at

m
en

ts
 a

nd
 e

ffi
ca

cy
) c

om
pi

le
d 

fro
m

 1
6 

ar
tic

le
s 

us
in

g 
es

se
nt

ia
l o

ils
 (E

O
s)

 a
nd

 e
ss

en
tia

l o
il 

co
m

po
un

ds
 (E

O
C

s)
 to

 c
on

tr
ol

 R
hi

pi
ce

ph
al

us
 m

ic
ro

pl
us

 a
nd

 R
. 

an
nu

la
tu

s i
n 

ca
tt

le
 s

tu
di

es
 fr

om
 1

99
1 

to
 2

02
2

Ti
ck

 (s
ta

ge
)

EO
s/

EO
C

s
Co

nc
en

tr
at

io
n

Vo
lu

m
e 

an
d 

fo
rm

 o
f 

ap
pl

ic
at

io
n

N
o.

 o
f a

ni
m

al
s/

tr
ea

te
d 

gr
ou

p
Ty

pe
 o

f i
nf

es
ta

tio
n

M
ai

n 
re

su
lts

Re
fe

re
nc

es

R.
 m

ic
ro

pl
us

(A
)

Cy
m

bo
po

go
n 

ci
tr

at
us

 
an

d 
C

. n
ar

du
s C

. w
in

te
ra

ni
us

 
Jo

w
itt

 (m
aj

or
 c

om
po

un
ds

: 
no

t m
en

tio
ne

d)

…
… (S

pr
ay

)
…

Fi
el

d 
tr

ia
l

N
at

ur
al

Se
m

i‑e
ng

or
ge

d 
fe

m
al

es
 c

ol
‑

le
ct

ed
 (a

ft
er

 s
pr

ay
in

g)
 d

ie
d 

48
 h

 a
ft

er
 E

O
 a

pp
lic

at
io

n 
an

d 
en

go
rg

ed
 fe

m
al

es
 d

id
 

no
t o

vi
po

si
t

C
hu

ng
sa

m
ar

ny
ar

t a
nd

 Ji
w

ag
‑

in
da

 [1
83

]

Rh
ip

ic
ep

ha
lu

s m
ic

ro
pl

us
(A

)
C.

 w
in

te
ra

ni
us

 Jo
w

itt
 (m

aj
or

 
co

m
po

un
ds

: n
ot

 m
en

tio
ne

d)
10

%
 a

nd
 1

00
%

40
 m

L 
(p

ou
r‑

on
);

2 
L 

(s
pr

ay
)

15
Fi

el
d 

tr
ia

l
A

rt
ifi

ci
al

EO
 s

ig
ni

fic
an

tly
 re

du
ce

d 
th

e 
nu

m
be

r o
f t

ic
ks

M
ar

tin
s 

an
d 

G
on

zá
le

z 
[1

24
]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

C.
 n

ar
du

s (
m

aj
or

 c
om

po
un

ds
: 

ci
tr

on
el

la
l 5

0.
07

%
, g

er
an

io
l 

13
.8

7%
, c

itr
on

el
lo

l 7
.9

3%
)

4%
3 

L 
ea

ch
 7

 d
ay

s 
fo

r 2
8 

da
ys

(B
ac

kp
ac

k 
Sp

ra
ye

r)
5

Fi
el

d 
tr

ia
l

N
at

ur
al

Effi
ca

cy
 o

f 3
5.

3%
, 1

1.
8%

, 3
4%

 
an

d 
42

.4
%

 a
t d

ay
s 

7,
 1

4,
 2

1 
an

d 
28

 a
ft

er
 tr

ea
tm

en
t

A
gn

ol
in

 e
t a

l. 
[1

57
]

R.
 m

ic
ro

pl
us

(N
, A

)
C.

 n
ar

du
s (

m
aj

or
 c

om
po

un
ds

: 
ci

tr
on

el
la

l 5
0.

07
%

, g
er

an
io

l 
13

.8
7%

, c
itr

on
el

lo
l 7

.9
3%

)

3%
 a

nd
 4

%
3 

L,
 s

in
gl

e 
tr

ea
tm

en
t

(B
ac

kp
ac

k 
sp

ra
ye

r)
5

Fi
el

d 
tr

ia
l

N
at

ur
al

Effi
ca

cy
 m

ea
n 

of
 2

2.
5 

an
d 

39
.1

%
 a

t c
on

ce
nt

ra
tio

ns
 

of
 3

 a
nd

 4
%

, r
es

pe
ct

iv
el

y,
 

28
 d

ay
s 

af
te

r t
re

at
m

en
t

A
gn

ol
in

 e
t a

l. 
[1

84
]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

Co
. c

itr
io

do
ra

 (m
aj

or
 c

om
‑

po
un

ds
: c

itr
on

el
la

l 7
0.

4%
, 

is
op

ul
eg

ol
 1

6.
3%

 a
nd

 c
itr

on
‑

el
lo

l 5
.5

%
)

3.
5%

4 
L

(b
ac

kp
ac

k 
sp

ra
ye

r)
6

Fi
el

d 
tr

ia
l

N
at

ur
al

Effi
ca

cy
 m

ea
n 

of
 9

6.
4%

, 
21

 d
ay

s 
af

te
r t

re
at

m
en

t
O

liv
o 

et
 a

l. 
[1

59
]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

Ta
ge

te
s m

in
ut

a 
(r

ic
h 

in
 te

r‑
pe

ne
s)

20
%

50
 m

L
(p

ou
r‑

on
)

6
Pe

n 
tr

ia
l

A
rt

ifi
ci

al
Effi

ca
cy

 o
f 9

9.
98

%
A

nd
re

ot
ti 

et
 a

l. 
[1

40
]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

C.
 w

in
te

ria
nu

s (
m

aj
or

 c
om

‑
po

un
ds

: n
ot

 m
en

tio
ne

d)
8.

6%
4 

L,
 s

in
gl

e 
tr

ea
tm

en
t

(B
ac

kp
ac

k 
sp

ra
ye

r)
6

Fi
el

d 
tr

ia
l

N
at

ur
al

Effi
ca

cy
 m

ea
n 

of
 9

0%
, 

21
 d

ay
s 

af
te

r t
re

at
m

en
t

A
gn

ol
in

 e
t a

l. 
[1

41
]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

O
rig

in
al

 o
il 

of
 C

o.
 c

itr
io

do
ra

 
an

d
m

od
ifi

ed
 o

il 
of

 C
o.

 c
itr

io
do

ra
 

(N
‑p

ro
p‑

2‑
in

yl
ci

tr
on

el
‑

ly
la

m
in

e)

1.
5%

 a
nd

 1
.5

%
… …

6
Fi

el
d 

tr
ia

l
N

at
ur

al
Tr

ea
tm

en
t w

ith
 E

O
 

(o
rig

in
al

 a
nd

 fo
rm

ul
at

ed
) 

di
d 

no
t s

ig
ni

fic
an

tly
 re

du
ce

 
th

e 
nu

m
be

r o
f t

ic
ks

C
ha

ga
s 

et
 a

l. 
[1

85
]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

M
el

al
eu

ca
 a

lte
rn

ifo
lia

 (m
aj

or
 

co
m

po
un

ds
: t

er
pi

ne
n‑

4‑
ol

 
41

.9
8%

, γ
‑t

er
pi

ne
ne

 2
0.

15
%

)

0.
75

%
 (n

an
o 

pa
rt

ic
le

) a
nd

 5
%

 
(u

nf
or

m
ul

at
ed

)
40

0 
m

L,
 s

in
gl

e 
tr

ea
tm

en
t

(s
pr

ay
)

5
Fi

el
d 

tr
ia

l
N

at
ur

al
Th

e 
un

fo
rm

ul
at

ed
 E

O
 h

ad
 

a 
gr

ea
te

r e
ffe

ct
 o

n 
ad

ul
ts

. 
En

ca
ps

ul
at

ed
 n

an
o 

EO
 h

ad
 

a 
gr

ea
te

r e
ffe

ct
 o

n 
bi

ol
og

y 
of

 ti
ck

s 
(3

4.
5%

 e
ffi

ca
cy

)

Bo
ito

 e
t a

l. 
[1

25
]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

Ci
nn

am
om

um
 s

p.
 (m

aj
or

 
co

m
po

un
d:

 c
in

na
m

al
de

hy
de

 
41

.2
7%

)

0.
5%

 (n
an

oc
ap

su
le

s)
;

0.
5%

 (n
an

oe
m

ul
si

on
)

an
d 

5%
 (u

nf
or

m
ul

at
ed

)

50
 m

L,
 s

in
gl

e 
tr

ea
tm

en
t

(n
ec

k,
 le

gs
, v

en
tr

al
 a

nd
 in

gu
i‑

na
l r

eg
io

n)

4
Fi

el
d 

tr
ia

l
N

at
ur

al
Effi

ca
cy

 w
as

 9
0.

5%
; 1

00
%

 
an

d 
63

.5
%

 in
 tr

ea
tm

en
ts

 
w

ith
 u

nf
or

m
ul

at
ed

 E
O

, 
na

no
ca

ps
ul

es
 a

nd
 n

an
oe

‑
m

ul
si

on
, r

es
pe

ct
iv

el
y

Sa
nt

os
 e

t a
l. 

[1
26

]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

Eu
ge

no
l

5%
10

 m
L/

10
0 

kg
, s

in
gl

e 
tr

ea
t‑

m
en

t (
po

ur
‑o

n)
6

Pe
n 

tr
ia

l
A

rt
ifi

ci
al

Effi
ca

cy
 m

ea
n 

of
 1

3.
80

%
, 

20
 d

ay
s 

af
te

r t
re

at
m

en
t

Va
le

nt
e 

et
 a

l. 
[1

58
]



Page 7 of 24Gonzaga et al. Parasites & Vectors          (2023) 16:415  

A
bb

re
vi

at
io

ns
 o

f t
ic

k 
ge

ne
ra

: R
hi

pi
ce

ph
al

us
 (R

.)

A
bb

re
vi

at
io

ns
 o

f t
he

 s
ta

ge
s 

of
 ti

ck
s:

 la
rv

a 
(L

); 
ny

m
ph

 (N
); 

ad
ul

t (
A

)

A
bb

re
vi

at
io

ns
 o

f t
he

 g
en

er
a 

of
 p

la
nt

s:
 C

ym
bo

po
go

n 
(C

.),
 C

or
ym

bi
a 

(C
o.

), 
Ta

ge
te

s (
T.

), 
M

el
al

eu
ca

 (M
.),

 E
uc

al
yp

tu
s (

E.
), 

Li
pp

ia
 (L

), 
Pe

la
rg

on
iu

m
 (P

.)

…
—

In
fo

rm
at

io
n 

no
t m

en
tio

ne
d

Ta
bl

e 
1 

(c
on

tin
ue

d)

Ti
ck

 (s
ta

ge
)

EO
s/

EO
C

s
Co

nc
en

tr
at

io
n

Vo
lu

m
e 

an
d 

fo
rm

 o
f 

ap
pl

ic
at

io
n

N
o.

 o
f a

ni
m

al
s/

tr
ea

te
d 

gr
ou

p
Ty

pe
 o

f i
nf

es
ta

tio
n

M
ai

n 
re

su
lts

Re
fe

re
nc

es

R.
 a

nn
ul

at
us

(L
, N

, A
)

Th
ym

ol
 +

 d
el

ta
m

et
hr

in
Th

ym
ol

 +
 E.

gl
ob

ul
us

 +
 d

el
‑

ta
m

et
hr

in
E.

 g
lo

bu
lu

s (
m

aj
or

 c
om

‑
po

un
ds

: n
ot

 m
en

tio
ne

d)

5%
…

 tr
ea

te
d 

tw
ic

e,
 2

‑w
ee

k 
in

te
rv

al
(s

pr
ay

)

5
Fi

el
d 

tr
ia

l
N

at
ur

al
Effi

ca
cy

 m
ea

n 
of

 8
8.

33
 

an
d 

95
%

 fo
r t

hy
m

ol
 +

 d
el

‑
ta

m
et

hr
in

 a
nd

 th
ym

ol
 +

 E.
 

gl
ob

ul
us

 +
 d

el
ta

m
et

hr
in

. 
En

go
rg

ed
 fe

m
al

es
 d

ep
os

ite
d 

sm
al

l e
gg

 m
as

se
s 

un
ab

le
 

to
 h

at
ch

A
ra

fa
 e

t a
l. 

[5
9]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

Es
se

nt
ria

®
 IC

‑3
 (r

os
em

ar
y 

oi
l 

10
%

, g
er

an
io

l 5
%

 a
nd

 p
ep

‑
pe

rm
in

t o
il 

2%
)

EO
s—

m
aj

or
 c

om
po

un
ds

: 
no

t m
en

tio
ne

d

6.
25

%
7.

5 
L,

 s
in

gl
e 

tr
ea

tm
en

t
(s

pr
ay

 ra
ce

)
4

Pe
n 

tr
ia

l
A

rt
ifi

ci
al

Le
ss

 e
ng

or
ge

d 
fe

m
al

es
 

re
co

ve
re

d 
fro

m
 th

e 
tr

ea
te

d 
gr

ou
p 

fo
r 2

1 
da

ys
. C

on
si

de
r‑

in
g 

th
e 

bi
ol

og
ic

al
 p

ar
am

‑
et

er
s 

of
 ti

ck
s, 

th
e 

effi
ca

cy
 

w
as

 7
0%

Kl
af

ke
 e

t a
l. 

[1
42

]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

(E
)‑

ci
nn

am
al

de
hy

de
0.

1%
5 

L,
 s

in
gl

e 
tr

ea
tm

en
t

(b
ac

kp
ac

k 
sp

ra
ye

r)
10

Fi
el

d 
tr

ia
l

N
at

ur
al

Th
e 

an
im

al
s 

sh
ow

ed
 s

ig
ns

 
of

 in
to

xi
ca

tio
n,

 s
uc

h 
as

 s
ia

l‑
or

rh
ea

 a
nd

 m
us

cl
e 

tr
em

or
s. 

Th
e 

ex
pe

rim
en

t w
as

 in
te

r‑
ru

pt
ed

G
on

za
ga

 e
t a

l. 
[2

1]

R.
 m

ic
ro

pl
us

(L
, N

, A
)

Li
pp

ia
 si

do
id

es
 (m

aj
or

 
co

m
po

un
d:

 th
ym

ol
 

40
.3

%
, p

‑c
ym

en
e 

17
.2

%
, 

E‑
ca

ry
op

hy
lle

ne
 8

.9
9%

)

1%
3 

L,
 s

in
gl

e 
tr

ea
tm

en
t

(b
ac

kp
ac

k 
sp

ra
ye

r)
10

Fi
el

d 
tr

ia
l

N
at

ur
al

Th
e 

effi
ca

cy
 ra

ng
e 

be
tw

ee
n 

da
y 

3 
to

 2
8 

af
te

r t
re

at
m

en
t w

as
 2

3.
3 

to
 6

3.
2%

Pe
re

ira
 e

t a
l. 

[1
80

]

R.
 a

nn
ul

at
us

(L
, N

, A
)

Pe
la

rg
on

iu
m

 g
ra

ve
ol

en
s 

(m
aj

or
 c

om
po

un
d:

 c
itr

on
el

lo
l 

14
.4

4%
, g

er
an

io
l 1

1.
08

%
, l

in
‑

al
oo

l 7
.7

4%
, c

itr
on

el
ly

l 7
.6

6%
)

10
%

 n
an

oe
m

ul
si

on
Co

m
bi

na
tio

n 
w

ith
 s

es
am

e 
oi

l
40

0 
m

L,
 s

in
gl

e 
tr

ea
tm

en
t

(s
pr

ay
)

5
Fi

el
d 

tr
ia

l
N

at
ur

al
Effi

ca
cy

 m
ea

n 
of

 8
7.

97
%

 
an

d 
74

.8
3%

 fo
r a

nd
 P

el
ar

go
-

ni
um

 g
ra

ve
ol

en
s n

an
oe

m
ul

‑
si

on
 (n

an
o)

 a
nd

 P
. g

ra
ve

o-
le

ns
 +

 se
sa

m
e 

oi
l. 

Fe
m

al
es

 
tr

ea
te

d 
w

ith
 P

. g
ra

ve
ol

en
s 

(n
an

o)
 d

id
 n

ot
 o

vi
po

si
t

Ib
ra

hi
um

 e
t a

l. 
[1

43
]



Page 8 of 24Gonzaga et al. Parasites & Vectors          (2023) 16:415 

Brown dog ticks have great importance in animal 
health as vectors of several pathogens for dogs, such as 
E. canis, B. vogeli, Mycoplasma haemocanis and H. canis 
[96]. In addition, R. sanguineus s.l. can also parasitize 
humans and act as vectors of Rickettsia conorii and R. 
rickettsii, among other disease agents [97–102]. Notably, 
resistance of R. sanguineus s.l. has also been described in 
pyrethroids, amidines, organophosphates, phenylpyra-
zoles and macrocyclic lactones [22–24, 78].

Despite also being of veterinary and public health con-
cern, the other above-mentioned ticks are more geo-
graphically limited. For example, R. annulatus (North 
American Texas fever tick) is most prevalent in the 
Mediterranean region and has been eradicated from the 
US [103, 104]. The ticks R. lunulatus, R. e. evertsi (red-
legged tick) and R. appendiculatus (brown ear tick) are 
found in Africa parasitizing livestock (horses, cattle, 
goats and sheep) and wildlife animals, such as African 
buffaloes and antelopes, causing morbidity and mortal-
ity in these animals [105]. In Brazil, A. sculptum is a tick 
that has capybaras, horses and tapirs as primary hosts 
but can accidentally feed on humans and transmit R. rick-
etsii [106]. Finally, H. anatolicum, Ha. bispinosa and R. 
haemaphysaloides are common in India (Asia) parasitiz-
ing small ruminants and horses [107].

Publications by compounds tested and chemical 
characterization of essential oils
Most field and semi-field studies used EOs (65%), fol-
lowed by EOCs (19%) and both EOs and EOCs in 16% 
(Fig.  5a, Tables  1, 2, 3). The chemical composition was 
evaluated in 85% of the studies that used EOs; how-
ever, in some cases (20%), the characterization was not 
performed in the study itself but in a previous study 
conducted by the same research group. In 15% of these 
studies, chemical characterization of the EOs was not 
performed (Fig. 5b). Studies using commercial products 
containing EOs were not considered in this analysis.

It is known that the same plant species can present var-
ied compositions and acaricidal activity according to the 
genotype, soil, collection site, time of year, harvest year, 
plant part used, extraction method and storage condi-
tions [108–111]. It has been shown that EOs from the 
same plant species have differences in acaricidal activi-
ties due to variations in chemical composition [111–114]. 
Therefore, the chemical characterization of EOs is a fun-
damental aspect of identifying their active compounds.

There are advantages and disadvantages to using EOs 
and EOCs. As an advantage, EOs present lower toxic-
ity to vertebrates compared to the major compounds 
isolated from them when tested alone [115]. Further-
more, their mixtures can result in synergistic effects 
due to the presence of compounds with different action 

mechanisms [35, 37]. As a negative aspect, EOs present 
variations in chemical composition, which can hinder 
commercial applications due to the lack of standardiza-
tion, hence generating difficulties in quality control and 
obtaining raw materials on a large scale. A potential solu-
tion would be to work with marker compounds (puta-
tively the active principles), including predetermined 
amounts of a key compound that can guarantee efficacy 
against ticks; however, it is not a simple task [116]. The 
EOCs have the advantage of standardization and the 
ease of obtaining the active ingredient on a large scale 
for developing commercial formulations. However, the 
use of compounds isolated from the EOs can raise the 
toxicity of the formulation for animals [115], as already 
demonstrated in guinea pig using (E)-cinnamaldehyde, a 
major compound found in cinnamon EO [21].

Experimental design: animal species, number of animals 
used and administration of the formulations on hosts 
and the environment
Variations occurred regarding the animal species, num-
ber of animals per treated group used in the experiments, 
volume of formulation applied to the animals and forms 
of application. Among the 31 field and semi-field studies 
using EOs and EOCs for tick control, 74% applied the for-
mulations on the animals (cattle, dogs, goats, sheep and 
rabbits) (Fig. 5c and d, Tables 1 and 2), while 26% applied 
them in the environment (Fig. 5c, Table 3).

Species and number of animals used
Among the 23 studies using hosts, 70% (16/23) used cat-
tle, 13% (3/23) dogs, 9%  (2/23) goats, 4% (1/23) sheep 
and 4% (1/23) rabbits. The number of animals per treated 
group varied from 4 to 15 for cattle, 5 to 10 for dogs, 
6 to 10 for goats, 1 for sheep and 9 for rabbits (Fig. 5d, 
Tables 1 and 2).

In this regard, the first version of the guidelines of the 
World Association for the Advancement of Veterinary 
(WAAVP) for evaluating the efficacy of acaricides against 
ticks of ruminants recommended a minimum of three 
animals per group [117]. The new guidelines, published 
in 2022, recommended a minimum of 20 animals per 
treated group [118]. These recommendations may vary 
regionally. As an example, Brazilian legislation recom-
mends the use of 10 animals per group [119]. For dogs, 
the WAAVP recommends a minimum of six animals per 
group [120, 121].

Animal experimentation with a larger number of ani-
mals poses a challenge for conducting research under 
field and semi-field conditions due to cost and ethi-
cal issues. Thus, there must be efforts to find alterna-
tives to such a challenge by respecting the principles 
of the 3Rs (replacement, reduction and refinement) of 
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animal research [122]. In this sense, it is also important 
to develop tests in animal models, predictive tests, com-
putational modeling and validation alternatives for for-
mulations developed with EOs and EOCs [123].

Formulations and administration on hosts
The formulations and administration routes of EOs/
EOCs most used on hosts, topical spray (81%) was the 
most frequent, followed by pour-on (10%), drop on the 
tick attachment site (3%), soap foam (3%) and oral spray 
(3%). One publication did not describe the administra-
tion route (Fig. 5e, Tables 1 and 2).

In the publications with cattle using spray formulations, 
in 53% of the studies, at least three liters of solution was 
applied per animal (Table 1). As to the volume of formu-
lation, Martins and González [124] used 2 L of solution 
in experimentally infested cattle weighing 350  kg, while 
Boito et al. [125] and Santos et al. [126] used only 400 mL 
and 50 mL, respectively, in naturally infested adult cattle. 
However, Santos et  al. [126] performed the application 
only on the neck, legs, and inguinal and ventral regions 
of these bovines. Some of the studies did not report the 
formulation or volume applied, the age category (young, 
adult) or the weight of the animals. For spray commercial 
acaricides, it is recommended to treat the whole body of 
the bovine using 4–5 L (1 L per 100 kg animal), whereas, 
for pour-on formulations, the dosage varies according to 
the animal body weight and the dorsal line of the animal 
is treated [16, 127–129].

For dogs, two studies used a topical non-commercial 
formulation [60, 130] and one used an oral commer-
cial formulation [131]. All works used experimental tick 
infestations (Table 2). Silva et al. [130] released the ticks 
in a chamber (5 × 3  cm) glued on the back of the dogs. 
The area of the chamber was sprayed once with 20 µL 
wild marigold (Tagetes minuta) EO after 24  h of tick 
infestation. Monteiro et al. [60] released the ticks on the 
dog’s nape and the dogs were secured for 10 min to allow 
tick distribution. After 24 h, the whole body of the dogs 
was sprayed once with thymol + eugenol EOCs micro-
emulsion (10  mL/kg). In turn, Amer and Amer [131] 
sedated the animals and released the ticks on the dogs’ 
fur of the back, lateral side and head. The dogs received 
the spray oral treatment with Lacecca® (garlic oil 2.5%, 
allicin 0.05%, rapeseed oil 8%) for 3 successive days/
month, before or after the tick infestation, depending on 
the group, at the dosage of 0.25 mL/kg.

For small ruminants (Table 2), soap foams of mastruz 
(Chenopodium ambrosioides) EO and spray lemongrass 
EO (Cymbopogon citratus and C. nardus) were used on 
naturally infested goats against different tick species [132, 
133]. Three concentrations of soap with C. ambrosioides 
EO were developed, and the soap foam was applied on 

the goats, twice a day (morning and evening), focus-
ing on points where R. lunulatus were present [133]. In 
turn, drops of wedelia (Thelechitonia trilobata) EO were 
applied on R. e. evertsi attachment sites in naturally 
infested sheep [134]. In addition to their differences in 
administration, it is impractical to use foam and drops at 
the site of tick attachment as a management routine on 
extensive farming of small ruminants as, once attached, 
ticks that parasitized goats and sheep, such as R. e. evert-
sii and R. lunulatus, prefer to feed mainly inside ears and 
tail (near genital/anal region). The work developed in 
rabbits (New Zealand) held in cages was developed with 
an experimental infestation on the rabbit ears using a 
cotton bag [135]. The alfavaca (Ocimum suave) EO was 
sprayed 5 mL per ear on the 2nd day of R. appendicula-
tus feeding using a laboratory animal, which is not with 
the preferred host. In addition, there are no studies in the 
same scenario for comparison and discussion.

Administration of the formulations in the environment
Eight studies using EOs/EOCs for tick control in the 
environment (field or semi-field conditions) were evalu-
ated (Table 3). The studies were performed in either nat-
urally or experimentally infested areas covering different 
plot sizes using spray formulations. The targeted ticks 
were those of public health importance (I. scapularis, 
A. americanum and A. sculptum), whose main hosts are 
usually wild animals. Managing wild animals is known to 
be difficult, thus requiring adopting different measures, 
such as applying acaricides in the environment.

For example, in endemic and risk areas for spotted 
fever rickettsiosis in Brazil, A. sculptum populations are 
usually maintained by capybaras (Hydrochoerus hydro-
chaeris). The application of acaricides on capybaras may 
not be an easy task and the fact that the animals con-
stantly enter the water may represent an environmental 
issue [136–138]. Similar issues occur in the US for the 
control of I. scapularis, where the tick populations are 
maintained by wild animals, such as Peromyscus leuco-
pus (white-footed mouse), other rodents and birds [95]. 
However, the use of topical or oral acaricides is now a 
reality in the US to control I. scapularis and A. ameri-
canum ticks on Odocoileus virginianus, the white-tailed 
deer [139].

Efficacy and alternatives to increase the efficacy of EOs/
EOCs
Efficacy of EOs/EOCs for on‑host tick control
Regarding the efficacy of trials using hosts, a worrisome 
aspect in the review of the selected articles was the lack 
of information about how the tick counts were per-
formed, the stages of ticks counted and the calculations 
of efficacy or mortality. Thus, we found different efficacy 
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values without standardization of the articles, thus ham-
pering comparison (Tables  1, 2). Such a scenario high-
lights that studies using EOs/EOCs have not typically 
followed international guidelines for evaluating the effi-
cacy of acaricides, hence lacking standardization.

The most recent antiparasitic guidelines for acaricide 
registration require studies in pen facilities or fields, 
using both treated and control groups (untreated), with 
a preferred efficacy ≥ 90% [118]. Andreotti et  al. [140] 
and Agnolin et al. [141] have reported results indicating 
an efficacy ≥ 90% in studies with cattle involving experi-
ments that followed aspects mentioned in the most cur-
rent guidelines [118] for efficacy verification (Table  1). 
The first study tested a pour-on formulation based on 
T. minuta EO at 20% on experimentally infested cat-
tle (pen study) and obtained an efficacy of ≈100% after 
13  days post-treatment (DPT). The second study per-
formed a trial in naturally infested cattle with systematics 
tick counts (field study). The formulation of Cymbopo-
gon winterianus EO at 8.6% was applied on cattle using 
a backpack sprayer. After 21 DPT, the efficacy was ≈90%. 
In contrast, Klafke et al. [142] tested a commercial spray 
with rosemary oil 10% (EO), geraniol 5% (EOC) and pep-
permint oil 2% (EO) (Essentria® IC-3, 6.5%) on experi-
mentally infested cattle and observed an efficacy of 70%, 
21 DPT.

Some works evaluated the treatment efficacy of EOs 
and EOCs in ticks infesting cattle differently than the 
guidelines [118], without an untreated control group. In 
these studies, the number of ticks was counted before 
and after treatment. In addition, some studies evaluated 
efficacy by analyzing the biology of recovered females 
after treating the cattle. These studies evaluated the bio-
logical parameters of engorged females in the laboratory 
to reach an efficacy value according to tick weight, egg 
mass weight and hatchability larval. Among the studies 
selected, Santos et al. [126], Arafa et al. [59] and Ibrahium 
et al. [143] accessed efficacy and found results > 70% and 
significantly lower tick counts after treatment (Table 1).

Santos et al. [126] used a cinnamon EO in three forms: 
pure oil (5%), nanocapsules (0.5%) and nanoemulsion 
(0.5%). Four cows from each group were sprayed with 
50  mL of the tested formulation, and the test was per-
formed on naturally infested cattle (Table  1). Animals 
sprayed with pure and nanoencapsulated cinnamon oil 
had significantly fewer ticks on days 1 and 4 post-treat-
ment and were free of ticks on day 20 post-treatment. 
Engorged females collected 24  h after treatment had 
impaired oviposition and larval hatching, with treatment 
efficacy of 90, 100 and 63% to pure oil, nanocapsules and 
nanoemulsion, respectively.

Arafa et  al. [59] tested deltamethrin, deltame-
thrin + thymol (EOC) and deltamethrin + thymol 

Fig. 5 Field and semi‑field studies (n = 31) using essential oils (EOs) and essential oil compounds (EOCs) for tick control in the period 1991–2022. 
a Percentage of studies with EOs and EOCs. b Percentage of studies that performed chemical characterization of EOs or not; c percentage of EOs 
and EOCs application strategies; d percentage of animal species used in studies with EOs/EOCs; e percentage of methods for applying EOs/EOCs 
to animals and the environment
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(EOC) + eucalyptus 5% (EO) against R. annulatus. Natu-
rally infested cows from each group were sprayed with 
the tested formulation, and the efficacy on day 30 post-
treatment was 21.6, 88.3 and 95%, respectively (Table 1). 
Ibrahium et  al. [143] evaluated the acaricidal activity of 
mallow (Pelargonium graveolens) EO 10%. Five naturally 
infested cattle were sprayed with 400 mL nanoemulsion 
of P. graveolens or P. graveolens + sesame oil. The authors 
observed that both treatments reduced the tick burden 
by 88% and 75%, respectively, 21 DPT. From females col-
lected 72  h after treatment, only those treated with the 
nanoemulsion laid no eggs.

Here, it is worth discussing the relationship between 
the EOs/EOCs concentrations and efficacy. Changing 
the dose or the concentration of the active ingredient of 
an acaricide formulation is a known strategy to circum-
vent the resistance mechanisms of ticks [91]. However, 
regarding EOs and EOCs, increasing the concentration 
can impact the feasibility of formulations due to the high 
cost linked to the volume (4 to 5 L) required to spray a 
bovine completely. Increasing concentration, coupled 
with applying a volume of 4 to 5 L, can also increase the 
chance of cattle intoxication [21]. For small ruminants, 
the studies used different routes of administration, mak-
ing results difficult to compare (Table 2).

In studies using five experimentally infested dogs 
(Table  2), 100% efficacy was reported against all stages 
of R. sanguineus s.l. evaluated 24  h after spraying T. 
minuta EO at 20% [130]. The use of a commercial prod-
uct containing a mixture of garlic (2.5%), allicin (0.05%) 
and rapeseed (8%) EOs resulted in a treatment efficacy of 
75–99% from the first to the third oral dose and a pre-
ventive efficacy of 100% against experimental infestation 
of R. sanguineus s.l. in 10 dogs [131]. Monteiro et al. [60] 
used a nanoemulsion containing thymol and eugenol 
EOC (5 mg/mL) sprayed on five experimentally infested 
dogs and observed a lower number of larvae, but not 
nymphs and adults, 3 DPT. However, there was an 85% 
reduction in the offspring (eggs and larvae) of engorged 
female R. sanguineus s.l. recovered from the treated dogs. 
In addition, the engorged larvae and nymphs recovered 
from the treated groups did not molt. Differently from 
cattle, the volume of application per dog is much lower, 
increasing economic viability and allowing the use of 
higher product concentrations for the treatment of these 
animals.

Overall, experimental studies have indicated that 
immature ticks (larvae and nymphs) are more suscepti-
ble to EOs and EOCs than adults (Table 2) [60, 135]. This 
could be related to the features of the cuticle in imma-
ture and adult tick stages [144, 145], although this has not 
been properly assessed. The studies with goats and sheep 

cannot be considered for discussion because of the lack 
of information.

Efficacy of EOs/EOCs for tick control in the environment
Table 3 shows the details of the studies using EOs/EOCs 
in the environment, such as tick stages, active com-
pounds, concentration, plot size and efficacy. The efficacy 
exceeded 90% in half of the studies evaluated [146–149]. 
However, in some studies efficacy dropped over the eval-
uation period, requiring new applications to maintain tick 
suppression in the studied areas [146, 147, 149, 150]. The 
low persistence and consequently decreased control rate 
of EOs/EOCs may be linked to their high volatility [36, 
61], which can be corrected by using encapsulated for-
mulations [151]. For instance, Dolan et al. [150] observed 
that using a formulation with the concentration of 2% 
nootkatone EOC, applied by a high-pressure sprayer, was 
as effective as a formulation containing 5%, applied by a 
backpack pump. These authors also noted that a formu-
lation using nanotechnology increased the effectiveness 
of nootkatone EOC. Improvements in the formulation 
process, such as the nanoemulsion used by Dolan et  al. 
[150] and the encapsulation in lignin used by Bharadwaj 
et al. [147], allowed the use of lower concentrations and 
increased the efficacy period of the product against I. 
scapularis and A. americanum.

In addition, combinations between EOs and EOCs can 
maximize efficacy, as demonstrated by Vale et  al. [152]. 
Under laboratory conditions, these researchers found 
that binary combinations of thymol, carvacrol and euge-
nol EOCs showed synergistic effects against A. sculp-
tum, allowing increased efficacy with the use of lower 
concentrations, in addition to reducing the costs. In 
the field, they observed that the combination of thymol 
(5.0  mg/mL) + eugenol (5.0  mg/mL) EOCs resulted in 
63% efficacy, while the combination of carvacrol (5.0 mg/
mL) + eugenol (5.0 mg/mL) EOCs presented 42% efficacy.

Alternatives to increase the efficacy of EOs and EOCs
Nanotechnology
Six of the reviewed articles used nanotechnology to cre-
ate formulations with EOs/EOCs (Tables  1, 2, 3). Using 
nanotechnology for formulation development is known 
to increase efficacy results and allow the use of lower 
concentrations of EOs and EOCs, which also increases 
the economic feasibility of the development of these 
biopesticides [65].

For example, against R. microplus, three studies dem-
onstrated differences in the treatment efficacy when 
using nanotechnology (Table  1). By using tea tree 
(Melaleuca alternifolia) oil in nanocapsules (0.75%) 
and in its pure form (5%), Boito et  al. [125] observed a 
control reduction of 34.5 and 0%, respectively, on tick 
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reproductive biology, evidencing that nanoencapsulation 
increased efficacy. Santos et al. [126] found similar results 
using Cinnamomum sp. EO nanoencapsulated (0.5%), in 
nanoemulsion (0.5%) and its pure form (5%), with control 
reductions on R. microplus reproductive biology of 100%, 
63.5% and 90.5%, respectively. Ibrahium et al. [143] veri-
fied that the nanoemulsion of P. graveolens EO was better 
than the association of P. graveolens EO with sesame oil. 
Only the females treated with the nanoemulsion did not 
oviposit. Against R. sanguineus s.l., Monteiro et  al. [60] 
used nanoemulsion with thymol and eugenol (5 + 5 mg/
mL = 1% active) EOCs on dogs, with larval reduction and 
85% efficacy on the reproductive biology of engorged 
females (Table 2).

Dolan et al. [156] applied nootkatone EOC in the envi-
ronment (shrub and litter layer) to suppress A. ameri-
canum and I. scapularis nymphs and observed a higher 
reduction of the ticks with the use of a nanoemulsion 
compared with a simple emulsion, 28 DPT (Table  3). 
Bharadwaj et  al. [153] observed that a formulation of 
lignin-encapsulated nootkatone, applied in a residential 
lawn perimeter, resulted in 100% of control for I. scapula-
ris nymphs for 56 days, whereas an emulsifiable formula-
tion of nootkatone showed 100% control of the nymphs 
for only 7 days.

EOs/EOCs combined with synthetic acaricides
The association of EOs/EOCs with synthetic acaricides 
is another possibility to improve efficacy (Table 1), with 
an approach to find a synergistic effect as demonstrated 
in laboratory assays using eucalyptus EO + thymol 
EOC + deltamethrin against R. annulatus, and thymol 
EOC + cypermethrin, (E)-cinnamaldehyde EOC + ami-
traz and (E)-cinnamaldehyde EOC + chlorfenvinphos 
against R. microplus [21, 57, 59]. The Brazilian market 
already has formulations of commercial acaricides con-
taining pyrethroids and organophosphates associated 
with terpenes (citronellal and geraniol EOCs) or pipero-
nyl butoxide [153], a semisynthetic derivative of safrole 
EO, which is a phenylpropanoid found in plants of the 
genus Piper [154].

Initial data with R. microplus indicate that there is no 
cross-resistance between synthetic acaricides and EOs/
EOCs [92, 155, 156]. In other words, tick populations 
resistant to commercial acaricides are not resistant to 
EOs/EOCs. Thus, combinations of synthetic acaricides 
with EOs/EOCs are an interesting alternative to be fur-
ther investigated [92, 155, 156].

Two field studies in this review associated EOs/EOCs 
with synthetic acaricides (Table  1) [21, 59]. Arafa et  al. 
[59] used a combination of eucalyptus EO + thymol 
EOC + deltamethrin that resulted in 95% efficacy in con-
trolling R. annulatus infestations in cattle; in turn, when 

using only deltamethrin, the effectiveness was 21%. 
Gonzaga et  al. [21] evaluated a combination of (E)-cin-
namaldehyde EOC + amitraz against R. microplus in cat-
tle. However, a few minutes after treatment the bovines 
showed intoxication signs, and the experiment could not 
proceed.

Clinical safety for hosts
Of the 23 articles using EOs/EOCs applied on animals, 
65.2% evaluated at least one variable regarding the safety 
of the formulations for animals, such as heart and respir-
atory rates, rectal and eyeball temperatures, dehydration 
and mucous membrane coloration changes. Among these 
variables, no adverse changes were reported in 86.6% of 
the studies. However, few studies have performed more 
complete evaluations, including on hemogram, biochem-
ical, clinical and dermal changes (Table 4).

For cattle, three studies verified the hemogram. Hemo-
gram was performed in a study using C. nardus EO at 
4% [157], while biochemical evaluation was also per-
formed in studies including C. winteranius EO pure and 
at 10% [124] and eucalyptus (Eucalyptus globulus) EO 
at 5% + thymol EOC + deltamethrin [59] (Tables  1 and 
4). The clinical evaluation did not describe the clini-
cal parameters evaluated in the studies using cattle by 
Valente et al. [158], Arafa et al. [59] and Klafke et al. [142]. 
Heart and respiratory rate values and eyeball tempera-
ture were evaluated in the studies with Holstein cattle 
by Olivo et al. [159] and Agnolin et al. [141]. An adverse 
reaction was perceived only in the study of Gonzaga et al. 
[21], in which the Simmental cattle treated with (E)-cin-
namaldehyde EOC at 0.1% showed sialorrhea and mus-
cle tremors. Arafa et al. [59] observed a dermal alteration 
in a bovine sprayed with 1  mL/L of thymol EOC, with 
precipitation of thymol crystals appearing on the ani-
mal’s skin, causing local irritation. Dermal evaluation, in 
cases of toxicity, may reveal allergic dermatitis and urti-
carial lesions in addition to reddening and warmth of the 
skin as a function of vasodilation caused by rubefacient 
agents, as observed for some EOs [160, 161].

For dogs, hemogram and biochemical analyses were 
performed before and after the treatment using a com-
mercial product based on allicin and EOs of garlic 
(Allium sativum) and rapeseed (Brassica napus) [131] 
in addition to a formulation containing a combina-
tion of thymol with eugenol EOCs [60] (Tables  2 and 
4). There was no change in the blood count and bio-
chemistry parameters of treated dogs in these studies. 
Monteiro et  al. [60] evaluated the rectal temperature, 
hydration, heart and respiratory rates as well as mucous 
membrane coloration and general physical condition of 
English Cocker Spaniel dogs treated with a nanoemul-
sion containing thymol (5.0  mg/mL) + eugenol (5.0  mg/
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mL) EOCs. No dermal alterations were observed, a fact 
that may be related to the stability presented by the for-
mulation, preventing the precipitation of thymol EOC. 
Another factor that might explain the absence of dermal 
reactions is the presence of eugenol EOC in the formula-
tion. Data have shown that the presence of eugenol EOC 
minimizes or even prevents skin reactions caused by 
other compounds also present in EOs [115, 162].

For small ruminants, clinical signs and clinical patho-
logical abnormalities have not been evaluated (Tables  2 
and 4). Kouam et  al. [133] only reported that goats 
treated with the C. ambrosioides EO soap foam did not 
change their behavior. However, the authors did not pre-
sent details regarding this evaluation.

It is important that future studies properly assess the 
safety of EOs and EOCs in addition to the evaluation of 
efficacy. A standardized evaluation of clinical signs and 
clinicopathological abnormalities would allow a proper 
comparison of different treatment regimens in addi-
tion to providing more accurate data regarding EOs and 
EOCs safety.

Non‑target organisms: residues and toxicity
The  EOs possess numerous biological activities and are 
effective against various pests, having little or no toxicity 
against non-target species, as demonstrated in the EOs 
of species like fennel (Foeniculum vulgare), stevia (Stevia 
rebaudiana) and cinnamon (Cinnamomum cassia) [163–
166]. In this review, toxicity effects on non-target species 
or description of residues in the environment were evalu-
ated in only 25% of field and semi-field studies conducted 
in the environment (Table  3) [147, 167]. There were 
reports of decreased numbers of non-target arthropods 
of the orders Coleoptera, Hymenoptera and Collembola 
1 week after the application of a product based on rose-
mary and peppermint EOs + geraniol EOC [167]. Phyto-
toxicity of products based on rosemary and peppermint 
EOs + geraniol EOC and emulsifiable nootkatone EOC 
was also reported. However, the authors mention that 
this phytotoxicity was reversed days after application 
[147, 167].

These assessments are important, especially in studies 
in the environment, as there is evidence of toxicity of EOs 
from bushy mat grass (Lippia alba), L. gracilis, spiced 
rosemary (L. sidoides), wild mint (Mentha arvensis), pep-
permint (M. piperita), clove basil (Ocimum gratissimum), 
pepper plants (Piper aduncum and P. callosum) and the 
hydrolate of common wormwood (Artemisia absin-
thium—a byproduct of its EO) on micro-crustaceans, 
plant seeds, algae and nematodes [168–170]. One possi-
bility to decrease and even avoid phytotoxicity is encap-
sulation with lignin, as used by Bharadwaj et  al. [147]. 
These alternatives such as the use of nanotechnology can 

reduce potential risks to animals and non-target organ-
isms [171].

Animal health industry point of view
The industry plays a fundamental role in the develop-
ment of new acaricides, of either chemical origin or not, 
by translating research into tangible products. The global 
animal health sector was valued in 2021 at $38.3 bil-
lion, and the parasiticide sales corresponded to the big-
gest chunk of the market, accounting for 34.1% of the 
revenues, followed by vaccines (28.5%), other products 
(22.2%) and antimicrobials (15.2%) [172]. In Brazil, the 
animal health sector moved approximately $2 billion, 
with parasiticides representing about 25% of the revenues 
[153]. Overall, this highlights the importance of parasites 
for the animal health sector globally.

The commercial attractiveness of the parasiticide seg-
ment attracts significant investment for the develop-
ment of new solutions for parasite control annually [173]. 
However, sales potential is not the only motivating fac-
tor for a new project; additional financial indicators, like 
expected profitability and net present value (NPV), also 
play an important role in the decision process. Other 
aspects to be considered before starting a project for 
the development of a new antiparasitic are the strategic 
fit with the overall company strategy, technical feasibil-
ity and legal certainty (animal health industry personal 
communication). The development of a new product 
results from a complex, long-term, expensive and multi-
disciplinary process. A project team is required, usually 
composed of a project leader and representatives of the 
following areas: marketing, manufacturing and controls 
guidance, regulatory affairs, finance, clinical studies and 
supply. Typically, the development process of an inno-
vative product (based on a new mode-of-action active 
pharmaceutical ingredient) takes 10–15 years to be com-
pleted and costs around 30–40 million euros. The pro-
ject team is responsible for the planning and execution 
of initiatives to ensure the product meets all regulatory 
requirements (quality, efficacy and animal/human/envi-
ronment safety) and is granted official market authoriza-
tion (animal health industry personal communication).

In the last 30  years, the animal health industry wit-
nessed drastic changes concerning the development of 
new molecules or innovative products for parasite con-
trol. Technology advances (e.g. in structural biology, 
computational chemistry, structure-based drug design, 
genomics and proteomics) have accelerated the selection 
of new parasiticide candidates [173]. However, there is 
an increasing demand for eco-friendly (‘green’) products 
that reduce or eliminate parasites, without compromis-
ing safety or cost efficiency [173]. Indeed, new products 
are required to be safe not only for the target species but 
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also for non-target species and the environment. Accord-
ing to the Food and Drugs Administration (FDA), there 
was a 2.7% increase in investments in research and devel-
opment (R&D) by the industry from 1989 ($ 604 million) 
to 2017 ($ 1.1 billion). However, during the same period, 
the number of approvals of new molecules declined by 
3.6% [174]. This highlights that, despite technological 

advances, the marketing authorization requirements for 
parasiticides have become more stringent [175].

The use of natural products to control ticks is a current 
trend since issues of sustainability, one health and ani-
mal welfare are increasingly present and permeation in 
society is necessary as soon as possible, whether in ani-
mal production or for companion animals (animal health 
industry personal communication). The availability of 

Table 4 Clinical safety performed in 23 articles using essential oils (EOs) and essential oil compounds (EOCs) to control ticks in treated 
animals

Abbreviations of the genera of plants: Cymbopogon (C.), Ocimum (O.), Thelechitonia (Th.), Corymbia (Co.), Tagetes (T.), Chenopodium (Ch.), Melaleuca (M.), Allium (A.), 
Brassica (B.), Eucalyptus (E.), Lippia (L.), Pelargonium (P.)

Evaluation not carried out

Clinical evaluation: Heart and respiratory rates, rectal and eyeball temperatures, dehydration and mucous membrane coloration changes

Hosts EOs/EOCs Evaluated parameter References

Hemogram Biochemistry Clinical evaluation Dermal evaluation

Cattle C. citratus e C. nardus … … … … Chungsamarnyart 
and Jiwaginda [183]

Rabbits O. suave … … … No adverse reaction Mwangi et al. [135]

Cattle C. winteranius Jowitt … No change … … Martins and González 
[124]

Goats C. citratus and C. 
nardus

… … No adverse reaction No adverse reaction John et al. [132]

Holstein cattle C. nardus No change … … … Agnolin et al. [157]

Holstein cattle C. nardus … … … … Agnolin et al. [184]

Sheep Th. trilobata … … … … Peebles et al. [134]

Holstein cattle Co. citriodora … … No adverse reaction No adverse reaction Olivo et al. [159]

Holstein cattle T. minuta … … … No adverse reaction Andreotti et al. [140]

Holstein cattle C. winterianus … … No adverse reaction No adverse reaction Agnolin et al. [141]

Holstein cattle Co. citriodora and Co. 
citriodora modified

… … … … Chagas et al. [185]

Goats Ch. ambrosioides … … No adverse reaction … Kouam et al. [133]

Dogs (mixed breeds) T. minuta … … … … Silva et al. [130]

Holstein cattle M. alternifolia … … … … Boito et al. [125]

Holstein cattle Cinnamomum sp. … … … … Santos et al. [126]

Holstein cattle (calves) Eugenol … … No adverse reaction No adverse reaction Valente et al. [158]

Dogs (mixed breeds) Lacecca® (A. sati-
vum, + Allicin + B. 
napus)

No change No change No adverse reaction No adverse reaction Amer and Amer [131]

Baladi‑Holstein cattle 
(cross breed)

Thymol and E. globulus 
combined with del‑
tamethrin

… No change No adverse reaction Allergic reaction 
in an animal

Arafa et al. [59]

Cocker Spaniel English 
dogs

Thymol + eugenol No change No change No adverse reaction No adverse reaction Monteiro et al. [60]

Aberdeen‑Angus 
cattle

Essentria® IC‑3 (rose‑
mary oil 10%, geraniol 
5% and peppermint 
oil 2%)

… … No adverse reaction … Klafke et al. [142]

Simmental cattle (E)‑cinnamaldehyde … … Sialorrhea and muscle 
tremors

No adverse reaction Gonzaga et al. [21]

Girolando (Gyr × 
Holstein) cattle

L. sidoides … … … … Pereira et al. [180]

Native breed cattle P. graveolens L … … No adverse reaction No adverse reaction Ibrahium et al. [143]
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EOs and EOCs  based products on the veterinary mar-
ket is currently limited. This may be related to several 
factors, including the lack of randomized clinical trials 
conducted according to current regulatory requirements 
for marketing authorization of products, whose efficacy 
has been demonstrated in laboratory studies only. In this 
regard, registration of new products is a lengthy process, 
and efficacy requirements may be excessively high. For 
example, the current Brazilian legislation for licensing 
anti-parasitic products for veterinary use dates to 1997 
[119]. To be approved for the control of R. microplus, a 
product must present an average efficacy of at least 95% 
on 23 DPT in pen studies and on 7 and 14 DPT in field 
studies [119].

The in  vitro acaricidal efficacy of EOs and EOCs is 
often promising. However, in vitro results are not always 
observed in field trials, especially in terms of persistent 
efficacy [176]. Perhaps, updated legislation with less 
stringent efficacy requirements could accelerate the mar-
keting authorization of new products, including EOs and 
EOCs based products, which could be used for integrated 
tick management. There is a need for a broad discussion 
on the harmonization and efficacy requirements for these 
products, which should involve researchers, government 
agencies and industry. Another challenge related to the 
registration of EOs or EOCs  based products is safety. 
While these products are usually believed to be eco-
friendly, not all EOs and EOCs are innocuous to animals, 
harmless to the environment or leave no residues in meat 
and milk. Prolonged exposure to high concentrations of 
certain EOs can have deleterious effects on the behavior, 
health and welfare of the host [21, 147, 167, 177].

Other practical issues are linked to the supply, stand-
ardization and economic viability of EOs and EOCs. A 
reliable supply of affordable and standardized raw mate-
rials in sufficient amounts to meet the market demand 
can be a challenge for a product based on EOs or EOCs 
[178]. The secondary metabolism of a plant and EOs 
composition is directly affected by the soil acidity and 
climate (heat, photoperiod and humidity) [179]. Further-
more, most commonly, the biological effect of an EO is 
triggered by a composition of molecules (rather than one 
single compound), which raises the problem of how to 
perform the raw material quality check while not know-
ing all the substances that should be quantified. Conse-
quently, the usual quality checkpoints during and at the 
end of the manufacturing process could also be tricky.

Regarding economic viability, the concentrations 
of EOs and EOCs that present efficacy are often high. 
This can make the production of a tick control prod-
uct for cattle unfeasible, where 1  L of product needs to 
be diluted in large volumes of water (> 400 L) to allow 
treatment of multiple animals. For example, Pereira et al. 

[180], in a field study with R. microplus-infested cattle, 
observed an average effectiveness of 50%, reaching 63% 
on day 21, using L. sidoides EO at a concentration of 1% 
(10,000  ppm). This concentration is much higher than 
that found in commercially available spray products for 
control on cattle (generally > 1000 ppm) [21]. In tick con-
trol on dogs, a smaller amount of product is necessary to 
treat the animals, added to the fact that products for dogs 
are generally already available ready to use, without the 
need for dilution in large volumes of water.

Studies with structural modifications of EOCs [154, 
181], development of formulations with nanotechnology 
[60, 125, 126] and combinations of botanical compounds 
[21, 59, 156, 182] with synthetic acaricides, as previously 
discussed, may be alternatives to solve these challenges, 
allowing the development of new technologies to con-
trol ticks on different animal species. In sum, despite the 
barriers mentioned, the animal health industry under-
stands that the exploration of EOs and EOCs as a veteri-
nary antiparasitic is an exciting endeavor (animal health 
industry personal communication).

Conclusions
This article provides a comprehensive review of the use 
of EOs and EOCs to reduce tick infestations on hosts and 
in the environment. Despite the research advances in this 
field of research, we conclude that there are still several 
research gaps and the urgent need for more randomized 
clinical trials that could allow the evaluation of the effi-
cacy of EOs and EOCs based products for the control of 
ticks under field conditions. Future research should also 
consider the following critical points: (i) characteriza-
tion of the EOs or description of the source, lot num-
ber and purity degree of the EOCs; (ii) standardization 
of the methods used to evaluate the efficacy of EOs and 
EOCs, following international guidelines (e.g. WAAVP 
guidelines) and national/regional regulatory agencies; 
(iii) formulation development, especially using nanotech-
nology and encapsulation, allowing to reduce the volatil-
ity of EOs and EOCs, which may increase efficacy and 
safety; (iv) evaluation of EOs and EOCs safety for target 
and non-target animals and the environment. Finally, 
(v) studies assessing the efficacy of synthetic acaricides 
already in the market in combination with EOs or EOCs 
could provide valuable information on their synergistic 
activity against ticks and usefulness from an integrated 
tick management perspective.
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Additional file 1. Botanical species used to extract essential oils and 
compounds present in essential oils that were used in field and semi‑field 
studies to control ticks.
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