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Abstract 

Background Malaria parasites such as Plasmodium knowlesi, P. inui, and P. cynomolgi are spread from macaques 
to humans through the Leucosphyrus Group of Anopheles mosquitoes. It is crucial to know the distribution 
of these vectors to implement effective control measures for malaria elimination. Plasmodium knowlesi is the most 
predominant zoonotic malaria parasite infecting humans in Malaysia.

Methods Vector data from various sources were used to create distribution maps from 1957 to 2021. A predictive 
statistical model utilizing logistic regression was developed using significant environmental factors. Interpolation 
maps were created using the inverse distance weighted (IDW) method and overlaid with the corresponding 
environmental variables.

Results Based on the IDW analysis, high vector abundances were found in the southwestern part of Sarawak, 
the northern region of Pahang and the northwestern part of Sabah. However, most parts of Johor, Sabah, Perlis, 
Penang, Kelantan and Terengganu had low vector abundance. The accuracy test indicated that the model predicted 
sampling and non-sampling areas with 75.3% overall accuracy. The selected environmental variables were entered 
into the regression model based on their significant values. In addition to the presence of water bodies, elevation, 
temperature, forest loss and forest cover were included in the final model since these were significantly correlated. 
Anopheles mosquitoes were mainly distributed in Peninsular Malaysia (Titiwangsa range, central and northern 
parts), Sabah (Kudat, West Coast, Interior and Tawau division) and Sarawak (Kapit, Miri, and Limbang). The predicted 
Anopheles mosquito density was lower in the southern part of Peninsular Malaysia, the Sandakan Division of Sabah 
and the western region of Sarawak.

Conclusion The study offers insight into the distribution of the Leucosphyrus Group of Anopheles mosquitoes 
in Malaysia. Additionally, the accompanying predictive vector map correlates well with cases of P. knowlesi malaria. This 
research is crucial in informing and supporting future efforts by healthcare professionals to develop effective malaria 
control interventions.
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Background
Malaria is a significant global health concern that con-
tinues to cause fatalities and illnesses, especially in tropi-
cal areas [1]. The abundance of mosquito vectors, which 
thrive in suitable environments, such as those character-
ized by high humidity, precipitation, temperature and cli-
mate seasonality, contributes to the high incidence rate 
of malaria [2]. Although synthetic insecticides have been 
utilized to control these vectors, the growing resistance 
of malaria vectors to chemicals poses a threat to malaria 
prevention [2, 3]. Therefore, there is a need for more 
effective control measures to address this issue.

Although Plasmodium knowlesi has become more 
prevalent in recent years, the emergence of Plasmodium 
cynomolgi and Plasmodium inui as zoonotic malaria 
in Southeast Asia has complicated measures aimed at 
malaria elimination [4–6]. The WHO reports that coun-
tries will not achieve malaria elimination status if the 
number of P. knowlesi cases remains high [7]. Studies 
have identified several mosquito species from the Leu-
cosphyrus Group of the genus Anopheles, including An. 
cracens [8, 9], An. latens [10], An. balabacensis [11, 12], 
and An. introlatus [13], that can transmit P. knowlesi to 
humans.

Most strategies for controlling malaria have focused on 
eliminating the disease in humans. This is understandable 
since humans account for the majority of malaria cases 
worldwide. However, the idea that simian malaria would 
rarely spill over into humans, proposed in the 1960s, is 
now outdated [14]. Recent developments have shown 
that zoonotic malaria is now a significant public health 
concern in Southeast Asia. Therefore, before declaring 
malaria eradication status, it is crucial to reconsider the 
threat of simian malaria and establish monitoring and 
control strategies [15–18]. Hence, mapping the distribu-
tion of simian malaria vectors in Southeast Asia is essen-
tial to the implementation of effective surveillance and 
control measures to eliminate the disease.

Comprehending the spatial and temporal pattern of 
simian malaria vectors is crucial, as it helps identify hot-
spot areas for vector abundance and allocating resources. 
Many studies have effectively used global geospatial tech-
niques in mosquito environmental research [19–22]. 
These tools have also helped predict habitat suitability, 
which aids in designing optimal mosquito vector con-
trol strategies based on precise spatial and temporal 
information databases [23–25]. Geospatial mapping has 
the potential to identify larval habitats covering a large 
geographic area, which may be difficult or impossible to 
obtain through field surveys [20, 26].

Due to deforestation and changes in land use, certain 
Anopheles species from the Leucosphyrus Group have 
become more prevalent in farms and villages [27, 28]. 

However, there is still a need for high-quality knowledge 
on the distribution of these vectors throughout Malaysia. 
The spatial distribution of simian malaria vectors is cru-
cial to determining effective vector control strategies but, 
unfortunately, there is currently a lack of information on 
their distribution throughout the country. Understanding 
the transmission patterns and geographical distribution 
of simian malaria parasites in Malaysia is essential for 
developing efficient disease control strategies and iden-
tifying how ecologies affect the risks of simian malaria. 
Therefore, this study aims to create a geographical distri-
bution map and a predictive risk map based on the ecol-
ogy of specific vectors of P. knowlesi. This information 
will enable possible interventions that can be used for 
vector control.

Methods
Data search
Relevant information on the Leucosphyrus Group 
of Anopheles mosquitoes was obtained through a 
combination of: (i) an extensive search of published 
articles on the Anopheles leucosphyrus sensu lato (A. 
leucosphyrus s.l.) mosquitoes between 1957 and 2021; 
(ii) mosquito sample collections carried out in the course 
of the present study from June 2019 until January 2021 
in Malaysia (Fig.  1), the details of which regarding the 
sample collection are described in a previous study 
[29]; and (iii) direct contacts with district officers for 
Anopheles collection sites coordinates or unpublished 
research data were used for the spatial analysis. Online 
platform databases, such as PubMed, Medline and 
Google Scholar, were searched used to identify relevant 
studies on distribution of the simian malaria vector. We 
also compiled information from gray literature, such 
as hard copies of old publications, reports, thesis and 
dissertations pertinent to the research.

Geo‑positioning procedures
The surveyed geographic coordinates were determined 
using electronic resources, including GeoNet Names 
Server (http:// earth- info. nga. mil), Wikimapia (http:// 
www. wikim apia. org) and Google Earth (http:// www. 
earth. google. com), which are freely available online. The 
identified location from one source was cross-checked 
against the other sources to confirm the consistency of 
the coordinates. Each collection area’s coordinates were 
recorded using the Google Maps coordinate system. The 
recorded coordinates were then transferred to Microsoft 
Excel 2016 (Microsoft Corp., Redmond, WA, USA) to 
compile all the data for further analysis. All digital data 
and geographical coordinate were synchronized using the 
World Geodetic System (WGS1984; https:// gisge ograp 
hy. com/ wgs84- world- geode tic- system/), which served 

http://earth-info.nga.mil
http://www.wikimapia.org
http://www.wikimapia.org
http://www.earth.google.com
http://www.earth.google.com
https://gisgeography.com/wgs84-world-geodetic-system/
https://gisgeography.com/wgs84-world-geodetic-system/
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as the x- (longitude or east–west) and y-coordinates 
(latitude or north–south), thereby allowing geographic 
positions to be expressed anywhere worldwide. The base 
map and all the environmental data were generated from 
freely available online sources reported in Table  1. The 
data were then exported and stored in ArcGIS 10.4.1 
software (ESRI, Redlands, CA, USA) for further analysis.

Spatial cluster analysis
The distribution of the Leucosphyrus Group of Anopheles 
mosquitoes was mapped at the district and sub-district 
levels. Each coordinate was plotted as point features, 
creating a new geographic information system (GIS) 
layer representing the point locations of the mosquitoes. 
Distribution data on some Leucosphyrus Group of 

Anopheles mosquitoes from 1957 to 2021 were included 
in this map separately from the mosquito samplings 
conducted from 2019 to 2021 for the present study [8, 9, 
11–14, 26, 27, 30–58].

The distribution of the Leucosphyrus Group of Anoph-
eles mosquitoes was determined using the average near-
est neighbor (ANN) analysis to calculate the ANN ratio 
(R) (Table  2) based on the observed average distance 
between the nearest mosquito location to determine the 
distribution pattern of the Anopheles mosquitoes.

The ANN analysis provides statistical values,  such as R, 
Z-scores and P values. The distribution pattern of mos-
quitoes was used to determine the R value. When R < 1, 
the distribution of the Anopheles mosquitoes indicates 
clustering; when R > 1, the distribution pattern of the 
Anopheles mosquitoes is dispersing. The Z-scores were 
used to validate the calculated R-value to determine the 
significance of rejecting the null hypothesis.

Inverse distance weighted interpolation method
An interpolation map was created to predict the risk 
area based on the Leucosphyrus Group of Anopheles 
mosquitoes’ coordinates by the inverse distance weighted 
(IDW) interpolation method. The IDW map was created 
from mosquito distribution data from 1957 up to 2021 and 
overlaid with the environmental variables, thus allowing 
the correlation of risk areas and the environmental factors 
to be observed. ArcGIS 10.4.1 (ESRI) software was used 

Fig. 1 Location of collection sites of Anopheles mosquitoes in Malaysia

Table 1 Remote sensing data and sources

Data type Data source

Malaysia map (base map) Department of Surveying 
and Mapping, Malaysia

Elevation DIVA-GIS

Water bodies Copernicus Global Land Service

Forest cover Copernicus Global Land Service

Forest loss Department of Geographical 
Science, University of Maryland

Temperature WorldClim website
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to perform all of the interpolation calculations. The IDW 
analysis formula was:

where, v̂  = estimated value; Vi = known value; and di…, 
dn = distances between the n data points and the esti-
mated n.

Statistical analysis
The logistic regression test was performed using SPSS 
software (Statistics 23; SPSS IBM Corp., Armonk, NY, 
USA) to identify the significant environmental variables 
linked to Anopheles mosquito abundance and develop a 
statistical risk model. The environmental variables were 
selected and entered into the regression model based on 
their significant values. The accuracy of the model was 
determined using regression analysis, which was divided 
into two groups: (i) sampling sites (218 locations); and (ii) 
random sampling sites (220 locations). The random sam-
pling sites were created by ArcGIS 10.4.1 software (ESRI). 
Hosmer and Lemeshow goodness-of-fit tests were used 
to assess whether the model fits the observed data. The 
spatial autocorrelation test (Moran’s I-test) was applied 
to determine whether mosquito distribution patterns 
were clustered, scattered or randomly distributed. The  
I-test calculates the mean of each value at each site and 
compares it to the mean value of all locations. Moran’s 
I-test values range from − 1, which reflects a strong nega-
tive correlation, to + 1 which depicts a strong positive 
correlation. A Moran’s I-test value of 0 denotes a spatially 
random pattern.

Moran’s I-test was performed using ArcGIS 10.4.1 soft-
ware (ESRI) [59]. The best fit logistic regression model 
was used to produce a predictive risk map based on the 
abundance of mosquitoes. The equation of the logistic 
regression model is denoted by:

∑ n
i
= 1 1

di
vi

∑ n
i
= 1 1

di

where βi is the regression coefficient for variable xi.
This equation can be re-written as:

.
(p) can be calculated by rearranging this equation as 

follows:

Results
Distribution of Leucosphyrus Group of Anopheles 
mosquitoes from 1957 to 2021
This database contains information on the whereabouts 
of the Leucosphyrus Group of Anopheles mosquitoes 
in Malaysia, and all locations have been successfully 
geopositioned (Additional file  1: Table  S1). Figures  2 
and 3 depict the overall geographical distribution of 
Anopheles mosquitoes and their distribution every 
10  years. The ANN analysis reveals a consistent 
clustering pattern of Anopheles mosquitoes, with a 
nearest neighbor ratio (R) < 1 for overall distribution 
and every 10  years (Table  3). However, for the years 
1988–1997, a dispersed pattern was observed (R > 1). 
The negative Z-score values indicate that clustering 
occurred randomly for almost every 10  years, except 
for the 1988–1997 period.

Spatial interpolation
The IDW interpolation method was utilized to analyze 
spatial interpolation based on vector data collected 
between 1957 and 2021. Predictions for Anopheles 

log odds of outcome =β0 + β1x1 + β2x2 + β3x3

+ · · · + βpxp = β ′x

log odds of outcome = log

(
p

1− p

)
= logit(p) = β ′x

p =
exp(β ′x)

1+ exp(β ′x)

Table 2 Average nearest neighbor ratio

Statistical formula Explanation

R =
Do

De

Do is the observed mean distance between each mosquito coordinated with the nearest neighboring mosquitoes
De is the expected mean distance for the features determined as random pattern
R refers to the radius used to measure the distances between features in a spatial dataset

Do =

∑ n

i
−1di

n

di is the equal distance between each mosquito location and its nearest mosquitoes
i is the nearest mosquito point
n is the total number of mosquitoes
A is the total study location
SE is standardized expected nearest neighbor distance is the expected distance between features 
under the assumption of complete spatial randomness

De =
0.5

√
n/A

Z =
Do−De

SE

SE =
0.26136√

n2/A
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Fig. 2 Overall distribution map of the Leucosphyrus Group of Anopheles mosquitoes from 1957 to 2021 in Malaysia

Fig. 3 Distribution map of the Leucosphyrus Group of Anopheles mosquitoes from 1957 to 1967 (a), 1968–1977 (b), 1978–1987 (c), 1988–1997 (d), 
1998–2007 (e), 2008–2017 (f) and 2018–2021 (g)



Page 6 of 13Pramasivan et al. Parasites & Vectors          (2023) 16:355 

mosquito abundance were categorized by color, ranging 
from low (yellow) to moderate (orange) to high (red). 
To enhance the visual representation, maps displaying 
environmental factors, such as forest loss, forest cover, 
elevation, temperature and water bodies, were overlaid 
onto the prediction map. The IDW results revealed 
that a high number of vectors could be observed in 
the southwest part of Sarawak (Betong, Kapit, Bintulu, 

Miri, Sibu, Mukah, Sri Aman, Song and Sarikei), Kedah 
(Baling), Perak (Hulu Perak and Kerian), Pahang (Kuala 
Lipis, Jerantut, Bentong, Temerloh, Bera, Maran 
and Kuantan), Negeri Sembilan (Jelebu, Tampin and 
Jempul), Kelantan (Gua Musang, Kota Baharu, Jeli, 
Pasir Mas and Tumpat), Terengganu (Hulu Terengganu, 
Dungun and Kemaman), Selangor (Kuala Langat, 
Kuala Selangor and Hulu Selangor), Johor (Mersing), 
Melaka (Alor Gajah and Jasin) and the northwest part 
of Sabah (Kudat, Ranau, Penampang, Papar, Tuaran 
and Beaufort). In contrast, most parts of Johor, Sabah, 
Perlis, Penang, Kelantan, and Terengganu had low 
vector abundance (Fig. 4).

High elevations in Pahang (Titiwangsa range), Sarawak 
(Sarawak-Kalimantan border range and northeast part) 
and Sabah (northwest and southwest part) were locations 
with moderate and low mosquito abundance (Fig.  4a). 
The orange and red zones of Sabah, Sarawak, Pahang, 
Perak, Kelantan, Terengganu and Kedah are associated 
with high forest cover (Fig. 4c). Areas with high and mod-
erate mosquito abundance exhibit noticeable tree loss 
across Malaysia (Fig. 4d). Low temperature (Fig. 4e) was 
linked with high elevations in Malaysia (Fig.  4b). Water 
bodies were also present near zones with moderate and 
high mosquito abundance (Fig. 4f ). Maps of the environ-
mental factors are shown in Additional file 2: Figure S1.

Table 3 Results from the average nearest neighbor analysis 
showing the distribution patterns of the Anopheles Leucosphyrus 
Group in Malaysia from 1957 to 2021

a R is the average nearest neighbor ratio. R < 1 indicates the distribution of the 
Anopheles mosquitoes is clustered; R > 1 indicates the distribution pattern of the 
Anopheles mosquitoes is dispersed

Year Ra P value Z-score Pattern

1957–2021 0.20 0  − 22.50 Clustered

1957–1967 0.42 0  − 5.59 Clustered

1968–1977 0.37  < 0.01  − 4.33 Clustered

1978–1987 0.66  < 0.01  − 2.98 Clustered

1988–1997 2.80 0 9.71 Dispersed

1998–2007 0.07 0  − 6.93 Clustered

2008–2017 0.12 0  − 14.92 Clustered

2018–2021 0.24 0  − 10.13 Clustered

Fig. 4 Interpolated distribution of vectors illustrating zonation of high and low areas (a), vector distribution overlaid with elevation (b), forest cover 
(c), forest loss (d), temperature (e) and water bodies (f). IDW, inverse distance weighted (interpolated method)
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Statistical and spatial analysis
Based on ecological factors, this study used logistic 
regression analysis to predict the abundance of Anoph-
eles mosquitoes in unsampled areas. The results showed 
that elevation, forest cover, forest loss and tempera-
ture were significant factors affecting the distribution 
of the Leucosphyrus Group of Anopheles mosquitoes 
(Table 4). However, water bodies were excluded from the 
final model as they were not statistically significant. The 
model’s accuracy in predicting sampled and non-sampled 
areas was 75.3%, with 73% accuracy for sampled areas 
and 77.6% accuracy for non-sampled areas. The model’s 
accuracy was reliable, as most non-sampled areas were 
predicted with P < 0.5, and sampled areas were predicted 
at P > 0.5. The Hosmer and Lemeshow goodness-of-
fit value was statistically significant, indicating that the 
model’s estimates fit well with the data. The spatial dis-
tribution of mosquitoes was evaluated using Moran’s 
I-index, which showed a significantly positive spatial 
autocorrelation for the distribution of the Leucosphyrus 
Group of Anopheles within districts, indicating that mos-
quito distribution was more spatially clustered.

Hence, our logistic regression model is:

Which can be arranged as follows:

Log odds of outcome = log

(
P

1− P

)

= −28.472 + 0.022 ∗ f.cover + − 0.302 ∗ temp + 0.006 ∗ elev+0.068 ∗ f.loss

= β ′x

P =
exp(− 28.472 + 0.022 ∗ f.cover + − 0.302 ∗ temp + 0.006 ∗ elev+0.068 ∗ f.loss

1 + exp(− 28.472 + 0.022 ∗ f.cover + − 0.302 ∗ temp + 0.006 ∗ elev+0.068 ∗ f.loss

Modeled distribution of Leucosphyrus Group of Anopheles
A logistic regression model was used to predict the 
distribution of the Leucosphyrus Group of Anopheles 
mosquitoes based on environmental factors such as 
elevation, forest cover, forest loss and temperature. 
The results showed a higher predicted distribution 
of Anopheles mosquitoes (indicated by red–orange 
coloration) in certain areas, including the Titiwangsa 
range, central and northern parts of Peninsular 
Malaysia, Kudat Division, West Coast Division, Interior 
Division and Tawau Division of Sabah, as well as Kapit, 
Lawas, Marudi, Belaga, Song and Sri Aman of Sarawak. 
Meanwhile, the predicted distribution of Anopheles 
mosquitoes was lower (indicated by shades of green 
coloration) in the southern part of Peninsular Malaysia 
(mainly in Johor, Perlis, Melaka, Selangor, Kuala Lumpur 
and Penang), the eastern part of Sabah (mainly in Pitas, 
Sandakan, Sempurna, Beluran and Kuala Penyu), and the 
western region of Sarawak (primarily Kuching, Serian, 
Betong and Mukah) (Fig. 5).

Discussion
Using GIS, in this study we have outlined the distribution 

of the Anopheles Leucosphyrus Group of mosquitoes in 

Malaysia. The information gathered from previous pub-
lished studies and from current field data is crucial for 
identifying and managing malaria vectors. The study also 
suggests that this approach could facilitate the planning 
and advancement of vector management strategies. The 
results show significant geographic variation in the dis-
tribution of Anopheles throughout Malaysia, which opens 
the door to an opportunity to effectively target preven-
tion efforts where they are needed most, particularly 
when resources are limited.

We found that the distribution of malaria vectors, 
particularly in Malaysian Borneo, has remained largely 
unchanged from 1957 to 2021. The primary simian 
malaria vectors vary by region, with An. balabacensis 
prevalent in Sabah and Sarawak [11, 12, 60], An. latens 
in Sarawak [10, 53], An. cracens in Pahang [8, 9] and 
An. introlatus occurring in Peninsular Malaysia and 
also observed in Sarawak [12]. However, An. introlatus 

Table 4 Regression coefficients used to estimate the 
distribution of Anopheles mosquitoes

CI Confidence Interval
a Significance level was set at P < 0.05

Characteristic Coefficient 
estimate 
(β)

Standard 
error of 
estimate

Odds ratio (95% CI) P  valuea

Constant  − 28.472 5.070 – –

Forest cover 0.022 0.003 1.02 (1.02–1.03) 0.000

Temperature  − 0.302 0.110 0.74 (0.60–0.92) 0.006

Elevation 0.006 0.001 1.01 (1.00–1.01) 0.000

Forest loss 0.068 0.023 1.07 (1.024–1.12) 0.003

Water bodies  − 0.054 0.032 0.95 (0.89–1.01) 0.090
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was only confirmed as a vector in Selangor [13]. Our 
distribution maps illustrate these findings. Recent studies 
have also identified An. introlatus as a vector of simian 
malaria in Peninsular Malaysia [61].

Analysis of the geospatial data from 1957 to 2021 
revealed that Anopheles mosquitoes tended to cluster in 
certain areas. This was shown in the ANN analysis, which 
also revealed clustering patterns among different Anoph-
eles spp. of the Leucosphyrus Group. There were clusters 
of > 2 species in Selangor from 1957 to 1967, in Negeri 
Sembilan from 1968 to 1977) and in Sarawak from 1998 
to 2007. Anopheles hackeri, Anopheles pujutensis, An. 
introlatus, and An. latens were found in Selangor, while 
An. pujutensis, Anopheles macarthuri, An. introlatus and 
An. latens were found in Negeri Sembilan and Sarawak. 
These species thrived in these areas due to the presence 
of their ideal habitat conditions, such as optimal tem-
perature for larval and adult mosquito development [62], 
clean water bodies for breeding sites [63] and proximity 
to forested or deforested areas for easy access to humans 
and animals for blood meals [64, 65].

Developing an interpolation map based on species 
distribution datasets can help identify vector-prone 
areas and plan effective vector control programs. Some 
entomological and vector studies have used interpolation 
techniques, such as the IDW method, to predict 
mosquito species abundance in non-sampled areas [66–
70]. Despite limited data in some parts of the country, 

the interpolation map estimates vector abundance. In 
the present study, high vector abundances were observed 
in Sarawak’s southwestern region, Pahang’s northern 
region and Sabah’s northwestern region. Environmental 
variables, such as forest cover, deforestation, elevation, 
water bodies and temperature, can significantly influence 
vector abundance [62–65, 71, 72].

The Anopheles Leucosphyrus Group of mosquitoes 
are forest-dwelling, typically found in forested and 
agricultural settings [13]. Furthermore, Anopheles 
larval habitats are found in highly shaded, clean, natural 
water pockets or puddles near rivers [32]. Thus, the 
predicted high vector abundance is near forested and 
water bodies areas. Since Anopheles lives in a shaded, 
humid and moist environment [73], this environment 
offers clean and suitable water bodies for Anopheles 
mosquito breeding sites. With deforestation, long-tailed 
macaques (Macaca fascicularis) and pig-tailed macaques 
(Macaca nemestrina) [74], the natural host of simian 
malaria in Malaysia, have migrated to the forest fringes, 
and these mosquitoes may have trailed them there 
and subsequently colonized forest fringes. Therefore, 
vector abundance is high where deforestation is noted 
since the vector is localized in the disturbed natural 
environment where it is observed to have high biting 
rates in agricultural areas and forest fringes [9, 53, 75]. It 
is possible that the Leucosphyrus Group of mosquitoes 
were not prevalent during human malaria entomological 

Fig. 5 Predicted risk map of Leucopshyrus Group of Anopheles mosquitoes in Malaysia as derived from the logistic regression model



Page 9 of 13Pramasivan et al. Parasites & Vectors          (2023) 16:355  

studies [26, 76] conducted in Peninsular Malaysia 
because they may have been residing in the densely 
forested regions during that time.

The presence of vectors in a particular habitat is 
affected by elevation and temperature. Elevated areas 
typically have lower temperatures, which can limit the 
reproduction and growth of Anopheles mosquitoes, 
resulting in fewer of them being observed [77, 78]. As a 
result, this study found that vector abundance was lower 
in areas with both high elevation and low temperatures. 
The high number of vectors noted in the IDW interpo-
lation map was thus influenced by factors such as for-
est loss, forest cover, elevation, and water bodies and 
temperature.

The logistic regression model for predicting the 
knowlesi malaria vector performed well when analyz-
ing the covariate data. The resulting predictive map 
also aligns well with the actual knowlesi malaria cases 
recorded in a previous study [79]. The risk of contract-
ing knowlesi malaria is higher in forested and deforested 
areas, with the highest vector population. This was deter-
mined through an interpolation map that overlaid forest 
cover and forest loss covariates. Additionally, the pre-
dicted high-risk zones for knowlesi malaria are mainly 
around the Titiwangsa range and central-northern region 
of Peninsular Malaysia [79]; the same pattern was noticed 
from the predictive vector map from this study. The asso-
ciation between the predictive vector and human case 
maps would further support the model’s accuracy and 
reliability.

Furthermore, most of these published data were pub-
lished more than a few years back and applying that to 
the given day is doubtful. Despite these drawbacks, the 
existing data provide a reasonably estimated distribu-
tion of simian malaria vectors in Malaysia. Although 
the predictive model can be used to visualize the entire 
distribution of vectors based on environmental param-
eters, some variables also give valuable information for 
the prediction, such as the distribution of simian malaria 
infection and case characteristics like gender, age, and 
occupation. Indeed, such details were not included in 
the present mapping survey, but they could be a focus for 
future research. Consequently, we must know that this 
data is difficult to obtain on a broad spatial scale. Apart 
from such limitations, the information in the current 
database can assist in identifying and emphasizing where 
such information is lacking and, therefore, may collect 
the necessary data for further research on the geographi-
cal distribution of vectors in the country. In addition, the 
study used freely available databases to create a predic-
tive map, a cost-effective way to support entomological 
surveillance efforts.

This map can help identify areas or populations with 
the greatest needs. It considers factors such as forest 
cover and loss, which can affect the abundance of disease-
carrying insects. The map predicts that Kedah, Pahang, 
Kelantan, Terengganu, Selangor, Negeri Sembilan, Sabah, 
and Sarawak likely have the highest vector distribution. 
These areas have increased forest cover and forest 
loss, more water bodies, low elevation, and moderate 
temperatures.

Forest cover effects on anopheline abundances dur-
ing the dry and wet seasons can be linked to the behav-
ior of adults and larvae formations [80]. Water quality 
is influenced by forest cover through shading, organic 
matter inputs, and erosion processes [81]. These factors 
impact water quality and facilitate vector breeding sites 
[82]. Vectors and their hosts correlate with the forest. 
Some mosquitos are zoophilic and feed on animals [83], 
commonly more abundant in forested areas. When for-
ested areas are replaced by agricultural land, the plants 
can still offer the bushy cover that some Anopheles 
mosquito species or larval development stages require. 
Thus, it increases the rate of mosquito densities [84–86]. 
Anopheles balabacensis, the primary simian malaria vec-
tor in Sabah [11], is a forest-dwelling species with larval 
development that prefers humid, shaded water condi-
tions [87]. Anopheles balabacensis abundances in Sabah 
have recently been higher in the disturbed, cleared forest, 
plantations, and farms than in undisturbed primary and 
secondary forested areas. An example of how land use 
can affect the ecology of a vector can be seen in Sabah 
[11, 36, 39].

The man biting rate of An. donaldi and An. letifer was 
higher in forested areas of Sarawak than in villages [37]. 
However, when deforestation occurred and palm oil plan-
tations were established over four years, the vector popu-
lation declined [88]. On the other hand, another study in 
Peninsular Malaysia found that the man-biting rate of the 
Anopheles Leucospyrus Group of mosquitoes was higher 
in forested areas and remained relatively similar in agri-
cultural areas in Sungai Dara (Perak), Kem Sri Gading, 
(Pahang), Kampung Lalang (Kelantan) and Bukit Tinggi 
and Gunung Panti (Johor)[61]. These findings suggest 
that forest clearing disrupts habitats and brings different 
ecosystems closer together, creating new environments 
at the forest edge [89]. Deforestation can also alter the 
microclimate, vegetation, and soil composition, bringing 
a new environment for vectors [90, 91] and adapting the 
new ecology. Therefore, the abundance of vectors tends 
to be higher in areas where there has been forest loss.

The immature stages of malaria vector mosquitoes, 
such as eggs, larvae, and pupae, can be found in surface 
water [92]. Using satellite data to monitor these water 
bodies is valuable in identifying the source of these 
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disease-carrying mosquitoes. However, it’s important 
to note that the assumption that vector abundance is 
negatively correlated with water bodies may not be 
accurate. This is because most of the sampled locations 
were near water bodies but not within them, which failed 
to obtain the necessary data for analysis. To improve 
future studies, conducting Anopheles larval surveys and 
including them in predictive maps is crucial, as larval 
habitat presence is a direct approach to predicting 
vector density. It is essential for researchers to carefully 
evaluate the study’s outcomes, as one study found 
similar limitations and discussed ways to improve their 
analysis [92]. This limitation highlights the importance 
of identifying Anopheles larval sites near sampling areas, 
considering the prevalence of water body characteristics, 
as female Anopheles mosquitoes require water to 
complete their life cycle [93].

The density of vectors is generally lower in the high-
lands compared to the nearby lowlands, as observed in 
this study [94–96]. The elevation and temperature are 
linked, and as the temperature decreases with increasing 
elevation, malaria vectors’ density and species diversity 
may also vary [96]. Temperature also affects the develop-
ment rates of juveniles, the duration of the gonotrophic 
cycle, and the survival of both juvenile and adult phases 
at an optimal temperature [71]. Anopheles mosquitoes’ 
survival is directly influenced by environmental tem-
perature during juvenile and adult stages. A warmer 
atmosphere promotes rapid growth and smaller adults 
[98]. High temperatures speed up the evaporation rate 
of water pools and reduce pool lifetime, thus, mosquito 
immatures have limited time to reach the adult phase. 
Studies have shown that Anopheles larvae cannot sur-
vive at temperatures higher than 35  °C [62, 97]. Higher 
temperatures can speed up blood meal digestion, shorten 
gonotrophic cycles, and alter mosquitoes’ reproduction 
ability [98]. At temperatures below 17 °C, malaria vectors 
fail to survive [99]. Therefore, vector abundance is low at 
both high and low temperatures as they require an ideal 
temperature for their life history.

Conclusion
This study provides important information about the 
distribution of simian malaria vectors in Malaysia from 
1957 to 2021. The study also includes a predictive map of 
vector abundance based on environmental factors. This 
information can help reduce malaria by allowing authori-
ties to focus on areas with high transmission rates. 
Understanding the environment is crucial because it can 
increase or decrease the number of vector breeding sites. 
According to the study, water bodies, areas with ideal 
temperatures, low-lying areas, deep forests, and defor-
ested zones have high vector density. The study used 

freely available databases to create a predictive map, a 
cost-effective way to support entomological surveillance 
efforts. Health professionals in areas with "very high" and 
"high" vector abundance should take targeted measures 
to reduce vector populations and human cases. In doing 
so, they can maximize the benefits of their efforts and 
optimize the impact of vector control interventions.

Abbreviations
ANN  Average nearest neighbor
GIS  Geographic information system
IDW  Inverse distance weighted
RS  Remote sensing

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13071- 023- 05984-x.

Additional file 1: Table S1.  Vectors throughout Malaysia and the sites 
recorded from 1957 to 2022.

Additional file 2: Figure S1. Maps showing the elevation, forest cover, 
forest loss, temperature and water bodies of Malaysia.

Acknowledgements
The authors like to thank the staff of vector team Kluang, Mersing, Kota Tinggi, 
Jengka, Perak and Negeri Sembilan for all their help in collection of mosqui-
toes. Additionally, we would like to thank Universiti Malaya (UM) and Universiti 
Malaysia Sarawak (UNIMAS) for their tremendous support in this research.

Author contributions
IV and RN conceptualized and designed the work. SP, NKJ, VLL, JWKL and IV 
did mosquito collections. SP conducted molecular laboratory work, analyzed 
the data and wrote the manuscript. All authors edited the manuscript. All 
authors read and approved the final manuscript.

Funding
Open Access funding provided by Universiti Malaysia Sarawak. This research 
was funded by Ministry of Higher Education of Malaysia Long Term Research 
Grant Scheme (LRGS), grant no. LRGS 1/2018/UM/01/1/3.

Availability of data and materials
The datasets generated from the journals during the current study are avail-
able in online.

Declarations

Ethics approval and consent to participate.
This study was approved by Medical Research and Ethics Committee, Ministry 
of Health Malaysia (NMRR-19-962-47606).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Parasitology, Faculty of Medicine, Universiti Malaya (UM), 
Kuala Lumpur, Malaysia. 2 Department of ParaClinical Sciences, Faculty 
of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 
Sarawak, Malaysia. 3 Biomedical Science Program, Center for Toxicology 
and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan 
Malaysia, Kuala Lumpur, Malaysia. 4 Tropical Infectious Diseases Research & 

https://doi.org/10.1186/s13071-023-05984-x
https://doi.org/10.1186/s13071-023-05984-x


Page 11 of 13Pramasivan et al. Parasites & Vectors          (2023) 16:355  

Education Centre (TIDREC), Universiti Malaya (UM), Kuala Lumpur, Malaysia. 
5 Environmental Health Institute, National Environment Agency, Singapore, 
Singapore. 

Received: 31 July 2023   Accepted: 25 September 2023

References
 1. Ceccato PN, Ghebremeskel T, Jaiteh MS, Graves PM, Levy MA, 

Ghebreselassie S, et al. Malaria stratification, climate, and epidemic early 
warning in Eritrea. Am J Trop Med Hyg. 2007;77:61–8.

 2. Munywoki DN, Kokwaro ED, Mwangangi JM, Muturi EJ, Mbogo CM. 
Insecticide resistance status in Anopheles gambiae (s.l.) in coastal Kenya. 
Parasit Vectors. 2021;14:207.

 3. Ranson H, Lissenden N. Insecticide resistance in African Anopheles 
mosquitoes: A worsening situation that needs urgent action to maintain 
malaria control. Trends Parasitol. 2016;32:187–96.

 4. Jeyaprakasam NK, Liew JWK, Low VL, Wan-Sulaiman W-Y, Vythilingam I. 
Plasmodium knowlesi infecting humans in Southeast Asia: What’s next? 
PLoS Negl Trop Dis. 2021;14:e0008900.

 5. Liew JWK, Bukhari FDM, Jeyaprakasam NK, Phang WK, Vythilingam I, Lau 
YL. Natural Plasmodium inui infections in humans and Anopheles cracens 
mosquito, Malaysia. Emerg Infect Dis. 2021;27:2700–3.

 6. Yap NJ, Hossain H, Nada-Raja T, Ngui R, Muslim A, Hoh B-P, et al. Natural 
human infections with Plasmodium cynomolgi, P. inui, and 4 other simian 
malaria parasites, Malaysia. Emerg Infect Dis. 2021;27:2187–91.

 7. WHO. World malaria report 2022. 2022. https:// www. who. int/ teams/ 
global- malar ia- progr amme/ repor ts/ world- malar ia- report- 2022. Accessed 
27 Apr 2023.

 8. Jiram AI, Vythilingam I, NoorAzian YM, Yusof YM, Azahari AH, Fong M-Y. 
Entomologic investigation of Plasmodium knowlesi vectors in Kuala Lipis, 
Pahang, Malaysia. Malar J. 2012;11:213.

 9. Vythilingam I, NoorAzian YM, Huat TC, Jiram AI, Yusri YM, Azahari AH, 
et al. Plasmodium knowlesi in humans, macaques and mosquitoes in 
peninsular Malaysia. Parasit Vectors. 2008;1:26.

 10. Vythilingam I, Tan CH, Asmad M, Chan ST, Lee KS, Singh B. Natural 
transmission of Plasmodium knowlesi to humans by Anopheles latens in 
Sarawak, Malaysia. Trans R Soc Trop Med Hyg. 2006;100:1087–8.

 11. Wong ML, Chua TH, Leong CS, Khaw LT, Fornace K, Wan-Sulaiman W-Y, 
et al. Seasonal and spatial dynamics of the primary vector of Plasmodium 
knowlesi within a major transmission focus in Sabah, Malaysia. PLoS Negl 
Trop Dis. 2015;9:e0004135.

 12. Ang JXD, Kadir KA, Mohamad DSA, Matusop A, Divis PCS, Yaman K, et al. 
New vectors in northern Sarawak, Malaysian Borneo, for the zoonotic 
malaria parasite, Plasmodium knowlesi. Parasit Vectors. 2020;13:472.

 13. Vythilingam I, Lim YAL, Venugopalan B, Ngui R, Leong CS, Wong ML, 
et al. Plasmodium knowlesi malaria an emerging public health problem 
in Hulu Selangor, Selangor, Malaysia (2009–2013): epidemiologic and 
entomologic analysis. Parasit Vectors. 2014;7:436.

 14. Warren M, Cheong W, Fredericks H, Coatney GR. Cycles of jungle malaria 
in West Malaysia. Am J Trop Med Hyg. 1970;19:383–93.

 15. Anstey NM, Grigg MJ. Zoonotic malaria: the better you look, the more 
you find. J Infect Dis. 2019;219:679–81.

 16. Baird JK. Malaria in the Asia-Pacific region. Asia Pac J Jpn Focus. 
2015;13:4395.

 17. Ekawati LL, Johnson KC, Jacobson JO, Cueto CA, Zarlinda I, Elyazar IRF, 
et al. Defining malaria risks among forest workers in Aceh, Indonesia: a 
formative assessment. Malar J. 2020;19:441.

 18. Verhulst NO, Smallegange RC, Takken W. Mosquitoes as potential bridge 
vectors of malaria parasites from non-human primates to humans. Front 
Physiol. 2012;3:197.

 19. Hayes RO, Maxwell EL, Mitchell CJ, Woodzick TL. Detection, identification, 
and classification of mosquito larval habitats using remote sensing 
scanners in earth-orbiting satellites. Bull World Health Organ. 1985;63:361.

 20. Jiang A-L, Lee M-C, Zhou G, Zhong D, Hawaria D, Kibret S, et al. Predicting 
distribution of malaria vector larval habitats in Ethiopia by integrating 
distributed hydrologic modeling with remotely sensed data. Sci Rep. 
2021;11:10150.

 21. McMahon A, Mihretie A, Ahmed AA, Lake M, Awoke W, Wimberly MC. 
Remote sensing of environmental risk factors for malaria in different 
geographic contexts. Int J Health Geogr. 2021;20:28.

 22. Srivastava A, Nagpal B, Saxena R, Subbarao S. Predictive habitat modelling 
for forest malaria vector species An. dirus in India—a GIS-based approach. 
Curr Sci. 2001;80:1129–34.

 23. Agarwal SA, Sikarwar SS, Sukumaran D. Application of RS & GIS in risk 
area assessment for mosquito borne diseases—a case study in a part of 
Gwalior City (MP). Int J Adv Technol Eng Res. 2012;2:1–4.

 24. Chockalingam J, Khan S, Chandra R, Singh H, Srivastava V, Raju P. 
Characterisation of malaria vector habitats using remote sensing and GIS. 
J Indian Soc Remote Sens. 2001;29:31–6.

 25. Gwitira I, Murwira A, Zengeya FM, Shekede MD. Application of GIS to 
predict malaria hotspots based on Anopheles arabiensis habitat suitability 
in Southern Africa. Int J Appl Earth Obs Geoinf. 2018;64:12–21.

 26. Ahmad R, Ali WNWM, Nor ZM, Ismail Z, Hadi AA, Ibrahim MN, et al. 
Mapping of mosquito breeding sites in malaria endemic areas in Pos 
Lenjang, Kuala Lipis, Pahang, Malaysia. Malar J. 2011;10:361.

 27. Hawkes FM, Manin BO, Cooper A, Daim S, Homathevi R, Jelip J, et al. 
Vector compositions change across forested to deforested ecotones in 
emerging areas of zoonotic malaria transmission in Malaysia. Sci Rep. 
2019;9:13312.

 28. Vythilingam I, Wong ML, Wan-Yussof WS. Current status of Plasmodium 
knowlesi vectors: a public health concern? Parasitol. 2018;145:32–40.

 29. Pramasivan S, Van Lun LL, Jeyaprakasm N, Wee J, Ngui R, Vythilingam I. 
Cryptic diversity and demographic expansion of Plasmodium knowlesi 
malaria vectors in Malaysia. Genes. 2023;14:1369.

 30. Ahmad R. Binomics of Anopheles balabacensis baisas, the principal malaria 
vector, in Ranau, Sabah. Trop Biomed. 1999;16:31–8.

 31. Ahmad R, Chan S, Abdullah AG, Tanrang H, Hanlim L. Species 
composition of mosquito fauna in Ranau, Sabah, Malaysia. Trop Biomed. 
2009;25:232–6.

 32. Ahmad R, Ali W, Ali W, Omar M, Azahary A, Rahman A, et al. 
Characterization of the larval breeding sites of Anopheles balabacensis 
(Baisas), in Kudat, Sabah, Malaysia. Southeast Asian J Trop Med Public 
Health. 2018;49:566–79.

 33. Ahmad R, Fakhriy HA, Suzilah I, Zurainee MN, Najdah W, Ariffin MM, 
et al. Indoor and outdoor residual spraying of a novel formulation of 
deltamethrin K-Othrine® (Polyzone) for the control of simian malaria in 
Sabah, Malaysia. PLoS ONE. 2020;15:e0230860.

 34. Ahmad R, Nor Z, Ali W, Ahmad H, David L, Mohd M, et al. Outdoor residual 
spray for the control of monkey malaria vectors in Sarawak, Malaysia. Int J 
Mosq Res. 2021;8:54–62.

 35. Ang JX, Yaman K, Kadir KA, Matusop A, Singh B. New vectors that are early 
feeders for Plasmodium knowlesi and other simian malaria parasites in 
Sarawak, Malaysian Borneo. Sci Rep. 2021;11:7739.

 36. Brant HL, Ewers RM, Vythilingam I, Drakeley C, Benedick S, Mumford JD. 
Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a 
tropical rainforest in Sabah, Malaysia. Malar J. 2016;15:370.

 37. Chang M, Doraisingam P, Hardin S, Nagum N. Malaria and filariasis 
transmission in a village/forest setting in Baram District, Sarawak, 
Malaysia. J Trop Med Hyg. 1995;98:192–8.

 38. Cheong W, Loong K, Mahadevan S, Mak JW, Kan SK. Mosquito fauna of 
the Bengkoka peninsula, Sabah, Malaysia. Southeast Asian J Trop Med 
Public Health. 1984;15:19–26.

 39. Chua TH, Manin BO, Vythilingam I, Fornace K, Drakeley CJ. Effect of 
different habitat types on abundance and biting times of Anopheles 
balabacensis Baisas (Diptera: Culicidae) in Kudat district of Sabah, 
Malaysia. Parasit Vectors. 2019;12:364.

 40. Hawkes F, Manin BO, Ng SH, Torr SJ, Drakeley C, Chua TH, et al. Evaluation 
of electric nets as means to sample mosquito vectors host-seeking on 
humans and primates. Parasit Vectors. 2017;10:338.

 41. Hii J. Evidence for the existence of genetic variability in the tendency 
of Anopheles balabacensis to rest in houses and to bite man. Southeast 
Asian J Trop Med Public Health. 1985;16:173–82.

 42. Hii JL, Kan S, Vun YS, Chin KF, Tambakau S, Chan MK, et al. Transmission 
dynamics and estimates of malaria vectorial capacity for Anopheles 
balabacensis and An flavirostris (Diptera: Culicidae) on Banggi island, 
Sabah, Malaysia. Ann Trop Med Parasitol. 1988;82:91–101.

 43. Hii J, Birley MH, Sang VY. Estimation of survival rate and oviposition 
interval of Anopheles balabacensis mosquitoes from mark-recapture 

https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022


Page 12 of 13Pramasivan et al. Parasites & Vectors          (2023) 16:355 

experiments in Sabah, Malaysia. Malaysia Med Vet Entomol. 
1990;4:135–40.

 44. Hii JLK, Chew MK, Sang VY, Munstermann LE, Tan SG, Panyim S, et al. 
Population genetic analysis of host seeking and resting behaviors in 
the malaria vector, Anopheles balabacensis (Diptera: Culicidae). J Med 
Entomol. 1991;28:675–84.

 45. Hii JLK. Entomological evaluation of sumithion, DDT and malathion for 
the control of Anopheles balabacensis balabacensis Baisas in Kuala Penyu 
district, Sabah, Malaysia. J Med Entomol Zool. 1979;30:319–28.

 46. Hii JLK. Responses of Anopheles balabacensis balabacensis Baisas to ultra-
low-volume aerosols of sumithion in Sabah, Malaysia. J Community Dis. 
1980;12:14–21.

 47. Hii JLK. Insecticide susceptibility studies of three cryptic species of the 
Anopheles balabacensis complex. Southeast Asian J Trop Med Public 
Health. 1984;15:104–11.

 48. Hii JLK. The influence of a heterogeneous environment on host feeding 
behaviour of Anopheles balabacensis (Diptera: Culicidae). Trop Biomed. 
1987;4:67–70.

 49. Leake DW Jr, Hii JL. Giving bednets" fair" tests in field trials against 
malaria: a case from Sabah, East Malaysia. Southeast Asian J Trop Med 
Public Health. 1989;20:379–84.

 50. Manin BO, Drakeley CJ, Chua TH. Mitochondrial variation in 
subpopulations of Anopheles balabacensis Baisas in Sabah, Malaysia 
(Diptera: Culicidae). PLoS ONE. 2018;13:e0202905.

 51. Manin BO, Ferguson HM, Vythilingam I, Fornace K, William T, Torr SJ, 
et al. Investigating the contribution of peri-domestic transmission 
to risk of zoonotic malaria infection in humans. PLOS Negl Trop Dis. 
2016;10:e0005064.

 52. Rogozi E, Ahmad R, Ismail Z. Biting activity cycles of some antropophilic 
mosquito species in Malaysia. J Int Environ Appl Sci. 2012;7:5.

 53. Tan CH, Vythilingam I, Matusop A, Chan ST, Singh B. Bionomics of 
Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the 
transmission of zoonotic simian malaria parasite Plasmodium knowlesi. 
Malar J. 2008;7:52.

 54. Vythilingam I, Chan ST, Shanmugratnam C, Tanrang H, Chooi KH. The 
impact of development and malaria control activities on its vectors in the 
Kinabatangan area of Sabah, East Malaysia. Acta Trop. 2005;96:24–30.

 55. Vythilingam I. Plasmodium knowlesi in humans: a review on the role of its 
vectors in Malaysia. Trop Biomed. 2010;27:1–12.

 56. Wharton R, Eyles DE, Warren M, Cheong WH. Studies to determine 
the vectors of monkey malaria in Malaya. Ann Trop Med Parasitol. 
1964;58:56–77.

 57. Wharton R, Eyles DE, Warren M. The development of methods for 
trapping the vectors of monkey malaria. Ann Trop Med Parasitol. 
1963;57:32–46.

 58. Wharton R, Laing A, Cheong W. Studies on the distribution and 
transmission of malaria and filariasis among aborigines in Malaya. Ann 
Trop Med Parasitol. 1963;57:235–54.

 59. Moran PA. Notes on continuous stochastic phenomena. Biometrika. 
1950;37:17–23.

 60. Chua TH, Manin BO, Daim S, Vythilingam I, Drakeley C. Phylogenetic 
analysis of simian Plasmodium spp. infecting Anopheles balabacensis 
Baisas in Sabah, Malaysia. PLoS Negl Trop Dis. 2017;11:e0005991.

 61. Jeyaprakasam NK, Low VL, Pramasivan S, Liew JW, Wan-Sulaiman WY, 
Vythilingam I. High transmission efficiency of the simian malaria vectors 
and population expansion of their parasites Plasmodium cynomolgi and 
Plasmodium inui. PLoS Negl Trop Dis. 2023;17:e0011438.

 62. Christiansen-Jucht C, Parham PE, Saddler A, Koella JC, Basáñez M-G. 
Temperature during larval development and adult maintenance 
influences the survival of Anopheles gambiae s.s. Parasit Vectors. 
2014;7:489.

 63. Akpodiete NO, Diabate A, Tripet F. Effect of water source and feed 
regime on development and phenotypic quality in Anopheles gambiae 
(s.l.): prospects for improved mass-rearing techniques towards release 
programmes. Parasit Vectors. 2019;12:210.

 64. Singhasivanon P, Thimasarn K, Yimsamran S, Linthicum K, Nualchawee K, 
Dawreang D, et al. Malaria in tree crop plantations in south-eastern and 
western provinces of Thailand. Southeast Asian J Trop Med Public Health. 
1999;30:399–404.

 65. Wang X, Zhou G, Zhong D, Wang X, Wang Y, Yang Z, et al. Life-table 
studies revealed significant effects of deforestation on the development 
and survivorship of Anopheles minimus larvae. Parasit Vectors. 2016;9:323.

 66. Dunphy BM, Kovach KB, Gehrke EJ, Field EN, Rowley WA, Bartholomay 
LC, et al. Long-term surveillance defines spatial and temporal patterns 
implicating Culex tarsalis as the primary vector of West Nile virus. Sci Rep. 
2019;9:6637.

 67. Gouzile A, Bama M, Zamina B, Yapi E, Soro G, Goula B, et al. Mapping of 
malaria risk related to climatic and environmental factors by multicriteria 
analysis in the Marahoué Region of Côte d’Ivoire. J Geosci Environ Prot. 
2022;10:234–52.

 68. Murindahabi MM, Hoseni A, Corné Vreugdenhil LC, van Vliet AJH, 
Umupfasoni J, Mutabazi A, et al. Citizen science for monitoring the spatial 
and temporal dynamics of malaria vectors in relation to environmental 
risk factors in Ruhuha, Rwanda. Malar J. 2021;20:453.

 69. Saffawati T, Ismail T, Kassim N, Rahman AA, Hamid SA, Yahya K, et al. 
The application of geographic information system (GIS) to assess the 
population abundance of Aedes albopictus (Skuse) in mangrove forests of 
Penang, Malaysia. Int J Mosq Res. 2019;6:50–4.

 70. Suganthi P, Govindaraju M, Devi BS, Kangabam RD, Suganthi K, 
Thenmozhi V, et al. Mapping of spatio-temporal distribution of mosquito 
vector density in Sitheri Hills using GIS technology. Int J Adv Remote Sens 
GIS. 2015;4:873–82.

 71. Ceccato P, Connor S, Jeanne I, Thomson M. Application of geographical 
information systems and remote sensing technologies for assessing and 
monitoring malaria risk. Parassitologia. 2005;47:81–96.

 72. Lyons CL, Coetzee M, Chown SL. Stable and fluctuating temperature 
effects on the development rate and survival of two malaria vectors, 
Anopheles arabiensis and Anopheles funestus. Parasit Vector. 2013;6:104.

 73. Kar NP, Kumar A, Singh OP, Carlton JM, Nanda N. A review of malaria 
transmission dynamics in forest ecosystems. Parasit Vector. 2014;7:265.

 74. Sam J, Shamsusah NA, Ali AH, Hod R, Hassan MR, Agustar HK. Prevalence 
of simian malaria among macaques in Malaysia (2000–2021): a systematic 
review. PLOS Negl Trop Dis. 2022;16:e0010527.

 75. Hii J, Rueda LM. Malaria vectors in the Greater Mekong Subregion: 
overview of malaria vectors and remaining challenges. Southeast Asian J 
Trop Med Public Health. 2013;44:73–165.

 76. Vythilingam I, Foo LC, Chiang GL, Chan ST, Eng KL, Mahadevan S, et al. 
The impact of permethrin impregnated bednets on the malaria vector 
Anopheles maculatus (Diptera: Culicidae) in aboriginal villages of Pos 
Betau Pahang, Malaysia. Southeast Asian J Trop Med Public Health. 
1995;26:354–8.

 77. Lindblade KA, Walker ED, Wilson ML. Early warning of malaria epidemics 
in African highlands using Anopheles (Diptera: Culicidae) indoor resting 
density. J Med Entomol. 2000;37:664–74.

 78. Lindsay S, Martens WJ. Malaria in the African highlands: past, present and 
future. Bull World Health Organ. 1998;76:33.

 79. Phang WK, Hamid MHA, Jelip J, Mudin RN, Chuang T-W, Lau YL, et al. 
Predicting Plasmodium knowlesi transmission risk across Peninsular 
Malaysia using machine learning-based ecological niche modeling 
approaches. J Front Microbiol. 2023;14:357.

 80. Arcos AN, Valente-Neto F, da Silva Ferreira FA, Bolzan FP, da Cunha HB, 
Tadei WP, et al. Seasonality modulates the direct and indirect influences 
of forest cover on larval anopheline assemblages in western Amazônia. 
Sci Rep. 2021;11:12721.

 81. Birkinshaw SJ, Bathurst JC, Iroumé A, Palacios H. The effect of forest 
cover on peak flow and sediment discharge—an integrated field 
and modelling study in central–southern Chile. J Hydrol Process. 
2011;25:1284–97.

 82. Emidi B, Kisinza WN, Mmbando BP, Malima R, Mosha FW. Effect of 
physicochemical parameters on Anopheles and Culex mosquito larvae 
abundance in different breeding sites in a rural setting of Muheza, 
Tanzania. Parasit Vector. 2017;10:304.

 83. Vinod S. Deforestation and water pollution impact on mosquitoes related 
epidemic diseases in nanded region. J Biosci Discov. 2011;2:309–16.

 84. Norris DE. Mosquito-borne diseases as a consequence of land use 
change. EcoHealth. 2004;1:19–24.

 85. Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS, et al. The 
effect of deforestation on the human-biting rate of Anopheles darlingi, the 
primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop 
Med Hyg. 2006;74:3–11.



Page 13 of 13Pramasivan et al. Parasites & Vectors          (2023) 16:355  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 86. Vittor AY, Pan W, Gilman RH, Tielsch J, Glass G, Shields T, et al. Linking 
deforestation to malaria in the Amazon: characterization of the breeding 
habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med 
Hyg. 2009;81:5–12.

 87. Vythilingam I, Hii J. Simian malaria parasites: special emphasis on 
Plasmodium knowlesi and their Anopheles vectors in Southeast Asia. In: 
Manguin S, editor.  Anopheles mosquitoes—new insights into malaria 
vectors. IntechOpen: London; 2013. https:// doi. org/ 10. 5772/ 54491.

 88. Chang M, Hii J, Buttner P, Mansoor F. Changes in abundance and 
behaviour of vector mosquitoes induced by land use during the 
development of an oil palm plantation in Sarawak. Trans R Soc Trop Med 
Hyg. 1997;91:382–6.

 89. Loh E, Murray K, Nava A, Aguirre AA, Daszak P. Evaluating the links 
between biodiversity, land-use change, and infectious disease 
emergence. In: Aguirre A, Sukumar R, editors. Tropical conservation, 1st 
ed. Oxford University Press: Oxford; 2016. p. 79–89.

 90. Fornace KM, Abidin TR, Alexander N, Brock P, Grigg MJ, Murphy A, 
et al. Association between landscape factors and spatial patterns of 
Plasmodium knowlesi infections in Sabah, Malaysia. Emerg Infect Dis. 
2016;22:201.

 91. Yasuoka J, Levins R. Impact of deforestation and agricultural development 
on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg. 
2007;76:450–60.

 92. Valle D, Zaitchik B, Feingold B, Spangler K, Pan W. Abundance of water 
bodies is critical to guide mosquito larval control interventions and 
predict risk of mosquito-borne diseases. Parasit Vectors. 2013;6:179.

 93. Menach AL, McKenzie FE, Flahault A, Smith DL. The unexpected 
importance of mosquito oviposition behaviour for malaria: non-
productive larval habitats can be sources for malaria transmission. Malar 
J. 2005;4:23.

 94. Gone T, Balkew M, Gebre-Michael T. Comparative entomological study 
on ecology and behaviour of Anopheles mosquitoes in highland and 
lowland localities of Derashe District, southern Ethiopia. Parasit Vectors. 
2014;7:483.

 95. Lindblade KA, Walker ED, Onapa AW, Katungu J, Wilson ML. Land use 
change alters malaria transmission parameters by modifying temperature 
in a highland area of Uganda. Trop Med Int Health. 2000;54:263–74.

 96. Minakawa N, Sonye G, Mogi M, Githeko A, Yan G. The effects of climatic 
factors on the distribution and abundance of malaria vectors in Kenya. J 
Med Entomol. 2002;39:833–41.

 97. Christiansen-Jucht CD, Parham PE, Saddler A, Koella JC, Basáñez M-G. 
Larval and adult environmental temperatures influence the adult 
reproductive traits of Anopheles gambiae ss. Parasit Vector. 2015;8:456.

 98. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G. Effects of 
microclimatic changes caused by deforestation on the survivorship and 
reproductive fitness of Anopheles gambiae in western Kenya highlands. 
Am J Trop Med Hyg. 2006;74:772–8.

 99. Agyekum TP, Botwe PK, Arko-Mensah J, Issah I, Acquah AA, Hogarh JN, 
et al. A Systematic review of the effects of temperature on Anopheles 
mosquito development and survival: implications for malaria control in a 
future warmer climate. Int J Environ Res Public Health. 2021;18:14.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.5772/54491

	Spatial analyses of Plasmodium knowlesi vectors with reference to control interventions in Malaysia
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Methods
	Data search
	Geo-positioning procedures
	Spatial cluster analysis
	Inverse distance weighted interpolation method
	Statistical analysis

	Results
	Distribution of Leucosphyrus Group of Anopheles mosquitoes from 1957 to 2021
	Spatial interpolation
	Statistical and spatial analysis
	Modeled distribution of Leucosphyrus Group of Anopheles

	Discussion
	Conclusion
	Anchor 21
	Acknowledgements
	References


