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Abstract 

Background Among hard ticks (Acari: Ixodidae), the genus Ixodes comprises the highest number of species, which 
in turn are most numerous in the Afrotropical zoogeographic region. In South Africa extensive morphological studies 
have been performed on Ixodes species but only few reports included molecular analyses.

Methods In this study, 58 Ixodes spp. ticks, collected from ten mammalian and eight avian host species in South 
Africa, were molecularly and phylogenetically analyzed. In addition, a newly collected sample of the Palearctic Ixodes 
trianguliceps was included in the analyses.

Results Among the ticks from South Africa, 11 species were identified morphologically. The majority of ticks 
from mammals represented the Ixodes pilosus group with two species (n = 20), followed by ticks resembling Ixodes 
rubicundus (n = 18) and Ixodes alluaudi (n = 3). In addition, single specimens of Ixodes rhabdomysae, Ixodes ugandanus, 
Ixodes nairobiensis and Ixodes simplex were also found. Considering bird-infesting ticks, Ixodes theilerae (n = 7), Ixodes 
uriae (n = 4) and ticks most similar to Ixodes daveyi (provisionally named I. cf. daveyi, n = 2) were identified. Molecular 
analyses confirmed two species in the I. pilosus group and a new species (I. cf. rubicundus) closely related to I. rubi-
cundus sensu stricto. Phylogenetic trees based on concatenated mitochondrial or mitochondrial and nuclear gene 
sequences indicated that the subgenus Afrixodes forms a monophyletic clade with bird-associated exophilic ticks 
(subgenus Trichotoixodes). Ixodes trianguliceps clustered separately whereas I. alluaudi with their morphologically 
assigned subgenus, Exopalpiger.

Conclusions Phylogenetic analyses shed new lights on the relationships of Ixodes subgenera when including multi-
ple sequences from subgenus Afrixodes and African as well as Palearctic species of subgenera Trichotoixodes and Exo-
palpiger. Subgenera Afrixodes and bird-associated Trichotoixodes share common ancestry, suggesting that the latter 
might have also originated in Africa. Regarding the subgenus Exopalpiger, I. alluaudi is properly assigned as it clusters 
among different Australian Ixodes, whereas I. trianguliceps should be excluded.
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Background
Hard ticks (Acari: Ixodidae) and pathogens transmit-
ted by them affect animal and human health worldwide, 
causing significant economic losses [1]. Currently, there 
are more than 760 species of ixodid ticks known to sci-
ence [2], but this number is steadily increasing as the 
description of new species continues. The great majority 
of hard tick species belong to the genus Ixodes Latreille, 
1795, currently consisting of 266 species [2]. Based on 
morphological considerations, this genus was divided 
into 14 subgenera [3] but later several new subgenera 
were proposed [4]. However, molecular analyses chal-
lenged the existence of some of those Ixodes subgenera 
[5, 6].

It is the Afrotropical zoogeographic region where the 
highest number of Ixodes species (i.e., 71 species) are 
indigenous [2]. The majority occurring in sub-Saharan 
Africa belong to the subgenus Afrixodes Morel, 1966. This 
is probably the most species-rich subgenus in Ixodes [3], 
comprising at least 60 species [7]. These are almost exclu-
sively distributed in the Afrotropical zoogeographic region, 
including six species from Madagascar, but two species 
are present only in the Oriental zoogeographic region [3]. 
Females of this subgenus share the following morpho-
logical characters: long and narrow palps, well-developed 
auriculae, coxa I mostly with internal spur, the presence 
of syncoxae on coxae I–III and a circular anal groove [3]. 
However, for a significant number of Afrixodes species not 
all developmental stages are known or only the male or the 
female was described [8]. The number of Afrixodes species 
will probably increase, because from time to time new spe-
cies are described [9], and others have been long known 
to exist but were not yet separately named and established, 
most notably in the so-called Ixodes pilosus group [10, 11]. 
The above data highlight the taxonomic importance and 
need for studying African Ixodes species.

The number of Ixodes species occurring in South Africa 
is at least 23 [2], with a few additional species only occa-
sionally found [11, 12]. In this country extensive morpho-
logical studies have been performed on Ixodes species 
[11, 13–16] but only few reports included molecular 
analyses [7]. In addition, although large-scale molecular-
phylogenetic studies focusing on ticks in general have 
been published, they included only one or two Afrixodes 
species [17–19].

Thus, the present study was initiated to compensate 
for this relative scarcity of molecular data on African 
Ixodes species, providing up to four (two mitochondrial, 
two nuclear) genetic markers (the cytochrome c oxidase 
subunit I [cox1] and 16S rRNA, as well as the 18S and 28S 
rRNA genes, respectively) for their phylogenetic analy-
ses. Molecular-phylogenetic data reported herein are also 
meant as an initiative towards the barcoding of Ixodes 

species in South Africa, entailing clarification of their 
taxonomic status.

Methods
Sample collection and morphological analyses
Ixodes spp. ticks were collected from ten mammalian and 
eight avian species between May 2016 and November 
2019 in South Africa. Data of location, season and host 
species are summarized in Table 1. All ticks were stored 
in 96% ethanol. Tick species were morphologically iden-
tified according to standard keys and illustrations [8, 11, 
20–23]. Pictures were made with a VHX-5000 digital 
microscope (Keyence Co., Osaka, Japan).

DNA extraction and PCR analyses
Ticks were disinfected on their surface with sequen-
tial washing in 10% sodium hypochlorite, tap water and 
distilled water. DNA was extracted with the QIAamp 
DNA Mini Kit (QIAGEN, Hilden, Germany) according 
to the manufacturer’s instructions, including an over-
night digestion in tissue lysis buffer and Proteinase K 
at 56  °C. An extraction control (tissue lysis buffer) was 
also processed in each set of tick samples to monitor 
cross-contamination.

PCR analyses (target genes, primers and cycling condi-
tions) are summarized in Table 2. Frequently, the longer 
fragments of 18S and 28S rRNA genes were not suc-
cessfully amplified, because of either negative results or 
aspecific PCR products. In such cases, amplification of a 
shorter part of the relevant gene was also attempted with 
different sets of primers (Table 2). The reaction mixture, 
in a volume of 25 µl, contained 1 U (0.2 µl) HotStarTaq 
Plus DNA polymerase, 2.5  µl  10 × CoralLoad Reaction 
buffer (including 15 mM   MgCl2), 0.5 µl PCR nucleotide 
Mix (0.2 mM each), 0.5 µl (1 µM final concentration) of 
each primer, 15.8 µl  ddH2O and 5 µl template DNA.

Sequencing and phylogenetic analyses
In all PCRs, non-template reaction mixture served as 
negative control. Extraction controls and negative con-
trols remained PCR negative in all tests. Purification and 
sequencing of the PCR products were done by Biomi 
Ltd. (Gödöllő, Hungary). Quality control and trimming 
of sequences were performed with the BioEdit program. 
Obtained sequences were compared to GenBank data by 
the nucleotide BLASTN program (https:// blast. ncbi. nlm. 
nih. gov). New sequences were submitted to GenBank 
under the following accession numbers (cytochrome c 
oxidase subunit I [cox1] gene: OQ921940-OQ921984, 
16S rRNA gene: OQ924680-OQ924707, 18S rRNA gene: 
OQ924736-OQ924748, 28S rRNA gene: OQ924930-
OQ924948). Sequences from other studies (retrieved 
from GenBank) included in the phylogenetic analyses 

https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov
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Table 1 Data of collection (host, location, season), species and molecular data of ticks examined in this study

Host class Host order Host species Location (season) Tick species (Ixodes)* GenBank accession numbers: long (or short) sequence

cox1 16S 18S 28S

Mammalia Carnivora Canis mesomelas Limpopo Province I. cf. rubicundus OQ921970 OQ942715 OQ924742 OQ924936

Canis lupus familiaris Polokwane, Limpopo 
Province (winter)

I. pilosus group sp. I OQ921940 OQ942680 OQ924736 OQ924930

I. pilosus group sp. I OQ921941 OQ942681 – –

I. pilosus group sp. I OQ921942 OQ942682 – –

Kurisa Moyo, Limpopo 
Province (spring)

I. pilosus group sp. I OQ921943 OQ942683 – –

I. pilosus group sp. I – OQ942684 – –

I. pilosus gr. sp. I. (M) OQ921944 OQ942685 – –

I. pilosus group sp. I OQ921945 OQ942686 – –

I. pilosus group sp. I OQ921946 OQ942687 – –

I. pilosus group sp. I OQ921947 OQ942688 – –

Haenertsburg, Lim-
popo Province (winter)

I. pilosus group sp. I OQ921948 OQ942689 – –

Civettictis civetta Haenertsburg, 
Limpopo Province 
(autumn)

I. pilosus group sp. II OQ921974 OQ942721 OQ924746 OQ924946

I. pilosus group sp. I – OQ942722 – –

I. pilosus group sp. I OQ921975 OQ942723 – –

I. pilosus group sp. I OQ921976 OQ942724 – –

I. pilosus group sp. I OQ921977 OQ942725 (OQ924747) (OQ924947)

I. pilosus group sp. I OQ921978 OQ942726 – –

I. pilosus group sp. II – OQ942727 – –

I. pilosus group sp. II – OQ942728 – –

I. pilosus group sp. I OQ921979 OQ942729 – –

I. pilosus group sp. I OQ921981 OQ942731 (OQ924747) (OQ924947)

I. ugandanus OQ921980 OQ942730 OQ924748 OQ924948

Polokwane, Limpopo 
Province (summer)

I. cf. rubicundus (M) OQ921949 OQ942690 OQ924737 OQ924931

Mokopane, Limpopo 
Province (spring)

I. cf. rubicundus (M) OQ921950 OQ942691 OQ924737 OQ924931

I. cf. rubicundus OQ921951 OQ942692 – –

I. cf. rubicundus OQ921952 OQ942693 – –

I. cf. rubicundus OQ921953 OQ942694 – –

I. cf. rubicundus OQ921954 OQ942695 – –

I. cf. rubicundus OQ921955 OQ942696 – –

I. cf. rubicundus OQ921956 OQ942697 – –

I. cf. rubicundus OQ921957 OQ942698 – –

I. cf. rubicundus OQ921958 OQ942699 – –

Genetta sp. Limpopo Province I. cf. rubicundus OQ921971 OQ942716 OQ924742 OQ924936

I. cf. rubicundus OQ921972 OQ942717 – (OQ924942)

Ichneumia albicauda Makhado (Louis Trich-
ardt) (summer)

I. cf. rubicundus OQ921963 OQ942707 OQ924742 OQ924936

Atilax paludinosus Mokopane, Limpopo 
Province (summer)

I. nairobiensis – OQ942705 OQ924741 OQ924935

Eulipotyphla Atelerix frontalis Polokwane, Limpopo 
Province (summer)

I. cf. rubicundus – OQ942700 (OQ924738) –

I. cf. rubicundus OQ921959 OQ942701 (OQ924739) –

I. cf. rubicundus OQ921960 OQ942702 – –

I. cf. rubicundus OQ921962 OQ942706 OQ924742 OQ924936

Crocidura silacea Makhado (Louis Trich-
ardt) (autumn)

I. alluaudi (L) – – – –

I. alluaudi (N) – – – (OQ924933)

I. alluaudi (N) – OQ942704 – (OQ924934)

Chiroptera Miniopterus natalensis Venterskroon, North 
West Province (spring)

I. simplex (N) – OQ942713 – OQ924939

Primates Otolemur crassicaudatus Makhado (Louis Trich-
ardt) (autumn)

I. rhabdomysae OQ921961 OQ942703 OQ924740 OQ924932
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had nearly or exactly 100% coverage with sequences from 
this study. Therefore, although very few sequences of 
Afrixodes were previously deposited in GenBank, some 
of them had to be excluded because of their shortness 
(Ixodes lemuris: JX470176 [31]; I. corwini: AF113926 
[32]). In addition, unpublished sequences of two Ixodes 
samples used in a previous study ([33]: I. ricinus, I. tri-
anguliceps) were included to improve the phylogeny of 
Ixodes subgenera that are not present in South Africa. 
Sequence datasets were resampled 1000 times to gen-
erate bootstrap values. Phylogenetic analyses were 
conducted with the maximum likelihood method, Jukes-
Cantor model (gamma distribution) with the MEGA ver-
sion 7.0 software.

In addition, the sequences of both mitochondrial (cox1 
and 16S rRNA) and nuclear (18S and 28S rRNA) genes 
(Additional file 1: Table S1) were aligned with the MAFFT 
algorithm [34] and then were concatenated in the Geneious 
Prime 2023.1.1 [35] software. The best fitting evolutionary 
model was selected by MEGA 11.0.10. A Bayesian con-
sensus tree was created using the MrBayes [36, 37] in the 
Geneious Prime software. General time-reversible model 
was used to create the phylogenic tree with gamma distri-
bution and invariant sites (GTR + G + I). The chain length 
was set to 10,000,000, sampling frequency to 5000 and 
burn-in length to 100,000. The gene partitions were treated 

as unlinked, and the random seed was set to 3504. The 
Bayesian tree was analyzed in the MEGA11 11.0.10 [38] 
software.

Results
Morphological identification and host associations 
of Ixodes species
Based on morphological characters, 11 different species 
were identified among the 58 Ixodes specimens analyzed 
in this study. Their most important diagnostic characters 
are shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. The major-
ity of adult ticks belonged to the I. pilosus group (n = 20) 
with two species (Table 3) and a species (Ixodes cf. rubi-
cundus) most similar to I. rubicundus but having a small 
external spur on coxa I (n = 18) (Fig. 3). In addition, sin-
gle specimens of Ixodes rhabdomysae, I. ugandanus and 
I. nairobiensis were also found. On the other hand, only 
subadults (mostly nymphs) infested other mammalian 
hosts, as exemplified by Ixodes simplex (n = 1) and I. allu-
audi (n = 3) (Table 1). Considering bird-infesting ticks, in 
decreasing order of the number of their samples, these 
belonged to Ixodes theilerae (n = 7), I. uriae (n = 4) and a 
species most similar to I. daveyi, provisionally named I. 
cf. daveyi (n = 2).

Regarding domestic dogs and wild living carni-
vores, two species of the I. pilosus group, as well as I. cf. 

* Examined tick specimens were females unless otherwise indicated (M male, N nymph, L larva)

Table 1 (continued)

Host class Host order Host species Location (season) Tick species (Ixodes)* GenBank accession numbers: long (or short) sequence

cox1 16S 18S 28S

Aves Sphenisciformes Eudyptes chrysocome Marion Island (spring) I. uriae OQ921965 OQ942709 – –

I. uriae OQ921966 OQ942710 OQ924744 OQ924938

I. uriae OQ921967 OQ942711 – –

I. uriae OQ921968 OQ942712 – –

Passeriformes Euplectes orix Leeupan, North West 
Province (spring)

I. theilerae OQ921964 OQ942708 (OQ924743) OQ924937

Euplectes afer Limpopo Province I. theilerae – – – –

Quelea quelea Limpopo Province I. theilerae OQ921969 OQ942714 (OQ924745) OQ924940

Ploceus capensis Worcester, Western 
Cape Province

I. theilerae – - – (OQ924941)

Ploceus velatus Hoopstad, Free State 
Province (spring)

I. theilerae – – – –

I. theilerae – OQ942719 – (OQ924944)

I. theilerae – – – –

Cossypha caffra Limpopo Province 
(summer)

I. cf. daveyi – OQ942718 – (OQ924943)

Cossypha dichroa Mashishing (Lyden-
burg), Mpumalanga 
Province (summer)

I. cf. daveyi OQ921973 OQ942720 – (OQ924945)
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rubicundus, predominated on these hosts, but two addi-
tional species, I. ugandanus and I. nairobiensis, were 
also identified (Table  1). Ixodes cf. rubicundus was also 
collected from Southern African hedgehogs (Atelerix 
frontalis). Ixodes alluaudi was only removed from lesser 
gray-brown musk shrews (Crocidura silacea) and single 
specimens of I. simplex and I. rhabdomysae from Natal 
long-fingered bat (Miniopterus natalensis) and brown 
greater galago (Otolemur crassicaudatus), respectively. 
Three further Ixodes species were exclusively associated 
with avian hosts; in particular, I. uriae was collected from 
southern rockhopper penguins (Eudyptes chrysocome) 
and two species from passeriform birds: I. theilerae from 
five weaver species (family Ploceidae) and I. cf. daveyi 
from two species of robin-chats (family Muscicapidae).

Molecular analyses of Ixodes species
Considering cox1 sequences, specimens collected in this 
study and named I. pilosus group sp. I. had low genetic 
diversity, with 99.5–100% (632–635/635  bp) sequence 
identity to each other. The cox1 sequence of the spe-
cies named I. pilosus group sp. II (OQ921974) had only 
86.8% (551/635  bp) sequence identity compared with I. 
pilosus group sp. I. (OQ921940). The only I. pilosus cox1 
sequence available in GenBank (GU437874) also had low, 
i.e. 90.1% (530/588 bp) and 85.4% (502/588 bp), sequence 
identity with these species of the I. pilosus group from 
this study, respectively. Ixodes cf. rubicundus had a 
higher degree of cox1 sequence identity in this study than 

Table 2 Oligonucleotide sequences and cycle parameters of taxonomic PCRs used in this study

Reaction components: volume 25 µl, containing 1 U (0.2 µl) HotStarTaq Plus DNA polymerase, 2.5 µl 10 × CoralLoad reaction buffer (including 15 mM  MgCl2), 0.5 µl PCR 
nucleotide Mix (0.2 mM each), 0.5 µl (1 µM final concentration) of each primer, 15.8 µl  ddH2O and 5 µl template DNA

Target gene
(approx. length)

Primers, probes 
(5’-3’)

initial 
denaturation

cycle 
denaturation

cycle annealing cycle extension final extension Cycle 
n = 

References

cox1
(710 bp)

LCO1490 (GGT 
CAA CAA ATC ATA 
AAG ATA TTG G)
HCO2198 (TAA 
ACT TCA GGG 
TGA CCA AAA 
AAT CA)

95 °C, 5 m 94 °C, 40 s 48 °C, 1 m 72 °C, 1 m 72 °C, 10 m 40 [24]

16S rRNA gene
(460 bp)

16S + 1 (CTG CTC 
AAT GAT TTT TTA 
AAT TGC TGT GG)
16S-1 (CCG GTC 
TGA ACT CAG ATC 
AAG T)

95 °C, 5 m 94 °C, 40 s 51 °C, 1 m 72 °C, 1 m 72 °C, 10 m 40 [25]

18S rRNA gene
(1300 bp)

NS1 (GTA GTC ATA 
TGC TTG TCT C)
NS4a (GCC CTT 
CCG TCA ATT CCT 
TTA AG)

95 °C, 5 m 94 °C, 40 s 52 °C, 1 m 72 °C, 1 m 72 °C, 10 m 40 [17, 26]

18S rRNA gene
(780 bp)

18S-F (CAT TAA 
ATC AGT TAT GGT 
TCC)
18S-R (CGC CGC 
AAT ACG AAT GC)

95 °C, 5 m 94 °C, 30 s 52 °C, 30 s
50 °C, 30 s
48 °C, 30 s
46 °C, 30 s

68 °C, 1 m 68 °C, 5 m 5
5
5
25

[27]

28S rRNA gene
(700 bp)

28ScF (GTG GTA 
GCC AAA TGC 
CTC GTC ATC)
28SR (GAA TTC 
TGC TTC ACA ATG 
ATA GGA AGA 
GCC)

95 °C, 5 m 94 °C, 40s 58 °C, 1 m 72 °C, 1m 72 °C, 10 m 40 [28, 29]

28S rRNA gene
(330 bp)

Tick-28S-C2-F 
(GCG GCG AGT 
AGG TCG GTA 
ACC)
Tick-d9-D3-R 
(ACG TCA GAA 
TCG CTT CGG A)

95 °C, 5 m 95 °C, 30 s 60 °C, 30 s 72 °C, 1m 72 °C, 5 m 40 [30]
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I. pilosus, namely 99.8–100% (635–636/636  bp). Com-
pared with GenBank data, this species (corresponding 
to sequence OQ921949) had only 88.4% (563/637  bp) 
sequence identity with a sequence available in GenBank 

(KY457530) and assigned to I. rubicundus from South 
Africa (Fauresmith). Based on GenBank data, the cox1 
sequence of I. rhabdomysae (OQ921961) showed the 
highest [92.4% (535/579  bp)] sequence identity to the 

Fig. 1 Key morphological characters of Ixodes pilosus group sp. I. female. A Dorsal view (arrows mark four stripes of bristles on the alloscutum). B 
Dorsal view of scutum (broader than long), basis capituli and palps (1—shorter lateral carinae; 2—scutum without hair, punctuation small-sized, 
dense; 3—posterolateral scutal margin slightly sinuous; 4—longest palpal hairs on segment II exceed the palpal diameter). C Ventral view (arrow 
marks anal groove which is short, converging). D Ventral view of basis and coxae (1—auriculae distinct, large, laterally rounded; 2—internal spur 
on coxae I short, distinct; 3—external spur on coxae I short, distinct)
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corresponding sequence of Ixodes bakeri (GU437873). 
Ixodes ugandanus collected in this study had the high-
est [87.9% (507/577  bp)] sequence identity with I. rasus 
reported from Cameroon (OP718638).

Among bird-associated tick species, the two cox1 
sequences of I. theilerae had 1  bp difference from each 
other. According to cox1 sequences from GenBank, one 
of them (OQ921964) was most similar (92%, 585/636 bp) 
to the “B” mitochondrial lineage of Ixodes frontalis 

Fig. 2 Key morphological characters of Ixodes pilosus group sp. II. female. A Dorsal view (arrows mark high density of alloscutal bristles posteriorly, 
forming tufts). B Dorsal view of scutum (longer than broad) and basis capituli (1—longer lateral carinae; 2—scutum, lateral margins parallel; 3—
longest palpal hairs on segment II exceed the palpal diameter). C Ventral view (arrows mark auriculae as distinct, large, laterally flattened)
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reported from Hungary (KU170508). Similarly, the cox1 
sequence of I. cf. daveyi (OQ921973) had the highest 
level (91%, 566/622 bp) of identity to the same sequence 
of I. frontalis. Finally, based on the cox1 gene, I. uriae 

showed 99.5–99.8% (636/639–639/640  bp) intraspecific 
genetic identity within Marion Island but had only 96.4% 
(614/637  bp) sequence identity with I. uriae reported 
from Canada (KX360345).

Fig. 3 Key morphological characters of Ixodes cf. rubicundus female. A Dorsal view (1—evenly distributed bristles on alloscutum; 2—scutum 
without hair, punctuation large-sized, dense). B Dorsal view of scutum and basis capituli (1—scutum elongated with parallel sides, length to width 
ratio 1.2; 2—posterolateral scutal margin distinctly sinuous; 3—palpal hairs shorter than palpal diameter). C Hypostome (dental formula: at the tip 
4/4, two or three rows of 3/3 and seven rows of 2/2 teeth). D Ventral view of basis and coxae (1—auriculae indistinct; 2—internal spur on coxae I 
absent; 3—external spur on coxae I small)
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The 16S rRNA sequences of I. pilosus group sp. I. were 
99.7–100% (380–381/381 bp) identical to each other and 
98.7% (377/382 bp) identical to the only sequence avail-
able in GenBank for this species (AF113927). At the same 
time, the 16S rRNA sequences of I. pilosus group sp. I. 
were only 89% (339/381 to 333/374 bp) identical to those 
of I. pilosus group sp. II analyzed here from South Africa. 
Based on 16S rRNA gene, the heterogeneity within I. cf. 
rubicundus was higher than in the case of I. pilosus: the 
sequences were 99.2–100% (372–375/375  bp) identical 
to each other. Moreover, similarly to the cox1 gene, ticks 
identified morphologically as I. cf. rubicundus in this 
study showed only 87.4% (334/382  bp) sequence iden-
tity compared with the sequence deposited in GenBank 
under the name I. rubicundus (KY457530, from South 
Africa, Fauresmith). The 16S rRNA gene sequences of I. 
rhabdomysae (OQ942703), I. nairobiensis (OQ942705) 
and I. ugandanus (OQ942730) showed the highest [90.6% 

(345/381  bp), 92.3% (374/405) and 93.1% (353/379  bp)] 
sequence identity to the corresponding sequence of I. 
rasus reported from Cameroon (OP698035). The 16S 
rRNA sequence of I. simplex in this study (OQ942713) 
had 99.5% (384/386  bp) identity to both correspond-
ing sequences of the same species also reported from 
South Africa (KY457531, KY457532) and lower [98.4% 
(380/386 bp)] similarity to I. simplex from Europe (Hun-
gary: KM455970).

Among bird-associated tick species, the three I. theil-
erae sequences were nearly (99.7–100%: 378–379/379 bp) 
identical to each other but differed in 4% (15/375  bp) 
from I. cf. daveyi (OQ942719 vs OQ942720) in their 16S 
rRNA gene. The four sequences of I. uriae differed only 
in 1 bp (99.7–100% identity) among samples collected in 
this study on Marion Island, and also when compared in 
a small geographical scale with a sample from the Ant-
arctica (D88304), but only 96.9% (369/381  bp) identi-
cal to a conspecific sequence reported from Magdalena 
Island, Chile (MK570083).

Phylogenetic analyses of Ixodes species
Based on concatenated cox1 and 16S rRNA gene 
sequences, I. cf. daveyi and I. theileriae clustered together 
with Palearctic members of the subgenus Trichotoixodes 
(i.e. I. frontalis and I. turdus) (Fig.  11). All four Tricho-
toixodes belonged to a monophyletic group with high 
(99%) support (Fig.  11). Phylogenetic analysis of 16S 
rRNA gene sequences showed that I. simplex belonged 
to the same clade with its representative from Europe 
(Additional file 2: Fig. S1). Based on its 16S rRNA gene, 
I. alluaudi was phylogenetically most closely related to I. 
antechini (subgenus Exopalpiger) (Additional file  2: Fig. 
S1). Ixodes uriae from Southern Africa, Marion Island, 
clustered with conspecific sequences with different, 
large-scale geographical origin (Additional file 2: Fig. S1).

Regarding the relationships among Ixodes subgenera, 
in both the concatenated cox1 and 16S rRNA gene tree 
(Fig.  11) and the concatenated mitochondrial-nuclear 
marker tree (Fig.  12), the subgenus Afrixodes was most 
closely related to subgenus Trichotoixodes, the latter 
containing exophilic bird-associated tick species. Based 
on the former, Afrixodes was a monophyletic clade only 
if including Trichotoixodes (Fig.  11). The monophyletic 
group gathering Afrixodes and Trichotoixodes was also 
confirmed with high bootstrap value when using both 
mitochondrial and nuclear genetic markers in a concat-
enated tree (Fig. 12). Interestingly, subgenera Ixodes and 
Pholeoixodes belonged to a sister group to Afrixodes and 
Trichotoixodes in the concatenated mitochondrial as well 
as in the mitochondrial-nuclear gene-based phylogenetic 
trees (Figs.  11 and 12). In both of these analyses, I. tri-
anguliceps was the sister clade to the group including 

Fig. 4 Key morphological characters of Ixodes ugandanus female. A 
Dorsal view of scutum and basis capituli (1—short, rounded body; 
2—scutum posteriorly broad but widest well in front of midlength; 
3—areae porosae subtriangular, distance between them 
less than their width). B Ventral view of basis and first coxae (1—palps 
long, their sides parallel along anterior straight part, lateral margins 
concave; 2—separation of segments II-III indistinct; 3—palpal hairs 
longest close to base of segment II; 4—lateral teeth on hypostome 
long and strong; 5—auriculae indistinct; 6—internal spur on coxae I 
pointed, medially directed)
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Fig. 5 Key morphological characters of Ixodes nairobiensis female. A Dorsal view (1—scutum rhomboidal, tapering to rounded posterior end, 
length to width ratio approx. 1.5; 2—lateral carinae straight; 3—cervical grooves shallow but broad). B Dorsal view of basis capituli (1—basis capituli 
triangular, its anteriolateral edge straight, supported from behind by a caudally tapering dark area of sclerotization; 2—small, rounded, caudally 
directed cornuae; 3—palps "stalked", approximately four times as long as broad at their maximum width, ratio of length of palpal segment II to III 
approximately 1.7; white dashed line indicates indistinct separation of segments II-III; 4—hair longest posteriorly on palpal segment II, one short hair 
on its caudolateral protuberance). C Ventral view of basis and coxae (1—well-developed, tapering and pointed auriculae, directed posterolaterally; 
2—palpal segment I with flange-like extension and (3) two hairs; 4—coxa I with caudomedially directed spur, not in line with medial edge of coxa I)
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Pholeoixodes, Ixodes, Afrixodes and Trichotoix-
odes, whereas Australasian Ixodes species formed 
a sister group to all other Ixodes species (based on 

mitochondrial-nuclear sequences receiving high, 98% 
support) (Figs. 11 and 12).

Fig. 6 Key morphological characters of Ixodes rhabdomysae female. A Dorsal view (1—scutum rhomboid, with lateral carinae as ridges; 2—cervical 
grooves broad, shallow, lightly colored; 3—lateral margin of palps straight; 4—medial edge of palpal segment II with obtuse-angled convexity). B 
Dorsal view of basis capituli (1—cornuae sharp, caudally directed; 2—areae porosae only slightly depressed, delimited medially by a dark ridge). 
C Ventral view of basis and coxae (1—coxae I with small internal and prominent external spurs; 2—coxae IV with distinct external spur). D Ventral 
view of basis (arrow marks sharp, caudally directed auricula)
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Fig. 7 Key morphological characters of Ixodes theilerae female. A Morphology of scutum (1—scutum widest slightly anterior to midlength; 2—
cervical grooves broad, shallow; 3—surface finely punctuate, with lateral rugosities; 4—bristles (hair covering) in lateral fields and mid-region 
of scutum). B Dorsal view of basis capituli and palps (1—cornuae short posterolateral projections; 2—posterior margin slightly concave; 3—basis 
laterally undulate, with anteriolateral protuberance (beneath which the auriculae are visible); 4—palpal segment II with longitudinal and transverse 
groove, outer profile irregular; 5—palpal segment III outer profile straight). C Ventral view of basis capituli and palps (1—scapulae sharp, pointed; 
2—auriculae terminate in sharp, straight edge; 3—palpal segment I with mesoventral, plate-like projection; 4—ventral edge of palpal segment 
III sinusoid; 5—transverse groove behind auriculae, at the level of "waist"). D Coxae I-II and trochanter I (1—coxa II with thickened posterointernal 
margin; 2—large external spur on coxae I-IV; 3—trochanteral spurs (I-III) short). E Spiracle opening (subcircular, macula excentric, surrounded 
by a “C” chape area void of aeropyles, the latter in 2–5 rows)



Page 13 of 21Hornok et al. Parasites & Vectors          (2023) 16:392  

Discussion
This is the first phylogenetic study to our knowledge that 
involves subgenera Afrixodes and Trichotoixodes with 
multiple species and both mitochondrial and nuclear 
genetic markers. In previous large-scale analyses, either 
the subgenus Trichotoixodes was omitted [19, 32] or 
Afrixodes was represented by a single species [39] or 
only a single mitochondrial marker was targeted for a 
low number of species [40]. In other words, only a few 
African Ixodes species had available sequences in Gen-
Bank, especially from the subgenus Afrixodes (i.e. Ixodes 
pilosus, I. bakeri, I. fynbosensis: [7]; I. aulacodi: [41], I. 
lemuris: [31]). The complete mitogenome is also avail-
able for a few species (e.g. I. rubicundus: [19]). Optimally 
either the latter or multiple (simultaneously amplified 
two mitochondrial or both mitochondrial and nuclear) 
genetic markers were lacking in databases. This is to 
some extent compensated by the present study, in which 
up to four genetic markers are provided for 11 South 
African Ixodes species.

All ticks identified to the species level in this study were 
already known to occur in South Africa [8, 11, 12]. Con-
sidering the so-called I. pilosus group within the subge-
nus Afrixodes, it was proposed earlier on a morphological 
basis that it includes at least three different species [10, 
11]. This was confirmed here with molecular-phyloge-
netic methods, i.e. I. pilosus group species I and II, which 
are illustrated and barcoded here, had cox1 sequence 
difference > 10% compared with each other and a third 
member of this group already available in GenBank, thus 
exceeding the level of average interspecific sequence 
divergence (6.1%) reported for this genetic marker in 
case of ticks [42]. Based on its morphological description, 
I. pilosus group sp. II corresponds to the type described 
by Arthur [8], and sp. I may represent another species 
known but not yet named [11]. Interestingly, sequences 
from the specimens identified morphologically in this 
study as I. cf. rubicundus were also significantly different 
from the GenBank entry under this name, probably rep-
resenting a new species.

Ticks infesting passeriform (song) birds in this study 
were morphologically identified as I. theilerae and I. cf. 
daveyi. As already reported [8], I. daveyi might also 
occur in southern Africa. Ixodes daveyi was regarded as 
a member of subgenus Trichotoixodes already by Reznik 
[43]; therefore, the presence of syncoxae (I-III) as men-
tioned by Arthur [8], but not originally by Nuttall [20], 
is probably a mistaken attribute. Arthur also mentions 
the hairless surface of scutum of I. daveyi with a ques-
tion mark, but since other species of Trichotoixodes have 
(frequently prominent) hair covering on the scutum, as 
exemplified by I. frontalis (syn. I. pari) and I. theilerae in 
Africa [8]. This is likely a character of I. daveyi as well, as 
shown here for I. cf. daveyi (Fig. 8). Since one of the bird 
species from which I. cf. daveyi was removed, the Cape 
robin-chat (Cossypha caffra), occurs up to the northern 
latitude of Sudan and Uganda and in east Africa [44], 
it is likely that I. cf. daveyi might infest this bird spe-
cies throughout its geographical range. Thus, although 
I. daveyi sensu stricto typically occurs north of South 
Africa, its transportation by birds into the latter region 
seems to be possible, and it may rarely infest hosts other 
than birds as already reported [8]. Ixodes spinae was 
also reported in South Africa from Southern red bishop 
(Euplectes orix) [45] on which I. cf. daveyi was found in 
this study, and similarly to I. daveyi this tick species was 
also reported from hyraxes (Procavia capensis) [8], rais-
ing the possibility that these two species might be con-
fused. However, the presence of I. spinae in the study 
material was excluded based on the shape of its scutum, 
cervical grooves and palps (as shown in [8]). Similarly, 
Ixodes domerguei was excluded because of the presence 
of trochanteral spurs on ticks collected from birds in the 
present study [21, 22].

All tick species collected in this study from domestic or 
wild carnivores had previously reported host associations 
[11, 46], except for the African civet (Civettictis civetta) 
and the marsh mongoose (Atilax paludinosus), which 
appear to be new host records for I. ugandanus and 
I. nairobiensis, respectively. Considering insectivores, 
I. rubicundus-like ticks are newly reported from the 

(See figure on next page.)
Fig. 8 Key morphological characters of Ixodes cf. daveyi female. A Morphology of scutum (1—posterolateral edge of scutum with concavity 
behind maximum breadth; 2—posterior scutal margin rounded; 3—cervical grooves deep, convergent in front, divergent posteriorly; 4—surface 
of scutum finely punctate, with rugose lateral fields). B Dorsal view of basis capituli and palp (1—cornuae rounded, backwardly projecting 
protuberances; 2—porose areas very large, subtriangular; 3—basal medial edge of palpal segment II with three long bristles; 4—palpal segment 
I with ventral protrusion; 5—anteriolateral margin of basis capituli forms a ridge behind palpal basis; 6—auriculae angular, trenchant). C Ventral 
view (arrow marks horseshoe-shaped anal groove). D Ventral view of basis (1—basis strongly constricted behind auriculae, posterior width similar 
to that of auriculae; 2—transverse groove behind auriculae, at the level of "waist"; 3—hypostome with fine denticles and broad median unarmed 
surface). Note that the palp on the right is broken at the base of segment II. E Lateral view of coxae, trochanters (1—coxa I with sharply pointed 
internal and broad, tapered external spur; 2—coxae II-IV with external spurs, sharp when viewed laterally (decreasing in this order); 3—trochanters 
with distal spurs as sharp protrusions)
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southern African hedgehog (Atelerix frontalis) as it was 
not even mentioned among the hosts of I. rubicundus 
sensu stricto [11]. Ixodes alluaudi was already reported 

from the greater red musk shrew (Crocidura flavescens) 
[8], but not the lesser gray-brown musk shrew (C. sila-
cea), as in this study. Regarding bats and primates, Natal 

Fig. 8 (See legend on previous page.)
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long-fingered bat (M. natalensis) appears to be a new 
host record for I. simplex as well as the brown greater 
galago (Otolemur crassicaudatus) for I. rhabdomysae 
[11].

According to the present results, I. theilerae is fre-
quently associated with weavers (Ploceidae), confirming 
previous data [11]. Nevertheless, this tick species was 
newly collected from yellow-crowned bishop (Euplectes 
afer). This study also provides a new host record of bird 
ticks, i.e. robin-chats (Cossypha spp.), for I. cf. daveyi. 
Although the occurrence of I. daveyi in South Africa was 
believed to be uncertain [12], one of the avian hosts from 
which the similar I. cf. daveyi was collected in this study, 
the Cape robin-chat (Cossypha caffra), was formerly 
reported to carry an Ixodes specimen not identified to 
the species level [45]. In the present study, I. uriae was 
collected from Southern rockhopper penguin (E. chryso-
come), a long-recognized host of this tick species [8, 47].

Considering the overall phylogenetic relationships 
of Ixodes subgenera, the topology of both concatenated 
phylogenetic trees (based on mitochondrial or on both 
mitochondrial and nuclear markers) confirmed that there 
are two distinct phylogenetic clades (lineages) of prostri-
ate ticks, i.e. the Australasian and all other Ixodes spe-
cies [6]. Subgenera Ixodes and Pholeoixodes clustered in 
the sister group to the clade of Afrixodes-Trichotoixodes 
based on both mitochondrial and mitochondrial-nuclear 
markers, in part similar to previous results [48].

Importantly, based on the nuclear 18S rRNA gene, it 
was reported that the Palearctic I. trianguliceps belongs 
to a sister group of the clade of subgenera Ixodes and 
Pholeoixodes [49]. However, when including Afrixodes 
and Trichotoixodes, based on mitochondrial markers, it 
occupied a basal position to all these subgenera, well sep-
arated from subgenus Exopalpiger where it was formerly 

Fig. 9 Key morphological characters of Ixodes alluaudi nymph. A Dorsal view. B Dorsal view of scutum and basis capituli (1—scutum broadest 
at mid-length; 2—cervical grooves lacking, lateral carinae straight; 3—surface finely punctate). C Ventral view. D Ventral view of basis capituli 
and hypostome (1—palpal segment I and the base of segment II overlapped by chitinous extension; 2—posterolateral angle of basis rounded; 3—
auriculae pointed; 4—hypostome with 7 rows of 2/2 denticles)
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Fig. 10 Key morphological characters of Ixodes uriae female. A Dorsal view. B Ventral view. C Scutum, basis capituli and palps (1—basis 
small and short, with large areae porosae; 2—the rim of coxa I joining trochanter I visible dorsally as a broad ring; 3—palpal surface smooth 
and shining; 4—palpal segment IV prominent from above; 5—scutum long, widest at its front; 6—cervical grooves well-defined, surface of scutum 
with numerous punctuations). D Ventral view of genital pore and coxae (1—no internal [and external] spur on coxae; 2—genital aperture 
between 2nd intercoxal space; 3—genital grooves anteriorly subparallel)
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thought to belong [3]. Thus, the taxonomic position of I. 
trianguliceps should be revised at the subgenus level.

Concerning African species of this study, the results of 
molecular-phylogenetic analyses reflected well the taxo-
nomic positions assigned historically on morphological 
bases: I. rhabdomysae, I. ugandanus and I. nairobien-
sis belonged to the cluster of subgenus Afrixodes and I. 
theilerae, I. cf. daveyi to the subgenus Trichotoixodes. 
The subgenus Trichotoixodes Reznik, 1961, was created 
to comprise Ixodes species typically associated with avian 
hosts in all developmental stages, sharing common mor-
phological characters such as the presence of truncated 
auriculae in the female and external spur on all coxae 
[43]. The nine species currently allocated into this sub-
genus have somewhat allopatric global distribution, i.e. 
Ixodes brunneus being Nearctic, I. silvanus and I. copei 
Neotropical, I. frontalis and I. turdus Palearctic. Within 
the Afrotropical region, Ixodes daveyi and I. euplecti 
occur predominantly in central-northern Africa, whereas 
I. theilerae in southern Africa and I. domerguei in Mada-
gascar [2, 21, 22, 50].

In addition, I. simplex collected in South Africa was 
morphologically similar to and phylogenetically closely 
related to European specimens of the same species and 
therefore did not represent the subspecies I. simplex 

africanus [8]. To our knowledge, this study provided 
the first sequence available for I. alluaudi, a species 
considered as belonging to the subgenus Exopalpi-
ger [3]. This taxonomic position was confirmed by the 
16S rRNA phylogenetic analysis here, thus being the 
only species of this subgenus in the Afrotropical zoo-
geographic region. This subgenus includes five species 
occurring in Australasia (Ixodes antechini, I. fecialis 
and I. vestitus in Australia; I. priscicollaris and I.  goli-
ath in New Guinea), two species in the Neotropical (I. 
andinus and I. jonesae) and two species in the Palearc-
tic (I. ghilarovi and formerly I. trianguliceps) [51, 52]. 
Interestingly, I. alluaudi from South Africa is located 
within different Australian Ixodes belonging to Endo-
palpiger, Coxixodes, Sternalixodes, Exopalpiger, the 
newly erected Australixodes [53] and Ceratixodes and 
therefore becomes the first molecularly analyzed spe-
cies in this phylogenetic clade with a geographical 
range exclusively outside Australia.

Ixodes uriae is known to have a worldwide distribution 
being associated with marine birds [47]. As also shown 
here, phylogenetic distances may increase with larger 
scale geographical distance of its samples, but this also 
depends on host species [54].

Table 3 Comparative morphology of Ixodes pilosus group sp. I and sp. II. Asterisk (*) marks those characters based on which they are 
different

Character Ixodes pilosus group sp. I Ixodes pilosus group sp. II

Alloscutal setae (*) In four stripes High density posteriorly, forming tufts

Setae (*) Thick Thin

Scutal shape (*) Broader than long Longer than broad

Scutal length/width ratio (*) 0.93 1.05

Lateral carinae (*) Short Long

Scutal surface Without hair, punctuation small-sized, 
dense

Without hair, punctuation small-sized, dense

Lateral scutal margin (*) Curved Relatively straight, parallel

Posterolateral scutal margin (*) Slightly sinuous Moderately sinuous

Maximum palpal hair length on segment II Exceeding palpal diameter Exceeding palpal diameter

Auriculae (*) Large, laterally rounded Large, laterally flattened

Internal spur on coxae I Small, distinct Small, distinct

External spur on coxae I Small, distinct Small, distinct

Fig. 11 Phylogenetic tree based on concatenated sequences of the cox1 and 16S rRNA genes, focusing on Old World Ixodes species. In each row 
of individual sequences, the country of origin and the GenBank accession number are shown after the species name. Sequences from this study are 
indicated with red fonts and bold, maroon accession numbers. Ixodes pilosus group sp. I. and I. cf. rubicundus are represented by multiple sequences 
(Table 1), and their branches are shown collapsed. The evolutionary history was inferred by using the maximum likelihood method based 
on the general time-reversible model. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis 
involved 74 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 892 positions in the final 
dataset. Evolutionary analyses were conducted in MEGA7

(See figure on next page.)
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Fig. 11 (See legend on previous page.)
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In summary, all phylogenetic analyses confirmed the 
close relationship of subgenera Afrixodes and bird-
associated Trichotoixodes, as suggested based only on 
mitochondrial genes and a single species from these sub-
genera [5, 53]. The subgenus Afrixodes is geographically 
bound to Africa and is probably the most species-rich 
group of the genus Ixodes. Moreover, as shown above, the 
subgenus Trichotoixodes also has the highest number of 
species in Africa. Given the strong phylogenetic support 
shown here for the common ancestry and short evolu-
tionary distance between subgenera Afrixodes and bird-
infesting Trichotoixodes, we hypothesize that the latter 
probably also originated in Africa where diversification 
of Afrixodes may have triggered host-switching events 
towards birds. Considering avian hosts in this context, 
the African origin of the Passerida songbird radiation, 
probably following dispersal events from Australia, has 
been supported by multiple phylogenetic evidence [55, 
56]. Consequently, together with their avian hosts, tick 

species in Trichotoixodes may have colonized other con-
tinents, except the aboriginal Australia from where they 
are still absent.

Abbreviation
cox1  Cytochrome c oxidase subunit I
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