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Abstract 

Background Poverty contributes to the transmission of schistosomiasis via multiple pathways, with the insufficiency 
of appropriate interventions being a crucial factor. The aim of this article is to provide more economical and feasible 
intervention measures for endemic areas with varying levels of poverty.

Methods We collected and analyzed the prevalence patterns along with the cost of control measures in 11 coun‑
ties over the last 20 years in China. Seven machine learning models, including XGBoost, support vector machine, 
generalized linear model, regression tree, random forest, gradient boosting machine and neural network, were used 
for developing model and calculate marginal benefits.

Results The XGBoost model had the highest prediction accuracy with an R2 of 0.7308. Results showed that risk sur‑
veillance, snail control with molluscicides and treatment were the most effective interventions in controlling schisto‑
somiasis prevalence. The best combination of interventions was interlacing seven interventions, including risk surveil‑
lance, treatment, toilet construction, health education, snail control with molluscicides, cattle slaughter and animal 
chemotherapy. The marginal benefit of risk surveillance is the most effective intervention among nine interventions, 
which was influenced by the prevalence of schistosomiasis and cost.

Conclusions In the elimination phase of the national schistosomiasis program, emphasizing risk surveillance holds 
significant importance in terms of cost‑saving.

Keywords Schistosomiasis elimination, Marginal benefit analysis, Machine learning analysis, Modeling, Integrated 
control strategy, Cost‑effectiveness, Optimization
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Background
Schistosomiasis japonica is a zoonotic disease caused 
by infection with the parasitic Schistosoma japonicum, 
which has resulted in millions of deaths and significant 
social and economic impacts in Southeast Asia, includ-
ing China, Indonesia, the Philippines and other countries 
[1]. In China, an integrated intervention strategy with 
multi-interventions, performed with the National Schis-
tosomiasis Control Program initiated since 2004 [2, 3], 
has significantly reduced the disease prevalence [4, 5]. 
According to the survey data from 2021, the total number 
of infected individuals in China has decreased to 29,041, 
with approximately 75.17% of endemic counties having 
achieved disease elimination and only 2.66% of counties 
still in the transmission control stage [6]. China’s efforts 
in schistosomiasis control entered the final elimination 
stage in 2014 [7].

In the elimination stage, as the schistosomiasis preva-
lence situation evolves, the originally formulated control 
strategies with the combination of multi-interventions 
may require adjustments. This is because different 
regions may experience varying epidemic conditions, 
with some areas having achieved significant progress with 
control efforts, while others still face considerable chal-
lenges. Consequently, it is crucial to allocate resources 
based on the benefits of control measures in each region, 
which will contribute to a more efficient advancement of 
schistosomiasis elimination [8].

Marginal benefit analysis serves as a tool for studying 
resource allocation and has been widely applied in vari-
ous fields [9, 10]. Marginal benefit analysis supported 
by machine learning (ML) is able to provide informa-
tion to both resource allocation and better adjust control 
interventions [11]. ML explores hidden patterns in data 
through iterative algorithms [12, 13]. Particularly, many 
tools are available to help us understand the workings of 
ML, explain their predictions and assess the importance 
of features and model performance. These interpretabil-
ity tools have been widely applied in various fields for 
calculating the benefits of different inputs and optimiz-
ing combinations [14, 15]. Therefore, this study can apply 
this approach to calculate the marginal benefits of differ-
ent interventions.

This study aims to propose intervention strategies that 
are better suited to endemic regions with varying geo-
graphical characteristics during the elimination stage by 
calculating the marginal benefits of multi-interventions.

Methods
Study sites
In this study, we selected sampling sites from schistoso-
miasis-endemic counties in the middle and lower reaches 

of the Yangtze River. These counties were categorized as 
lake or mountainous endemic based on their terrain and 
transmission characteristics, with the proportion of each 
type determined according to the national average.

The inclusion criteria included: (i) meet the criteria for 
schistosomiasis transmission interruption after 2015; (ii) 
completion rate > 90% for data availability on schistoso-
miasis intervention costs and schistosomiasis prevalence 
from 2002 to 2021; (iii) average annual GDP growth rate 
in schistosomiasis-endemic counties from 2002 to 2021 
was 8.2%, with a standard deviation of 3.5. By excluding 
counties with significant deviations from the mean, we 
applied outlier theory for the calculations. Exclusion cri-
teria were (i) not part of a schistosomiasis-endemic area 
in China; (ii) transmission interruption criteria has not 
yet met at county level; (iii) percentage of missing data 
for schistosomiasis prevalence and intervention cost data 
more than 10%.

Data collection and processing
This study collected data from 2002 to 2022. Three 
types of databases were established: (i) an epidemiologi-
cal database, which includes variables of human infec-
tions, animal infections, snail infections, snail habitants, 
etc.; (ii) a database of interventions cost, which includes 
cost of risk surveillance, molluscicide for snail control, 
treatment, population chemotherapy, building toilets, 
environmental modification for snail control, animal 
slaughter, health education and livestock chemotherapy; 
(iii) an economical database, which includes GDP, value 
added of primary industry, secondary industry, tertiary 
industry, etc. The variables for epidemical data and eco-
nomic development status are listed in Table 1, and the 
intervention cost data are listed in Table 2.

We utilized linear interpolation to handle the missing 
data. Covariance tests were performed to ensure accurate 
analysis of the data. Before modeling, the costs are dis-
counted to its equivalent value in 2021 at an annual dis-
count rate of 3% using the following formula:

In the above equation, r is the annual discount rate, Co is 
the cost at the start of the analysis, and Ct is the cost at 
time t.

Modeling and calculating marginal benefits
We developed machine learning models following the 
following four steps (Fig.  1). Prevalence is the ratio of 
people with schistosomiasis to the total population in the 
endemic area. After adding 1 to the cost data and taking 
the logarithm, it was input into the model to calculate the 
marginal benefit.

Co = Ct/(1+ r)t
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First, we developed seven models, including XGBoost, 
support vector machine, generalized linear model, regres-
sion tree, random forest, gradient boosting machine and 
neural network [13] (Additional file 1). All data were ran-
domly split into a training set and a test set, with a 7:3 
ratio [16]. Second, the model evaluation was performed 
to test the difference or residuals between the predicted 
and real data. Four evaluation assessments, including  R2, 
MSE, RMSE and MAE, were used to assess the model 
performance (Table  2) [17]. The larger  R2 represented a 
higher fitting accuracy of the model, while the smaller 
MSE, RMSE and MAE represented a higher fitting accu-
racy of the model. Third, parameter optimization. We 
used grid search cross-validation to optimize machine 
learning model parameters [18] (Additional file  2). It 

exhaustively listed all possible values within the param-
eter space, evaluated the performance of each parameter 
combination through cross-validation and identified the 
optimal hyperparameter. Fourth, this study employed the 
interpretative functionality of Shapley Additive exPlana-
tions (SHAP) to estimate the marginal effects of various 
interventions for each endemic county from 2002 to 2021 
[19].

Estimation of the optimal strategies using marginal 
benefits
Initially, the endemic-prone regions are classified 
into different endemic regions, namely mountainous 
and lake regions. Subsequently, interventions for dis-
tinct endemic-prone regions are grouped based on the 

Table 1 Sampling counties with epidemiological and economic variables

a Year: year of achieving transmission interruption standard
b GDP growth rate in 2022 = GDP (2022)−GDP (2002)/GDP (2002); data are collected from China statistical yearbook (county level)

ID County name Epidemy type Yeara GDP growth 
rate in  2022b

1 Dangtu County in Anhui Province Lake region 2022 13.88

2 Nanling County in Anhui Province Mountainous region 2019 12.96

3 Shitai County in Anhui Province Mountainous region 2020 9.18

4 Anxiang County in Hunan Province Lake region 2019 6.29

5 Xiangyin County in Hunan Province Lake region 2019 6.38

6 Duchang County in Jiangxi Province Lake region 2022 14.68

7 Pengze County in Jiangxi Province Mountainous region 2023 as planed 14.47

8 Yushan County in Jiangxi Province Mountainous region 2019 14.31

9 Guichi County in Anhui Province Lake region 2019 11.61

10 Jiangling County in Hubei Province Lake region 2017 7.91

11 Gongan County in Hubei Province Lake region 2018 5.93

Table 2 Specific measures included in each intervention

Intervention Abbreviation Context

Risk surveillance RS The cost of surveillance in endemic areas, including surveillance human infections, animal infections, snail 
infections and snail habitats as well as the routine operation of surveillance stations

Molluscicide for snail control MSC The cost of using molluscicides to control or eliminate snails, including the procurement of molluscicides, 
hiring of labor and renting of equipment for the application of molluscicides

Treatment Treat Government subsidies provided for the diagnosis, medication and supportive care of schistosomiasis 
patients

Population chemotherapy PC The cost associated with the mass drug administration (MDA) of praziquantel to the population 
in the endemic area, regardless of whether there are clear symptoms or cases of infection

Building toilets BT The cost of renovating and constructing toilets

Environmental modification 
for snail control

EMSC The cost of snail elimination through physical and biological control measures (such as snail‑suppressive 
forests, irrigation hardening)

Animal slaughter AR The cost of eliminating reservoir hosts (e.g., cattle, sheep, etc.) replaced by machine in endemic areas

Health education HE The cost of disseminating knowledge to the public about the pathogen transmission, disease prevention 
and promoting community engagement and behavior change interventions

Livestock chemotherapy LC The cost of administering drug therapy to livestock in endemic areas
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following methodology: a total of nine interventions 
under study were randomly combined into groups of var-
ious sizes. For example, new combinations were formed 
by randomly selecting three interventions from the com-
plete set, then selecting four interventions separately for 
new combinations and continuing this process until new 
combinations included all nine interventions.

The additivity feature of SHAP implies that the contri-
bution of a new combination can be obtained by sum-
ming the SHAP values of included interventions [20]. 
Lastly, the optimal combination was identified through 
the utilization of metrics including  R2, MSE, RMSE and 
MAE. The total cost of each new combination was esti-
mated by summing the average costs of included inter-
ventions (Additional files 3, 4).

All data analysis and plotting in this study were per-
formed using R (4.1.0 version) and Python (3.11.4 ver-
sion) software.

Results
Sampled datasets
Complete datasets for this study were gathered from 11 
counties/cities situated at the borders of Anhui, Hunan, 
Hubei and Jiangxi provinces. These locations are all posi-
tioned along the middle and lower reaches of the Yangtze 
River (Fig. 2).

Modeling evaluation
The fitness results of the seven machine-learning models 
are shown in Table  3. All of the four metrics, including 
R2, MSE, RMSE and MAE, suggest that the XGBoost 
model fitted best among seven machine-leaning models. 
The XGBoost model explained 73.06% of the response 
variables (Additional file 5).

Marginal benefit of various interventions for overall 
endemic regions
After fitting the XGBoost model, the extent to which 
each intervention contributed to the prevalence rate was 
observed according to the SHAP value.

As shown in Fig. 3, the first row indicates that risk sur-
veillance has the highest SHAP values, with most points 
clustered on the right side of the vertical axis, mean-
ing that higher costs of risk surveillance are associated 
with detecting more cases of schistosomiasis. Rows two 
to eight show that interventions such as molluscicide 
for snail control, treatment, health education, environ-
mental modification, building toilets, animal slaughter, 
population chemotherapy and livestock chemotherapy 
are effective in reducing schistosomiasis prevalence. In 
descending order along the vertical axis, the SHAP values 
of interventions gradually decrease, implying a gradual 
reduction in the cost-effectiveness of the interventions.

Fig. 1 Research methodology diagram. This study originates from two real‑world issues, which are transformed into mathematical problems, 
and models are then constructed based on these problems. The model results are used to propose potential references that offer solutions 
to the real‑world issues
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Marginal benefit of various interventions for different 
regions and counties
In both types of endemic regions, namely hilly and 
lake-endemic areas, risk surveillance, treatment and 

molluscicide application for snail control emerge as the 
foremost interventions, occupying the top three posi-
tions in their respective hierarchies. Conversely, human 

Fig. 2 Geographical locations of the 11 sampling counties in China. All sampling counties were chosen from the four provinces in the middle 
and lower reaches of the Yangtze River, namely Anhui, Hunan, Hubei, and Jiangxi, specifically from those endemic counties located near water 
sources

Table 3 Fitness results of the seven machine‑learning models with their prediction accuracy

XGBoost eXtreme gradient boosting, SVM support vector machine, GLM generalized linear model, RT regression tree, RF random forest, GBM gradient boosting 
machine, NNT neural network

Indicators XGBoost SVM GLM RT RF GBM NNT

R2 0.7306 0.129 0.003 0.1811 0.5578 0.3539 0.1952

MSE 0.0041 0.0172 0.0152 0.0125 0.0068 0.0099 0.0123

RMSE 0.0641 0.1313 0.1234 0.1118 0.0822 0.0993 0.1109

MAE 0.0053 0.046 0.064 0.0408 0.028 0.0457 0.0415
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and animal chemotherapy interventions are found to be 
the least effective across both regions.

In hilly endemic regions, risk surveillance showed the 
highest significance. In contrast, in lake-endemic regions, 
risk surveillance is relegated to the third position, imply-
ing a comparatively reduced impact when juxtaposed 
with molluscicide application for snail control and treat-
ment measures. Furthermore, toilet construction secures 
the fourth rank in lake-endemic areas and the fifth rank 
in hilly endemic areas. Livestock slaughter assumes the 
fifth position in lake-endemic regions, while in hilly 
endemic areas, it occupies the sixth position within the 
intervention hierarchy (Figs. 4, 5).

Optimal combinations of multi‑interventions based 
on marginal benefits for overall endemic regions
Figure  6 shows that all metrics of  R2, MSE, RMSE and 
MAE come to the same conclusion that the optimal 
combination of interventions includes health education, 
building toilets, controlling snails with molluscicide, 
animal slaughter, livestock chemotherapy, treatment 
and risk surveillance, resulting in the smallest residual 
(5.10 ×  10–7) when fitting the prevalence. This optimal 
combination removed two interventions, namely mass 

drug administration and environmental modification to 
control snails. To reduce cost further, we are willing to 
consider suboptimal combinations that have a negligi-
ble difference in effectiveness as alternatives. When the 
number of interventions in the combination was reduced 
to six, livestock chemotherapy was removed, and when 
further reduced to five, toilet construction was also 
removed (Additional files 6, 7).

Optimal combinations of multi‑interventions based 
on marginal benefits for different geographical regions
We applied the same approaches to identify the optimal 
plans for the lake and mountainous endemic regions. 
As depicted in Fig.  7, costs and effectiveness exhibit an 
inverse correlation. In the mountainous regions, the best 
combination involves eight interventions, including ani-
mal slaughter, health education, toilet construction, mol-
luscicide-based snail control, population and livestock 
chemotherapy, treatment and risk surveillance. The two 
second-best combinations sequentially remove popula-
tion and livestock chemotherapy and toilet construction 
from the optimal combination (Additional file 8).

In the lake region, the optimal combination includes 
seven interventions, animal slaughter, health education, 

Fig. 3 Contribution of different interventions to prevalence valued by SHAP. The vertical axis is sorted by the total sum of SHAP values for each 
intervention, and the horizontal axis represents the SHAP value (the distribution of the intervention’s impact on the model output). Each point 
represents a sampling county, with overlapping points displayed vertically when their SHAP values are the same, and colors indicate the values 
of interventions (red corresponds to high values and blue to low values). When most of the red points are distributed on the right side, the feature 
is positively correlated with disease prevalence, and when they are distributed on the left side, it is negatively correlated. For example, the first row 
shows that higher RS costs correspond to larger SHAP values, meaning that higher RS costs lead to more cases of schistosomiasis
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toilet construction, molluscicide-based snail control, 
population and livestock chemotherapy, treatment and 
risk surveillance; the two second-best combinations fur-
ther removed animal slaughter and toilet construction 
from the optimal combination (Additional file 8).

Discussion
This study represents a first attempt to explore the alloca-
tion of resources for schistosomiasis control efforts dur-
ing the elimination stage within counties located in the 
middle and lower reaches of the Yangtze River in China. 
We collaborated with local professional institutions to 
collect data from 2002 to 2021 and developed a machine 
learning model to analyze the priority of each interven-
tion and the optimal combination for different regions. 
The results indicate that in both lake and mountainous 
regions, three interventions, including risk surveillance, 
snail control using molluscicides and treatment, play the 
most important role in the national schistosomiasis elim-
ination program.

In China, the human and livestock infection rates of 
schistosomiasis have been extremely low in the elimi-
nation stage, so the intermediate host snail plays a 
pivotal role in the risk of schistosomiasis transmission 
[21]. Due to the frequent occurrence of flood disasters 
in recent years, coupled with the implementation of the 

Yangtze River Protection Law of the People’s Republic 
of China [22], the total area of newly discovered and 
re-emergent snail habitats has increased by 110.58 hec-
tares and 844.35 hectares from 2021 to 2022, respec-
tively [23]. The findings of this study indicate that the 
effectiveness of molluscicide-based snail control, which 
surpasses other snail elimination methods such as envi-
ronmental modification. This is evident in the SHAP-
based ranking of interventions, where snail control 
using molluscicides consistently ranks among the top 
three in various endemic regions. The optimal combi-
nations in different endemic regions all include mollus-
cicides, while environmental modification has not been 
included. Similar results also were observed by other 
studies [24]. For example, the effectiveness of chemi-
cal snail control in controlling schistosomiasis has been 
confirmed, with a decreasing trend in the prevalence of 
schistosomiasis in the study area [25]. Moreover, coun-
ties that prioritize snail control have experienced a 
greater decline in infection rates compared to counties 
that did not adopt snail elimination interventions [26]. 
Many endemic areas use environmental modification 
for snail elimination, but the existing environmental 
modification technologies have high costs [27]. The pri-
mary controversies surrounding molluscicides involve 
concerns over environmental pollution and pollution 
in lake regions. Hence, it is imperative to develop new 

Fig. 4 Effectiveness of different interventions to control schistosomiasis in the lake regions. Each sector arc length represents the relative 
effectiveness of the corresponding intervention, while the width of the sector represents the relative ranking of intervention effectiveness. The top 
left corner of the chart indicates the corresponding endemic area. a Relative importance of various measures for control of schistosomiasis in lake 
regions. b–h Separately illustrates the priority of different schistosomiasis interventions in Dangtu County of Anhui Province, Anxiang County 
of Hunan Province, Xiangyin County of Hunan Province, Duchang County of Jiangxi Province, Guichi County of Anhui Province, Jiangling County 
of Hubei Province and Gongan County of Hubei Province
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molluscicides that possess both ecological non-toxicity 
and exceptional snail-killing capabilities.

Despite the extremely low prevalence of schistosomia-
sis in China at present, early-stage surveillance remains 
insufficient, leading to challenges in achieving timely 
disease diagnosis and intervention. As a result, China 
continues to identify about 1000 new cases of advanced 
schistosomiasis each year due to previous exposure [23]. 
Additionally, based on the experiences of eliminating 
malaria (by 2021) and lymphatic filariasis (by 2007) in 
China, sustained risk surveillance plays an important role 
in the elimination of the disease as it can help to identify, 
isolate and control infected individuals, reduce the risk 
of transmission and improve the efficiency of elimination 
[28].

To advance the process of the national eliminat-
ing schistosomiasis program in China, it is essential to 
strengthen surveillance strategies. This includes intensi-
fying the surveillance of changes in snail-inhabited areas 
and the infection rates of humans, cattle and snails and 
simultaneously conducting explorations of potential 
high-risk regions. The results of this study demonstrate 

that risk surveillance is a pivotal intervention for the 
elimination of schistosomiasis [29]. This conclusion is 
supported by two outcomes from the study. First, among 
all intervention measures, risk surveillance exhibits the 
highest SHAP value. Second, optimal combinations from 
the study in both lake and mountainous regions have 
included the intervention of risk surveillance. This study 
also provides a reference for establishing surveillance pri-
orities. The determination of surveillance focus is guided 
by assessing the marginal benefits derived from inter-
ventions targeting humans, cattle and snails in different 
endemic regions.

Once high-risk areas have been identified through 
surveillance, integrated strategies should be carried out 
based on the reference of the optimal intervention com-
binations. The results of this research reveal significant 
variations in the optimal integrated strategies between 
lake- and mountain-endemic regions. These discrepan-
cies are likely attributed to the geographical morphology, 
socio-cultural factors and transmission characteristics 
of schistosomiasis within these areas [30–33]. For exam-
ple, in regions with dense vegetation, molluscicides can 

Fig. 5 Effectiveness of different interventions to control schistosomiasis in the mountainous regions. Each sector arc length represents the relative 
effectiveness of the corresponding intervention, while the width of the sector represents the relative ranking of intervention effectiveness. The top 
left corner of the chart indicates the corresponding endemic area. a Priority of different measures in controlling schistosomiasis in mountainous 
regions where the disease is endemic. b–e Separately shows the priority of different measures in controlling schistosomiasis in Nanling County 
of Anhui Province, Shitai County of Anhui Province, Pengze County of Jiangxi province and Yushan County of Jiangxi province
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Fig. 6 Optimal combination obtained by calculating values of  R2, MSE, RMSE and MAE. Integrated intervention plans in this study are sorted 
according to the number of interventions they include. Moving from the outer to inner ring, the number of interventions included increases, 
ranging from three to nine. Each sector’s ion rings represent a plan, and the color of the sector is represented by the values of  R2, MSE, RMSE 
and MAE of the plan. a–d Separately depicts optimal combination obtained based on the values of  R2, MSE, RMSE and MAE

Fig. 7 Costs of different combinations and their fit to the true values in different regions. Each line represents a different combination, with “Group” 
indicating the number of interventions included. The cost increases from bottom to top in the second column. The third to sixth columns 
show percentiles for  R2, MSE, RMSE and MAE, with values increasing from bottom to top. Higher  R2 indicates better effectiveness, while smaller 
values for MSE, RMSE and MAE also indicate better effectiveness. This is done for ease of presentation. a, b Separately depict costs of different 
combinations and their fit to the true values in mountainous and lake region
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easily adhere to plant leaves, resulting in limited efficacy 
in snail elimination. In such scenarios, environmental 
modification yields better outcomes for snail elimination 
[30]. By analyzing data from different endemic regions 
between 2002 and 2020, this study presents optimized 
integrated strategies for areas with varying geographical 
conditions, socio-cultural aspects and transmission char-
acteristics. These findings contribute to the advancement 
of schistosomiasis elimination efforts in China.

This study is subject to certain limitations. First, our 
reliance on prevalence as the indication for estimating 
marginal benefit restricts our capacity to precisely quan-
tify the potential impact of interventions in interrupt-
ing schistosomiasis transmission. Second, it is essential 
to recognize that the extended data collection period 
in this study created complications due to administra-
tive changes like mergers and divisions of institutions. 
These changes led to missing data, which could affect the 
study’s completeness. Third, our research is geographi-
cally delimited to four distinct provinces within China, 
specifically Hubei, Hunan, Anhui and Jiangxi. Conse-
quently, there is a pertinent imperative for subsequent 
investigations encompassing a broader array of endemic 
regions, diverse transmission dynamics and a spectrum 
of disease types to foster a more comprehensive under-
standing of the subject matter.

Conclusions
This study has made significant contributions to under-
standing resource allocation and surveillance strategies 
for schistosomiasis elimination in China. The research 
emphasizes the importance of risk surveillance, adapt-
able to diverse geographical and socio-cultural contexts. 
Additionally, the study shows that chemical molluscicides 
can be more effective than environmental modifications, 
especially in densely vegetated areas. This study offers 
insights for global schistosomiasis control and informs 
China’s public health policies and interventions.
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