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Abstract 

Background Apicomplexan protozoa are a diverse group of obligate intracellular parasites causing many diseases 
that affect humans and animals, such as malaria, toxoplasmosis, and cryptosporidiosis. Apicomplexan protozoa pos-
sess unique thioredoxins (Trxs) that have been shown to regulate various cellular processes including metabolic redox 
regulation, parasite survival, and host immune evasion. However, it is still unknown how synonymous codons are 
used by apicomplexan protozoa Trxs.

Methods Codon usage bias (CUB) is the unequal usage of synonymous codons during translation which leads 
to the over- or underrepresentation of certain nucleotide patterns. This imbalance in CUB can impact a variety of cel-
lular processes including protein expression levels and genetic variation. This study analyzed the CUB of 32 Trx coding 
sequences (CDS) from 11 apicomplexan protozoa.

Results The results showed that both codon base composition and relative synonymous codon usage (RSCU) 
analysis revealed that AT-ended codons were more frequently used in Cryptosporidium spp. and Plasmodium spp., 
while the Eimeria spp., Babesia spp., Hammondia hammondi, Neospora caninum, and Toxoplasma gondii tended 
to end in G/C. The average effective number of codon (ENC) value of these apicomplexan protozoa is 46.59, which 
is > 35, indicating a weak codon preference among apicomplexan protozoa Trxs. Furthermore, the correlation analysis 
among codon base composition (GC1, GC2, GC3, GCs), codon adaptation index (CAI), codon bias index (CBI), fre-
quency of optimal codons (FOP), ENC, general average hydropathicity (GRAVY), aromaticity (AROMO), length of syn-
onymous codons (L_sym), and length of amino acids (L_aa) indicated the influence of base composition and codon 
usage indices on CUB. Additionally, the neutrality plot analysis, PR2-bias plot analysis, and ENC-GC3 plot analysis 
further demonstrated that natural selection plays an important role in apicomplexan protozoa Trxs codon bias.

Conclusions In conclusion, this study increased the understanding of codon usage characteristics and genetic evo-
lution of apicomplexan protozoa Trxs, which expanded new ideas for vaccine and drug research.

Keywords Apicomplexan Protozoa, Thioredoxin, Codon usage bias, Relative synonymous codon usage, Effective 
number of codons

Background
Proteins serve as the primary agents responsible for 
biological functions and are primarily comprised of 20 
standard amino acids. The 20 standard amino acids are 
denoted by 64 codons, out of which 61 encode amino 
acids, while the remaining three represent translation 
stop signals. With the exception of methionine (Met) 
and tryptophan (Trp), which are represented by a soli-
tary codon, most species employ various synonymous 
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codons to encode the remaining 18 amino acids [1–3]. 
Despite undergoing evolution over time, the genetic code 
remains highly conserved and permits the use of diverse 
codons or synonymous codons for encoding the same 
amino acid [4–6]. The frequency of synonymous codon 
usage is non-uniform and often random across various 
organisms, genes, or even the same gene among differ-
ent species. In many cases, some codons are favored over 
others for amino acid encoding purposes [7–9]. Codon 
usage bias (CUB) is a prevalent occurrence wherein syn-
onymous codons manifest with distinct frequencies [10–
13]. Throughout the course of evolution, synonymous 
mutations, also known as “silent mutations,” are not 
anticipated to modify the original sequence or primary 
structure of proteins. Therefore, variations in synony-
mous codons among organisms can significantly contrib-
ute to genome evolution [14]. Many previous studies have 
noted that multiple factors affect CUB in different organ-
isms, of which the basic factors for CUB are assumed to 
be a balance between natural selection (e.g. translational 
selection, gene length, and gene function) and muta-
tion bias (such as GC content and mutation position of 
base) as well as the influence of random genetic drift 
[14–18]. CUB is known to have a significant impact on 
a wide range of cellular processes such as mRNA stabil-
ity, transcription, translation efficiency and accuracy, as 
well as protein structure, folding, expression, and func-
tion. Additionally, there are various significant practical 
applications for understanding CUB, including heterolo-
gous gene expression [19], identifying species origins [6, 
20], designing degenerate primers [21], predicting gene 
expression levels [22, 23], predicting gene functions [24, 
25], and designing synthetic genes for biotechnological 
applications [26]. However, most of the numerous stud-
ies on CUB have focused on bacterium, fungi, viruses, 
and mycoplasma [27–31]. Thus far, the genetic features of 
codon bias in parasites, particularly in apicomplexan pro-
tozoa, have not been comprehensively comprehended.

Apicomplexans are a diverse group of protozoa that 
are obligate intracellular parasites and are responsible 
for causing many diseases that affect humans and ani-
mals, including Toxoplasma gondii, Neospora caninum, 
Plasmodium spp., Cryptosporidium spp., Eimeria spp., 
Babesia spp., Theileria spp. [32–38]. They have a complex 
life cycle involving multiple hosts and typically have an 
apical complex that aids in penetrating host cells. Their 
cell structure includes a complex organelle called the api-
coplast, which is derived from secondary endosymbio-
sis and is essential for parasite survival. Apicomplexans 
have been a topic of research due to their unique fea-
tures, pathogenicity, and impact on global health. Multi-
ple studies imply the invasion process of apicomplexans 
is mediated by many invasion-related protein molecules, 

including microneme proteins, rhoptry proteins, dense 
granule proteins, surface antigen proteins [39–44]. In 
recent years, many studies have shown that thioredoxin 
(Trx) is also involved in the invasion process of apicom-
plexan protozoa. Trx is a redox enzyme that regulates 
cellular redox homeostasis by catalyzing the reduction 
of disulfide bonds in proteins. Apicomplexan protozoa 
possess unique Trxs that have been shown to regulate 
various cellular processes including metabolic redox 
regulation, parasite survival, and host immune evasion 
in T. gondii, Plasmodium falciparum, N. caninum, Babe-
sia spp., and Cryptosporidium spp. [45–51]. The Trx sys-
tems in apicomplexan protozoa have been identified as 
potential targets for the development of novel antipara-
sitic drugs. The functional domain of Trx in apicompl-
exan protozoa is conserved, but the coding sequences are 
vastly different, and research on apicomplexan protozoa 
Trx codon usage is rare. In this study, we systematically 
analyzed and compared the CUB of Trxs of 32 sequences 
from 11 apicomplexan protozoa, including Babesia spp., 
Besnoitia besnoiti, Cryptosporidium spp., Cyclospora cay-
etanensis, Eimeria spp., Gregarina niphandrodes, Ham-
mondia hammondi, N. caninum Liverpool, Plasmodium 
spp., Theileria spp., and T. gondii. The phylogenetic tree 
of apicomplexan protozoa was constructed based on the 
relative synonymous codon usage of Trxs, which was 
compared with the phylogenetic tree constructed accord-
ing to the Trx coding sequences (CDSs). Therefore, ana-
lyzing the CUB can provide further information on the 
genetics and evolution of species and help accurately pre-
dict the function and expression regulation mechanisms 
of related genes.

Methods
Sequences
A total of 32 Trxs complete coding sequences from 11 
apicomplexan protozoa were retrieved from the National 
Center for Biotechnology Information (NCBI) GenBank 
database (https:// www. ncbi. nlm. nih. gov/ genba nk/) for 
subsequent CUB analysis. Detailed information about the 
overall 32 Trx CDS is listed in Additional file 1: Table S1.

Analysis of codon base composition
In this study, CodonW software was used to determine 
the contents of the nucleotide at the third codon location 
(C3, T3, G3, and A3%) for all synonymous codons in api-
complexan protozoa Trxs. Furthermore, the GC% con-
tents of all three codon locations (GC1, GC2, and GC3%) 
and total GCs% and ATs% contents were measured. Only 
59 synonymous codons encoding 18 amino acids were 
considered for the present study, not including the first 
AUG codon (Met), the codon (UGG) encoding Trp, and 

https://www.ncbi.nlm.nih.gov/genbank/
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the three termination codons (UAG, UAA, and UGA), 
respectively [52].

Analysis of codon usage indices
Mutational pressure and natural selection are two key 
factors for codon bias. For this, many statistical methods 
have been proposed to analyze the codon usage indices 
and then determine which one is the driving force in 
this study. The codon adaptation index (CAI) is applied 
to calculate the gene expression level depending on its 
codon-based sequence through an online tool used for 
CAI calculation. It ranges from zero to one; the larger the 
value is, the more frequent the CUB. Thus, CAI is use-
ful for predicting the expression level of a particular gene 
[53]. The codon bias index (CBI) is used as a standard to 
evaluate gene expression, which reflects the components 
of highly expressed superior codons in a specific gene 
[54]. The frequency of optimal codons (FOP) is calcu-
lated by counting the ratio of the optimal codon number 
to the total synonymous codon number in one specific 
gene. The FOP value varies and ranges from 0.36 (which 
means the codon usage bias is weak) to 1 (which means 
the codon usage bias is strong). The value of CBI near 
zero indicates all codons are completely randomly used 
[55]. The effective number of codons (ENC) refers to the 
number of effective codons used in one specific gene. The 
ENC value varies and ranges from 20 (which means that 
only one codon is used for each amino acid) to 61 (which 
means that each codon is used on average). In addition, if 
the value of ENC is < 35, the codon usage bias is strong; 
if it is > 35, the codon is randomly used [56]. The general 
average hydropathicity (GRAVY) values were calculated 
by the arithmetic mean of the sum of the hydropathic 
indices of each amino acid. GRAVY values range from − 2 
to 2; positive and negative values represent hydrophobic 
and hydrophilic proteins, respectively [57]. The aromatic-
ity (AROMO) value represents the frequency of aromatic 
amino acids (Phe, Tyr, and Trp) in a specific gene [58]. 
The length of synonymous codons (L_sym) and length of 
amino acids (L_aa)  are the two indices  which represent 
the number of synonymous codons and the number of 
translatable codons, respectively. The variation in amino 
acid composition can also influence the analysis results of 
codon usage [59].

Analysis of relative synonymous codon usage
Relative synonymous codon usage (RSCU) value was cal-
culated by dividing the amino acids encoded by the same 
codons and their probability of appearing in the same 
codons. An RSCU value > 1 indicates a positive codon 
bias (RSCU value > 1.6 indicates a strong positive codon 
bias), an RSCU value < 1 indicates a negative codon bias, 

and an RSCU value = 1 indicates a random codon usage 
[60].

Neutrality plot analysis
The neutrality plot can explain the balance between 
mutation pressure and natural selection in specific genes. 
The line of regression slope between GC3 and GC12 (the 
average GC codon content in GC1 and GC2) indicates 
that mutation pressure is the major factor affecting CUB 
when values come close to 1. In contrast, if there is no 
correlation between GC12 and GC3, the value comes 
close to 0, and then the main driving force of the tested 
gene is natural selection [61].

PR2‑bias plot analysis
Parity Rule 2 bias (PR2-Bias) plot analyses were per-
formed based on [A3/(A3 + U3) vs. G3/(G3 + C3)]. If the 
codon had no usage bias, A = T and C = G, the value was 
in the center point of the plot. In contrast, the other vec-
tors emitted from the center point indicate the degree 
and direction of the gene bias [62].

ENC‑GC3 plot analysis
The ENC-GC3 plot (ENC vs. GC3) is usually used to ana-
lyze the influencing factor of CUB in a specific gene, such 
as mutation pressure and natural selection. The ENC-
GC3 diagram consists of the ordinate ENC value and 
abscissa GC3 value, and the standard curve shows the 
functional relation between ENC and GC3. If the corre-
sponding points are distributed around or on the stand-
ard curve, we can conclude that the mutation pressure is 
an independent force in CUB. If the corresponding point 
is lower or far from the standard curve, the natural selec-
tion factor may play a key role in the formation of codon 
bias [63].

Correlation analysis
Correlation analysis was performed to illustrate the rela-
tionship among codon base composition (GC1, GC2, 
GC3, GCs), CAI, CBI, FOP, ENC, GRAVY, AROMO, 
L_sym, and L_aa of apicomplexan protozoa Trxs. Spear-
man’s rank correlation method was applied in correlation 
analysis. All processes were executed using the R corrplot 
package [64].

Phylogenetic analysis
The clustering analysis to the RSCU of Trxs was made 
among 32 representative apicomplexan protozoa using 
the method of squared Euclidean distance [2]. The phy-
logenetic tree was constructed using the neighbor-join-
ing method by MEGA 11.0 (https:// www. megas oftwa re. 
net/), and a cluster heat map was generated by Hemi 1.0 
software (http:// hemi. biocu ckoo. org/ down. php).

https://www.megasoftware.net/
https://www.megasoftware.net/
http://hemi.biocuckoo.org/down.php
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Software used
All indices of codon usage bias above were calculated in 
the data set using the program CodonW 1.4.2 (http:// 
codonw. sourc eforge. net/). Clustering and correlation 
analyses were conducted using the statistical software 
SPSS 18.0. Graphs were generated in GraphPad Prism 
6.01 (http:// www. graph pad. com/ scien tific- softw are/ 
prism/).

Results
Results of codon base composition in apicomplexan 
protozoa Trxs
CUB can be considerably influenced by the general base 
composition of genomes. We selected 32 Trxs from the 
11 apicomplexan protozoa for codon usage analysis 
(Additional file  1: Table  S1). Statistical analysis found 
that the encoding region length of these Trx ranged from 
255 to 1665  bp, with the Plasmodium vivax Trx gene 
having the longest length and the Eimeria necatrix Trx 
gene having the shortest. We further calculated the base 
composition of 32 Trxs, and our outcomes disclosed that 
Plasmodium spp. and Cryptosporidium spp. are rich in 
the A3, T3, and ATs bases, and Eimeria spp. and Babe-
sia spp. are rich in the G3, C3, and GCs bases (Fig.  1, 
Additional file 2: Table S2). The content of T3% is most in 
Cryptosporidium muris (56.52%) and least in E. necatrix 
(9.86%). The A3% content of Plasmodium yoelii (69.15%) 
is at a maximum level higher than that in other apicom-
plexan protozoa, while the content of G3% (3.27%) and 
C3% (9.46%) in P. yoelii is least among these apicompl-
exan protozoa (Fig.  1A, Additional file  2: Table  S2). In 
addition, nucleotide content analysis at the first, second, 
and third synonymous codon positions showed that the 
values of GC1% ranged from 31.31 to 63.12% (mean: 
44.52%), while GC3% ranged from 12.11 to 85.78% 

(mean: 46.98%). However, the GC2% values ranged from 
23.1 to 62.75%; the average value is the lowest (mean: 
32.57%, Fig. 1B, Additional file 2: Table S2).

Results of codon usage index analysis in apicomplexan 
protozoa Trxs
We calculated the CAI values of 32 Trxs from the 11 api-
complexan protozoa and found that the CAI values of 
Trxs ranged from 0.171 to 0.373 (Table 1). Among them, 
C. muris had the lowest CAI value, while the E. necatrix 
had the highest CAI value, indicating that the E. necatrix 
gene had a high codon bias. In terms of species, the Trxs 
of Eimeria spp. has the highest CAI value, followed by 
H. hammondi, while the CAI values of Cryptosporidium 
spp. are the lowest, indicating that Eimeria spp. have 
strong codon bias. The CBI values of the 32 Trxs that 
were  detected ranged from −  0.209 to 0.415 (Table  1). 
Among them, Cryptosporidium ubiquitum had the low-
est CBI value, and E. necatrix had the highest, which 
has a strong codon bias. The average FOP values ranged 
from 0.305 to 0.679 among the 32 Trxs detected, while 
C. muris had the lowest FOP value and E. necatrix had 
the highest FOP value with strong codon bias (Table 1). 
We further calculated the GRAVY values of 32 Trxs and 
the results showed that 25 of the 32 Trxs had negative 
GRAVY values, indicating that they might be  hydro-
philic proteins, while most Theileria spp. were consid-
ered hydrophobic (Table  1). The frequency of aromatic 
amino acids (AROMO value) ranges from 0.049 to 0.153 
(Table 1). Babesia bovis has the highest AROMO value, 
while Eimeria mitis is the lowest. The AROMO values of 
different apicomplexan protozoa Trxs varied obviously, 
with an average of 0.103. The average ENC value of all 32 
Trxs detected ranged from 30.77 to 61, with an average 
ENC value of 46.59. Only the ENC value of E. necatrix 

Fig. 1 Codon base composition in apicomplexan protozoa Trxs. The relative content of codon base composition in apicomplexan protozoa Trxs 
were calculated. A List the contents of the nucleotide at the third codon location (C3, T3, G3, and A3%) in apicomplexan protozoa Trxs. B GC% 
contents of all three codon locations (GC1, GC2, and GC3%) and total GCs% and ATs% contents in apicomplexan protozoa Trxs. X-axis represents 
percentages, while Y-axis represents different apicomplexan protozoa

http://codonw.sourceforge.net/
http://codonw.sourceforge.net/
http://www.graphpad.com/scientific-software/prism/
http://www.graphpad.com/scientific-software/prism/
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was < 35, and the others were more than 35, even equal 
to 61, indicating that these genes had a weak codon usage 
preference (Table 1). The data of L_sym (range from 81 to 
534) and L_aa (range from 85 to 555) are listed in Table 1.

Defining codon usage patterns in apicomplexan protozoa 
Trxs
An RSCU analysis was used to regulate the identical pat-
tern of codon usage in the Trxs of apicomplexan proto-
zoa. CUB was found to occur among these parasites, 
and 31 of the 32 apicomplexan protozoa contained > 24 
positive codon bias (RSCU ≥ 1), except Babesia bigemina 

(including 23 positive codon bias, Fig.  2, Additional 
file 3: Table S3). In addition, > 6 high-frequency codons 
(RSCU ≥ 1.6) among the 32 apicomplexan protozoa 
with 19 high-frequency codons in Plasmodium berghei 
ANKA, P. yoelii, and B. besnoiti indicate Plasmodium 
spp. have a stronger positive codon bias and only six 
high-frequency codons in B. bovis. Furthermore, from 
the RSCU analysis, we found that the most abundantly 
used codons in 32 apicomplexan protozoa are AGC 
(Ser) and UUA (Leu), while CGG (Arg) is seldom used, 
even never used in Cryptosporidium spp., B. besnoiti, 
C. cayetanensis, and H. hammondi. Among the optimal 

Table 1 Codon usage indices in apicomplexan protozoa Trxs

CAI, codon adaptation index; CBI, codon bias index; FOP, frequency of optimal codons; ENC, effective number of codons; GRAVY, general average hydropathicity; 
AROMO, aromaticity; L_sym, length of synonymous codons; L_aa, length of amino acids were calculated in apicomplexan protozoa Trxs by Codon W software, 
respectively

Single underline represents the minimum value; double underline represents maximum value

Species CAI CBI FOP ENC GRAVY AROMO L_sym L_aa

Babesia bigemina 0.305 0.177 0.525 35.62 0.291 0.107 99 103

Babesia bovis 0.208 − 0.030 0.408 59.98 0.074 0.153 360 372

Babesia microti 0.174 − 0.151 0.330 58.81 − 0.222 0.117 182 188

Babesia ovata 0.287 0.105 0.482 54.59 − 0.334 0.093 137 140

Besnoitia besnoiti 0.284 0.137 0.496 36.15 − 0.192 0.098 411 428

Cryptosporidium hominis 0.178 − 0.100 0.364 51.18 − 0.321 0.070 198 201

Cryptosporidium muris 0.171 − 0.206 0.305 41.70 − 0.325 0.081 177 185

Cryptosporidium parvum 0.176 − 0.130 0.345 44.25 − 0.322 0.070 197 201

Cryptosporidium ubiquitum 0.172 − 0.209 0.308 50.70 − 0.344 0.085 195 201

Cyclospora cayetanensis 0.271 − 0.022 0.420 50.21 − 0.384 0.076 100 105

Eimeria acervulina 0.241 − 0.066 0.385 50.81 − 0.067 0.098 96 102

Eimeria maxima 0.233 0.056 0.460 48.49 − 0.248 0.097 420 433

Eimeria mitis 0.327 0.275 0.599 42.28 − 0.410 0.049 299 305

Eimeria necatrix 0.373 0.415 0.679 30.77 0.225 0.106 81 85

Eimeria tenella 0.315 0.177 0.520 48.72 − 0.353 0.087 98 103

Gregarina niphandrodes 0.207 0.052 0.435 61.00 0.026 0.107 193 197

Hammondia hammondi 0.307 0.195 0.531 46.08 − 0.202 0.104 409 423

Neospora caninum Liverpool 0.276 0.142 0.496 45.32 − 0.249 0.093 415 428

Plasmodium berghei ANKA 0.179 − 0.133 0.350 35.82 − 0.348 0.121 406 420

Plasmodium chabaudi chabaudi 0.200 − 0.067 0.389 39.47 − 0.342 0.124 406 420

Plasmodium falciparum 3D7 0.192 − 0.118 0.356 42.84 − 0.301 0.123 413 424

Plasmodium gaboni 0.174 − 0.153 0.337 39.70 − 0.308 0.125 413 424

Plasmodium knowlesi 0.246 0.027 0.436 59.94 − 0.317 0.119 413 427

Plasmodium malariae 0.188 − 0.112 0.357 51.86 − 0.269 0.124 406 420

Plasmodium reichenowi 0.174 − 0.191 0.314 38.19 − 0.255 0.125 322 329

Plasmodium vivax 0.251 0.102 0.489 54.70 − 0.624 0.105 534 555

Plasmodium yoelii 0.178 − 0.134 0.349 35.87 − 0.370 0.121 407 420

Theileria annulata 0.185 − 0.101 0.342 45.83 0.173 0.094 146 149

Theileria equi 0.255 0.053 0.447 37.17 0.274 0.105 103 105

Theileria orientalis 0.203 − 0.115 0.348 59.42 − 0.168 0.079 135 140

Theileria parva 0.195 − 0.091 0.359 47.64 0.212 0.134 220 224

Toxoplasma gondii ME49 0.293 0.162 0.511 45.70 − 0.187 0.101 409 424
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Fig. 2 RSCU values in apicomplexan protozoa Trxs. Relative synonymous codon usage (RSCU) value was calculated by dividing the amino acids 
encoded by the same codons and their probability of appearing in the same codons. The color of the color block changes from blue to red, 
indicating that the RSCU values are increasing, of which an RSCU value > 1 indicates a positive codon bias. The homology of codons are also shown 
on the right side of the figure
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codons, the AGA (Arg), AGC (Ser), and AGG (Arg) have 
the highest value (RSCU = 6), followed by AGC (Ser, 
RSCU = 5.36) and CGC (Arg, RSCU = 4.5), indicating the 
strongest positive codon bias, while AAG (Lys) has the 
lowest value (RSCU = 0.04) among the 59 synonymous 
codons. In addition, GCA (Ala) is used as the optimal 
codon in Cryptosporidium spp., AGC (Ser) is used as the 
optimal codon in Eimeria spp., and CGC (Arg) is used as 
the optimal codon in B. besnoiti, H. hammondi, N. cani-
num, and T. gondii.

Results of neutrality plot analysis in apicomplexan 
protozoa Trxs
A plot of neutrality was performed, which implied the 
relationships between GC12 and GC3 composition to 
determine the position of mutation pressure and natu-
ral selection that has an impact on the CUB form. The 
GC12 content varied from 27.21 to 56.54%, and the GC3 
content varied from 12.11 to 85.78% (Additional file  2: 
Table  S2). To observe the association, we programmed 
a paradigm on the plot of neutrality between GC12 and 
GC3 for the 32 Trxs in apicomplexan protozoa. These 32 
apicomplexan protozoa were divided into six groups: (A) 
Babesia spp., (B) Cryptosporidium spp., (C) Eimeria spp., 
(D) Plasmodium spp., (E) Theileria spp., and (F) others 
(including B. besnoiti, C. cayetanensis, G. niphandrodes, 
H. hammondi, N. caninum, and T. gondii). The slopes of 

the regression lines ranged from − 0.1598 (Eimeria spp.) 
to 0.5124 (Theileria spp.), indicating that the content of 
GC12 and GC3 in apicomplexan protozoa Trxs is weakly 
associated (Fig. 3). In addition, the R2 value of the stand-
ard curve ranged from 0.993 (Eimeria spp.) to 0.8491 
(Plasmodium spp.). There was no significant correlation 
between GC12 value and GC3 value (p > 0.05), which 
indicated that natural selection may play an important 
role in driving the evolution of Trxs in apicomplexan 
protozoa. This phenomenon is similar to the findings of 
previous studies.

Results of PR2‑bias plot analysis in apicomplexan protozoa 
Trxs
To determine whether Trxs in apicomplexan protozoa 
have biases, we further performed a Parity Rule 2 (PR2) 
plot analysis (Fig. 4). Both axes were centered on 0.5 to 
divide the plot into four quadrants. In the first quadrant, 
the optimal codons are A and G, and the optimal codons 
are T and C in the third quadrant. The Babesia spp., B. 
besnoiti, C. cayetanensis, H. hammondi, N. caninum, and 
T. gondii prefer codon T to A (Fig.  4A, F). The optimal 
codon in Cryptosporidium spp. is G (Fig. 4B). Most of the 
dots were found to be distributed in the second quadrant 
of the Eimeria spp. and Plasmodium spp. (preferring A to 
T and C to G, Fig. 4C, D), with random codon usage in 
Theileria spp. (Fig. 4E). The analysis results showed that 

Fig. 3 Neutrality plot analysis in apicomplexan protozoa Trxs. The correlations between the average GC codon content in GC1 and GC2 (GC12) 
and the third codon position (GC3) were analyzed and the standard curve and  R2 in apicomplexan protozoa Trxs, respectively. X-axis represents 
GC3%, while Y-axis represents GC12%. A Babesia spp., B Cryptosporidium spp., C Eimeria spp., D Plasmodium spp., E Theileria spp., F others (including 
Besnoitia besnoiti, Cyclospora cayetanensis, Gregarina niphandrodes, Hammondia hammondi, Neospora caninum, and Toxoplasma gondii)
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other factors, such as natural selection, play an impor-
tant role in the process of codon bias in apicomplexan 
protozoa.

Results of ENC‑GC3 plot analysis in apicomplexan protozoa 
Trxs
To further confirm the influence of GC3s on the codon 
bias of Trxs in apicomplexan protozoa, a distribution 
plot was employed that deviated from the same usage of 
indistinguishable codons (Fig. 5). In this study, ENC val-
ues were used against the GC3, and the standard curve 
indicates that the functional relationship between ENC 
and GC3 is influenced by mutation pressure rather than 
natural selection. If the GC subject of the gene exhibits 
mutational pressure, all the points in this plot will lie 
on the expected curve, indicating random codon usage. 
However, if there was natural selection pressure on 
the gene, most of the points were below the expected 
curve and just a few points beyond it (Babesia bovis, B. 
microti, B. ovata, Eimeria tenella, Plasmodium knowlesi, 
P. malariae, G. niphandrodes). The results showed that all 
of the points were closed to the standard curve without 

lying on it, which indicates that mutation pressure is not 
the only factor that shapes codon bias, and natural selec-
tion also plays a key role in codon bias formation.

Results of correlation analysis in apicomplexan protozoa 
Trxs
To intuitively display the indices related to the 12 main 
contributors, correlations of the important indices were 
calculated to determine the important factors that result 
in codon bias (Fig. 6). In Babesia spp., the values of GC1, 
GC2, ENC, GRAVY, and AROMO did not correlate with 
other indices, while GC3 was correlated with GCs, CAI, 
CBI, and FOP (p < 0.05, Fig. 6A). In addition, we did not 
observe a significant correlation between GC1 and GC2 
or GC3 in Babesia spp., Cryptosporidium spp., Eimeria 
spp., and Theileria spp., except Plamodium spp. (Fig. 6). 
CBI value was significantly correlated with the FOP 
among these apicomplexan protozoa (p < 0.01). There 
was a significant correlation between the ENC and GC1 
contents in Eimeria spp. and Plasmodium spp., which 
might lead to an assumption about the usage of synony-
mous codons suffered from natural selection (Fig. 6C, D). 

Fig. 4 PR2-bias plot analysis in apicomplexan protozoa Trxs. The correlations between A3/(A3 + U3) and G3/(G3 + C3) were analyzed 
in apicomplexan protozoa Trxs, respectively. If the codon has no usage bias, A = T and C = G, the value was in the center point of the plot. The first 
quadrant represents the codon preference of A/G, and the third quadrant represents T/C preference. X-axis represents GC3%, while Y-axis represents 
GC12%. A Babesia spp., B Cryptosporidium spp., C Eimeria spp., D Plasmodium spp., E Theileria spp., F others (including Besnoitia besnoiti, Cyclospora 
cayetanensis, Gregarina niphandrodes, Hammondia hammondi, Neospora caninum, and Toxoplasma gondii)



Page 9 of 14Wang and Yang  Parasites & Vectors          (2023) 16:431  

Furthermore, only a few indices correlate with Theileria 
spp. (Fig. 6E); however, almost all indices correlate with 
Plasmodium spp. (Fig. 6D), which indicated both muta-
tion pressure and natural selection play a key role in 
codon bias formation.

Results of phylogenetic analysis in apicomplexan protozoa 
Trxs
To assess the consequence of evolutionary procedures on 
the Trxs in apicomplexan protozoa codon usage patterns, 
32 apicomplexan protozoa RSCU values of Trxs were 
used for the cluster analysis (Fig. 7A). The results showed 
that all the species are divided into two big clusters at the 
evolution distance; the Babesia spp. and Theileria spp. 
were also separated into different clusters, respectively, 
while Plasmodium spp. and Cryptosporidium spp. were 
in the same cluster. Compared with the phylogenetic 
relationship based on RSCU, a phylogenetic analysis 
was used by CDS through the neighbor-joining method 
(Fig. 7B). Based on CDS phylogenetic analysis, the Babe-
sia spp. and Theileria spp. were in different evolutionary 

clades of the same cluster, which is closer to the real 
evolution.

Discussion
Across long-term evolution, organisms will eventually 
develop a specific set of codon usages, which preserves 
the conveyance of genetic information between nucleo-
tides and amino acids [65, 66]. Nevertheless, disparate 
genes of the same or distinct species display varying pre-
dilections towards codon usage [67]. Consequently, CUB 
analysis offers valuable insights into the regulatory mech-
anisms of translation processes and facilitate exogenous 
gene prediction and optimization for improved expres-
sion levels through industrial modification [59, 68]. To 
date, the characteristics of codon usage for thioredoxin 
genes of apicomplexan protozoa have not been fully 
understood.

Trx is a type of redox protein, which plays an impor-
tant role in metabolic redox regulation, parasite sur-
vival, host immune evasion, and the invasion process of 
apicomplexan protozoa [69–74]. The length and codon 

Fig. 5 ENC-GC3 plot analysis in apicomplexan protozoa Trxs. The correlations between the effective number of codons (ENC) and the contents 
of the nucleotide G/C at the third codon location (GC3) were analyzed in apicomplexan protozoa Trxs, respectively. The standard curve represents 
the functional relationship between ENC and GC3 under mutation pressure rather than natural selection. X-axis represents GC3%, while Y-axis 
represents ENC. A Babesia spp., B Cryptosporidium spp., C Eimeria spp., D Plasmodium spp., E Theileria spp., F others (including Besnoitia besnoiti, 
Cyclospora cayetanensis, Gregarina niphandrodes, Hammondia hammondi, Neospora caninum, and Toxoplasma gondii)



Page 10 of 14Wang and Yang  Parasites & Vectors          (2023) 16:431 

base composition of Trxs in apicomplexan protozoa 
showed large variations, indicating the differentiation of 
apicomplexan protozoa Trxs. It is reported that the dif-
ference in synonymous codons is mainly reflected in the 
difference in the third codon. In this study, we found that 
the Cryptosporidium spp. and Plasmodium spp. tend to 
end with A/T, which is similar to previous research on 
P. falciparum, Mycoplasma capricolum, and Onchocerca 
volvulus, being enriched with A and T. Eimeria spp., 
Babesia spp., H. hammondi, N. caninum, and T. gondii, 
were rich in C3/G3, which proved that one specific gene 
shows diverse codon usage bias in different species and 
the results are consistent with the feature of apicompl-
exan protozoa codon usage in other genes [75, 76]. Most 
high-frequency Trx codons analyzed by RSCU also show 
the same tendency of using the third codon in apicompl-
exan protozoa. In addition, the CAI, CBI, and Fop values 
of E. necatrix were the highest, which indicates a strong 
codon bias. An ENC value < 35 indicates a strong codon 

preference [77, 78]. The average ENC of these 32 apicom-
plexan protozoa was 46.59 in this study; all ENC values 
except Eimeria necatrix (30.77) were > 35, which indi-
cates a weak codon preference among apicomplexan pro-
tozoa. Furthermore, we detected the correlations among 
codon base composition (GC1, GC2, GC3, GCs), CAI, 
CBI, FOP, ENC, GRAVY, AROMO, L_sym, and L_aa, 
indicating the influence of base composition and codon 
usage indices on CUB, which show a significant corre-
lation in Plasmodium spp. The neutrality plot analysis, 
PR2-bias plot analysis, and ENC-GC3 plot analysis fur-
ther demonstrated that natural selection plays an impor-
tant role in Trxs of apicomplexan protozoa codon bias. 
Despite some differences in codon usage indices among 
apicomplexan protozoa, their common point was that 
CUB of Trx was affected by strong natural selection.

Apicomplexans are a class of obligate intracellular 
parasitic protozoa, with a large geographical distribu-
tion, which are important pathogens for humans and 

Fig. 6 Correlation analysis in apicomplexan protozoa Trxs. The correlations among codon base composition (GC1, GC2, GC3, GCs), codon 
adaptation index (CAI), codon bias index (CBI), frequency of optimal codons (FOP), effective number of codons (ENC), general average 
hydropathicity (GRAVY), aromaticity (AROMO), length of synonymous codons (L_sym), and length of amino acids (L_aa) were analyzed 
in apicomplexan protozoa Trxs, respectively. The color of the color block changes from blue to red, indicating that the correlation is increasing. 
X-axis represents correlation, while Y-axis represents different apicomplexan protozoa. A Babesia spp., B Cryptosporidium spp., C Eimeria spp., D 
Plasmodium spp., E Theileria spp., F others (including Besnoitia besnoiti, Cyclospora cayetanensis, Gregarina niphandrodes, Hammondia hammondi, 
Neospora caninum, and Toxoplasma gondii). One asterisk (*) indicates a significant correlation among indices at p < 0.05; two asterisks (**) indicate 
the correlation at p < 0.01; Three asterisks (***) indicate the correlation at p < 0.001
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animals and can cause serious zoonotic diseases such 
as malaria, toxoplasmosis, and cryptosporidiosis [35, 
39–44, 79]. Besides, apicomplexans are believed to have 
been obtained from Protista, dividing into aconoidasida 
and conoidasida, including T. gondii, Plasmodium spp., 
Cryptosporidium spp., Eimeria spp., Babesia spp., Thei-
leria spp., and N. caninum. At present, the RSCU clus-
tering and CDS phylogenetic tree are widely used for 
analyzing the evolutionary relationship of the same gene 
in different species. These two clustering analysis meth-
ods have consistent results in some species, while oth-
ers differ significantly [2]. In this study, we analyzed the 
relationship of Trxs in different apicomplexan protozoa 
based on CDS and RSCU, respectively. Actually, the phy-
logenetic relationships based on CDS are more reliable, 
which is different from the RSCU-based relationships, 
especially for the Babesia spp. and Theileria spp. How-
ever, the genetic relationship between some species was 
correctly interpreted according to the RSCU value, which 
was consistent with other studies [60, 80]. The results 

show that the phylogenetic results based on RSCU can 
be an important supplement to the phylogenetic results 
based on the sequence.

Conclusions
Many factors can result in the CUB of organisms. For the 
Trxs in apicomplexan protozoa, natural selection is found 
to dominate the high CUB. We believe that mutation 
pressure only plays a relatively minor role. Moreover, our 
study provides new insight into the exploration of setting 
up new methods for species taxonomy, though a trial still 
needs to be conducted in the future.
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