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Abstract 

Background Models can be used to study and predict the impact of interventions aimed at controlling the spread 
of infectious agents, such as Taenia solium, a zoonotic parasite whose larval stage causes epilepsy and economic 
loss in many rural areas of the developing nations. To enhance the credibility of model estimates, calibration 
against observed data is necessary. However, this process may lead to a paradoxical dependence of model param‑
eters on location‑specific data, thus limiting the model’s geographic transferability.

Methods In this study, we adopted a non‑local model calibration approach to assess whether it can improve 
the spatial transferability of CystiAgent, our agent‑based model of local‑scale T. solium transmission. The calibration 
dataset for CystiAgent consisted of cross‑sectional data on human taeniasis, pig cysticercosis and pig serology col‑
lected in eight villages in Northwest Peru. After calibration, the model was transferred to a second group of 21 desti‑
nation villages in the same area without recalibrating its parameters. Model outputs were compared to pig serology 
data collected over a period of 2 years in the destination villages during a trial of T. solium control interventions, based 
on mass and spatially targeted human and pig treatments.

Results Considering the uncertainties associated with empirical data, the model produced simulated pre‑interven‑
tion pig seroprevalences that were successfully validated against data collected in 81% of destination villages. Further‑
more, the model outputs were able to reproduce validated pig seroincidence values in 76% of destination villages 
when compared to the data obtained after the interventions. The results demonstrate that the CystiAgent model, 
when calibrated using a non‑local approach, can be successfully transferred without requiring additional calibration.

Conclusions This feature allows the model to simulate both baseline pre‑intervention transmission conditions 
and the outcomes of control interventions across villages that form geographically homogeneous regions, providing 
a basis for developing large‑scale models representing T. solium transmission at a regional level.
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Background
Taenia solium is a zoonotic cestode parasite that infects 
human and pig hosts. In humans, most of the morbid-
ity occurs when, after the ingestion of T. solium eggs, the 
resulting metacestode stage of this parasite infects the 
central nervous system with cysts (neurocysticercosis, 
NCC). NCC can lead to headaches, seizures, intracra-
nial hypertension and sometimes death [1, 2]. Humans 
can also host the adult stage T. solium tapeworm in the 
intestines (human taeniasis, HT), acquired by ingesting 
cysts harbored in pig tissues. Pigs become infected with 
T. solium cysts (pig cysticercosis, PC) by ingesting human 
feces containing T. solium eggs produced by intesti-
nal tapeworms in HT. This transmission cycle typically 
occurs in rural areas where pigs roam freely and have 
access to human feces due to a lack of sanitation infra-
structure. Poor hygiene practices contribute to human 
NCC mainly through the fecal-oral route.

Three decades ago, T. solium was identified as a poten-
tially eradicable parasite [3]. Although many control 
interventions since have been tested [4–9], most have 
achieved only modest reduction in transmission in the 
short term, with long-term effects remaining unknown 
because the interventions and/or monitoring typically 
have not continued beyond the end of the study. Short, 
resource-intensive interventions targeting elimination in 
relatively small geographic areas have achieved profound, 
short-term reduction in transmission [10, 11], but long-
term evidence of sustained elimination effect is simi-
larly absent. These limitations are primarily the result 
of resource limitations for addressing neglected tropical 
diseases, as the development and testing of interven-
tions to increase both short- and long-term effectiveness 
and impact require significant investments of time and 
resources. Models of T. solium transmission and, more 
broadly, of helminth diseases [12], can aid in designing 
and testing new elimination or control intervention strat-
egies in  vitro, reducing the costs and time required for 
the transition from design to field implementation [13, 
14].

To simulate the entire range of processes involved in 
the transmission of T. solium, models should encompass 
a broad range of temporal and spatial scales [15]. Mul-
tiple temporal scales are needed to simulate both short-
term impacts and possible long-term resurgence, while 
multiple spatial scales are necessary to capture the dif-
ferent drivers of transmission. Small-scale spatial pro-
cesses influence the formation of transient transmission 
hotspots around households with HT [16]. The distribu-
tion and density of sanitation facilities, free roaming pig-
raising practices, land cover types and socioeconomic 
factors contribute to village-scale processes. Large-scale 
processes such as human movements and pig and pork 

trade between villages and urban centers also play a role 
in determining both village- and regional-scale trans-
mission [17]. However, the design and use of multilevel 
T. solium models integrating both local- and large-scale 
dynamics are challenging because of the lack of similarly 
scaled real-world outcome data. Large-scale and longitu-
dinal data on HT and PC are often not collected because 
of cost, complexity and the confounding effects that 
measurement may have on  the system under study (HT 
must be treated when diagnosed).

To address these issues associated with large-scale 
models, we developed a non-local approach to the Bayes-
ian calibration of CystiAgent, our agent-based model 
(ABM) of T. solium transmission [18]. This calibration 
methodology exclusively relies on non-local parameters 
that represent biological processes that should be invari-
ant across villages with similar populations. An example 
of such parameters is the probability of acquiring HT 
infection upon ingestion of a single T. solium cyst. In 
contrast, village-specific or local parameters are incorpo-
rated in the model but are not subjected to calibration. 
For every new simulated village, the specific values of 
these local parameters, which are deliberately chosen to 
be easily and inexpensively collected, must be known.

Simulated and observed outcome data from a group 
of calibration villages are represented through vectors, 
and calibration performance is evaluated by comparing 
the distance between the vectors of observed and simu-
lated data. Therefore, the process of non-local calibration 
looks for a model parametrization that is optimal not 
only for a single village but also for all the calibration vil-
lages together. This characteristic, coupled with the fact 
that the calibration parameters are all non-local and thus 
exportable from village to village, makes the resulting cal-
ibrated parametrization potentially spatially transferable 
to other villages outside the calibration group without 
any additional calibration.

In our first attempt to apply this non-local approach, 
we calibrated the model using HT and PC prevalences as 
target observables in three villages and then successfully 
transferred the calibrated model to five additional nearby 
villages [18]. This was an important initial step in evaluat-
ing this approach, but it was limited to a small number of 
villages located in a very small geographical area, and the 
validation of geographic transferability was based on a 
qualitative comparison between observed and simulated 
data collected during one single field trial. While replica-
tion using additional datasets and a more robust quanti-
tative assessment are necessary to gain confidence with 
this calibration approach, appropriate datasets contain-
ing the outcomes of HT and PC prevalence from a large 
number of villages are not available. This barrier could 
potentially be addressed if our model could simulate pig 
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exposure to the pathogen (in addition to PC infection) as 
a model outcome, as the prevalence of antibodies against 
T. solium in pigs has been measured in many cross-sec-
tional and interventional studies [8, 19–21].

In this article, we extend our previously published ABM 
of local-scale T. solium transmission, CystiAgent [18, 22], 
by incorporating a new module to simulate the develop-
ment of serum antibodies against T. solium in individual 
pigs. This model update allowed us to complete a more 
robust assessment of the non-local calibration method 
by validating CystiAgent against longitudinal datasets 
gathered during previously published community inter-
vention trials that used pig seroprevalence as an outcome 
measure. We anticipate that this revised CystiAgent 
model, updated with the capacity to simulate pig expo-
sure and with demonstrated geographical transferability 
among villages within a region, can serve as a founda-
tional component in the development of multilevel mod-
els encompassing multiple villages and urban areas.

Methods
Overview of approach
As a first step we develop and introduce a new module 
into the ABM capable of representing the process of pig 
development of antibodies upon exposure to T. solium 
eggs or through maternal transmission. We then used 
existing datasets from two distinct previously published 
community intervention trials to calibrate the model and 
then to assess its transferability. The revised model was 
calibrated, following the non-local approach described 
above, using observed data of human taeniasis preva-
lence (HTP), pig cysticercosis prevalence (PCP) and 
pig seroincidence (PSI) obtained from eight rural vil-
lages located in the Piura region in northern Peru. The 
resulting calibrated parameters was then transferred to 
a second group of 21 geographically separate destination 
villages located in the same department. Baseline values 
and intervention impacts were simulated, and the pig 
seroprevalence data collected during an intervention trial 
in the destination villages were used to quantitatively val-
idate both the spatial transferability of the model and the 
effect of control interventions simulated by the model.

Model description
ABM short description
CystiAgent is an ABM that simulates T. solium transmis-
sion in a rural village. The model will be briefly described 
below while the details of the core structure are described 
elsewhere [18]. The model incorporates humans, pigs 
and households as agents, capturing the essential factors 
for T. solium transmission. It considers the geographical 
distribution of households, human and pig populations, 
and their behaviors. Human agents are associated  with 

outdoor defecation sites around their households, which 
become contaminated if they carry a tapeworm. The 
degree of contamination depends on the availability and 
use of latrines. Pigs can become infected by coming into 
contact with contaminated sites within their roaming 
areas. The model calculates the number of T. solium cysts 
in infected pigs based on the level of contamination they 
are exposed to.

Both the human and pig populations are dynamic, 
reflecting natural rates of births, deaths, emigration and 
immigration. New human agents are periodically intro-
duced to simulate migration or visits. The pig population 
aligns with observed herd size, slaughter age and import/
export patterns in the region. Each household manages 
its herd size through export, sale or slaughter. When a 
pig is slaughtered at home, the resulting pork portions 
are distributed among the members of the household 
owning the pig as well as neighboring households, and 
subsequently consumed. Ingesting a T. solium cyst is 
associated with a probability of developing a tapeworm, 
and multiple tapeworm infections are not allowed. The 
model does not consider human cysticercosis or related 
seizure disorders. Minor modifications to the CystiAgent 
core are described in Additional file 1.

Pig seroconversion module
To compare the simulated and observed values of PSI, a 
new module was added to the previous version of Cys-
tiAgent [18] to simulate the pig seroconversions pro-
cess. In the model, a pig is considered seropositive if it 
has developed a level of antibodies that would result in 
a positive EITB assay according to the experimental 
setup described above. As depicted in the flow diagram 
in Fig.  1, the model accounts for four potential causes 
of serological state change in pigs: infection, exposure 
to T. solium proglottids or eggs and transfer of maternal 
antibodies.

The seroconversion is reversible only in the latter case, 
and the piglet returns to a seronegative state following 
weaning unless it has become positive through infec-
tion or exposure. The process of seroconversion through 
exposure is based on the calculation of T. solium con-
tamination levels to which the pig is exposed during each 
model time-step (1 week). As described in [18], the levels 
of contamination from proglottids CP and eggs CE are 
assumed to be proportional to the number of defecation 
sites contaminated with proglottids and eggs within the 
pig roaming area, respectively. The factor seroConvertP-
toEFact accounts for the lower density of T. solium eggs 
in a site contaminated with eggs compared to a site con-
taminated with proglottids. For each simulation time step 
and for each pig agent, the model counts the number of 
defecation sites contaminated with proglottids, eggs or 



Page 4 of 16Pizzitutti et al. Parasites & Vectors          (2023) 16:410 

both to which the pig is exposed. The resulting contami-
nation levels are then inputted into an exponential dose-
response model to calculate the weekly probability of 
seroconversion (Psc(t)) for each pig during the timestep t:

where CT(t) = CP(t)+ seroConvertPtoEFact • CE(t) 
represents the total contamination to which the pig is 
exposed during the time step t and seroConvert is the 

(1)Psc(t) = 1− e
−seroConvert•CT(t),

exponential dose–response model factor. If exposure 
results in seroconversion, the pig’s serological state 
changes to seropositive after a latency period of 2 week 
(as specified by the model parameter: “seroconversionLa-
tency”). The process of seroconversion through maternal 
antibody transfer is represented as follows: when piglets 
are born to a PC-infected sow, they acquire maternal 
antibodies and become immediately seropositive with a 
probability specified by the model parameter “propPig-
letsMaternalProtection,” regardless of the mother’s cysts 
burden. The piglet’s seropositive status is maintained for 
a period of 14 weeks [23], after which the piglet serocon-
verts to seronegative. During this period, the piglet is 
exposed to T. solium environmental contamination and, 
like any other pig agent, can seroconvert through expo-
sure with a weekly probability Psc(t) . The parameters 
introduced in the seroconversion module of CystiAgent 
are presented in Table 1. Three of these parameters were 
selected for the purpose of calibrating the model.

Origin and destination field trial datasets
In this study, two separate datasets are used. The first 
dataset (referred to as the “origin dataset”) serves as the 
calibration set, while the second dataset (the “destination 
dataset”) is used to evaluate the spatial transferability and 
the simulated intervention effects. These datasets stem 
from two distinct community cluster randomized trials 
conducted in rural villages situated in two separate areas 
of the region of Piura in the northwest region of Peru 
(Fig. 2). In these rural communities, pigs are allowed to 
roam freely, access to proper sewage and latrine systems 
is limited, and open defecation practices are prevalent, 
leading to exposure of pigs to human feces and hence to 
the creation of an optimal environment for the transmis-
sion of T. solium [11].

The origin trial [4, 5], conducted between 2014 and 
2015, aimed at evaluating the impact of education and 
increased community surveillance on T. solium trans-
mission in eight villages. The trial resulted in a com-
prehensive household census and in the collection of 
blood samples from all pigs older than 6 weeks over four 
rounds. At the end of the trial, the HTP and PCP were 

Fig. 1 Flow diagram representing the process of development 
of antibodies against T. solium in pig. In the diagram numCysts 
is the number of cysts infecting the pig and Psc is the probability 
of seroconversion

Table 1 Seroconversion module model parameters

a Value obtained through calibration

Parameter name Value Notes References

seroconvert (a) Calibration parameter

seroConvertPtoEFact (a) Calibration parameter

seroconversionLatency 2 weeks Latency of seroconversion after exposure [24]

propPigletsMaternalProtection (a) Calibration parameter

maternalAntibodies‑PersistenceTime 14 weeks Persistence of maternal antibodies in piglets 
after birth

[23]
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determined through mass human stool screening and 
pig necroscopy, respectively. No significant effects of 
increased community surveillance were observed at the 
end of the trial period, so all the data collected can be 
considered representative of the baseline endemic level 
of all enrolled villages.

The destination dataset is derived from a field control 
intervention trial conducted from 2015 to 2017 [8]. Out 
of the 23 villages included in the trial, data from 21 vil-
lages were used to create the destination dataset, while 
the remaining two villages were excluded because of 
the small pig population (7 pigs) or the absence of sig-
nificant seroprevalence at the baseline pre-intervention 
stage (no transmission ongoing) [25]. Analogously to the 
origin trial, a baseline household census was conducted 
to gather information relevant to T. solium transmis-
sion. The villages were randomly assigned to six different 
intervention arms each with a different T. solium control 
strategy. Three of these arms focused solely on human 
intervention: Mass Treatment (Mass Trt), Ring Treat-
ment (Ring Trt) and Ring Screening (Ring Scr). The 
remaining three arms targeted both humans and pigs: 
Mass Trt (P), Ring Trt (P) and Ring Scr (P). In the Mass 
Trt strategy, all village residents ≥ 2  years old received a 
single dose of niclosamide every 6 months for a total of 
five treatment rounds. The Ring Trt involved conducting 
an active surveillance based on pig tongue inspection [26, 
27], every 4 months for seven rounds. If cysticercosis was 
found in the tongue of a pig, a 100-m treatment ring was 
established around the household owning the pig. All 
members ≥ 2  years old from households within the ring 
were treated with two oral doses of niclosamide sepa-
rated by 15 days. All the tongue-positive pigs were either 
purchased or treated with a single dose of oxfendazole. 
In the Ring Scr approach, the same active surveillance 

based on pig tongue inspection was conducted. Upon 
identifying a ring, stool samples were requested from vil-
lagers ≥ 2  years old residing within the ring and tested 
for Taenia spp. eggs or antigens. Individuals diagnosed 
with HT were offered a single dose of niclosamide treat-
ment. The Mass Trt (P) strategy added pig treatment to 
human treatment with seven rounds of mass pig treat-
ment occurring every 4 months. In Ring Trt (P) and Ring 
Scr (P) strategies, only pigs aged > 5  weeks within the 
identified rings were treated. The primary outcome of the 
trial was the determination of the PSI in all pigs aged > 
5 weeks and born during the two year study through 7 
pig serosurveys conducted every 4 months [8]. The sec-
ondary outcome of the study was HTP, which was deter-
mined offering presumptive niclosamide treatment at the 
study end to all residents ≥ 2 years old and collecting and 
testing stool samples from all treated individuals.

Pig serological outcome data were based on the 
enzyme-linked immunoelectrotransfer blot (EITB), 
which detect antibodies against T. solium cysticercosis in 
pigs [28]. Reaction to any of six glycoproteins, GP39/42, 
GP24, GP21, GP18, GP14 or GP13, was considered a pos-
itive result. The GP50 band was not considered because 
of the known cross-reaction with Taenia hydatigena, a 
co-endemic and highly prevalent infection of pigs [29].

Model calibration
The CystiAgent model was calibrated and validated based 
on empirical observations of HTP, PCP and PSI as target 
data  in this study. In the model there is not an explicit 
representation of immunity in pigs. As result, pig sero-
conversion has no impact on the transmission process. 
Hence, as illustrated in Fig.  3, the calibration process 
was divided into two distinct stages: transmission cali-
bration followed by seroconversion calibration. Model 

Fig. 2 Study area maps; a the Piura region in north Peru; b the relative location of the 8 origin villages and the 21 destination villages. Each dot 
on the map represents a different household. Households from the same village are in the same color. Households from origin villages are showed 
in shades of blue while the households from destination villages are represented in shades of green, orange and yellow
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parameters were separated in two categories: local and 
non-local. As shown in Table 2, six non-local parameters 
were selected as calibration parameters. These param-
eters are connected with the processes of human and pig 
infection and pig seroconversion. Table 2 also shows the 
local parameters that vary from village to village  in this 
study. The rest of parameters were kept constant across 
different villages. 

We applied the sequential Monte Carlo (SMC) 
approach to the likelihood-free method of approximate 
Bayesian computation (ABC), as described in [18, 30] 
for model  calibration. We used a non-local approach to 
calibration [18]. The SMC method involves generating 
a sequence {εi} of decreasing ABC tolerances. For each 
tolerance εi, a straightforward ABC rejection sampler is 

executed, followed by exploration of the parameter space 
using importance sampling guided by the posterior dis-
tribution obtained in the previous stage. The initial rejec-
tion sampler begins with a uniform prior distribution 
of calibration parameters, spanning a wide and reason-
able range of parameter values (see Additional file  1). 
The ABC distance function was defined as a normalized 
Euclidean distance between the observed and simulated 
vectors of target values for the 8 calibration villages [18]. 
During the calibration process, the first ABC-SMC stage 
involved 120,000 sampling points each corresponding to 
a different combination of calibration parameters. The 
second stage used 60,000 sampling points, the third stage 
used 40,000 sampling points, and the fourth stage used 
30,000 sampling points. From the first to the fourth stage, 

Fig. 3 Model calibration and validation scheme

Table 2 Local parameters that vary from village to village and non‑local parameters used to calibrate the model

Parameter name Description

Non‑local

 pHumanCyst Probability of human HT upon ingestion of a single Taenia solium cyst. Transmission calibration parameter

 pigProglotInf Average number of cysts infecting a pig through a weekly exposure to one defecation site contaminated with T. 
solium proglottid. Transmission calibration parameter

 pigEggsInf Average number of cysts infecting a pig through a weekly exposure to one defecation site contaminated with T. 
solium eggs. Transmission calibration parameter

 seroconvert Parameter of the dose–response exponential model representing the process of pig seroconversion. Seroconversion 
calibration parameter

 seroConvertPtoEFact Parameter that accounts for the lower density of T. solium eggs in a site contaminated with egg compared to a site 
contaminated with proglottids. Seroconversion calibration parameter

 propPigletsMaternalProtection Proportion of infected sows that pass T. solium antibodies to their offspring. Seroconversion calibration parameter

Local

 Household distribution Geographical location of each village household

 Household Number of people in each village household

 Household pig composition Households owning pigs in the village and number of owned villages

 Latrine Distribution of latrine in the village among the village households

 Corral Distribution of corrals in the village households

 corralUse Use of corral among pig‑owner households (always, sometimes, never)
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only one simulation per sampling point was performed. 
The tolerance of each stage was set to accept the 20 sam-
pling points that produced the lower values of the dis-
tance between observed and simulated vectors of target 
data. This tolerance was chosen as a trade-off between 
the convergence speed of ABC-SMC and the accuracy 
of sampling in the calibration vector space. In the fourth 
stage, both for transmission and seroconversion calibra-
tions, the process converged as the distance between 
observed and simulated data for the best performing 
sampling point did not decrease compared to the third 
stage. To mitigate incorrect acceptance of sampling 
points due to the fluctuations of model output, after the 
first four stages we conducted six additional ABC-SMC 
rounds of 5000 points each. In these rounds, for each 
sampling point the simulations were repeated eight times 
and the average of the results from these eight repetitions 
was used to calculate simulated target data.

Estimation of empirical errors in the destination dataset 
and assessment of model transferability
The model was considered to have been successfully 
transferred to a destination village if the simulated value 
of PSI for that village fell within the error interval defined 
by twice the standard deviation (SD) of the time series of 
observed PSI values in that village. A direct calculation 
of PSI variance for the destination dataset is not feasi-
ble because of the absence of longitudinal observations 
in this trial. However, it is possible to hypothesize that 
intra-village variances are homogeneous across both the 
origin and destination villages, provided that this homo-
geneity holds true for the origin villages. This hypothesis 
of intra-village variance homogeneity across the origin 
villages can be tested using a Fligner-Killen test [31]. The 
resulting p-value of 0.722 indicates that intra-village vari-
ances are indeed homogeneous across the origin villages. 
To estimate the intra-village variance from the entire ori-
gin dataset, we considered the following random effect 
model:

The observed PSIVp of village V is expressed as the sum 
of µ that is the average PSI value across all villages, UV a 
random effect to account for inter-village variability and 
WVp a random term accounting for intra-village variabil-
ity due to individual pigs. The corresponding total vari-
ance σVW will be expressed as:

The variances σV of the UV term and σW of the WVp 
term represent the inter- and the intra-village vari-
ances associated to empirical PSI, respectively. This for-
mulation assumes that the measurements of porcine 

(2)PSIVp = µ+UV +WVp.

(3)σVW = σV + σW,

cysticercosis at successive time points are uncorrelated, 
which may not be the case if the time interval between 
measurements is too short. If the time points are corre-
lated, then we are underestimating the standard devia-
tion. The random model was fit using the lmer module of 
the R package lme4 [32].

Simulation of spatially targeted interventions
As noted, CystiAgent explicitly represents the geographic 
space of simulated communities. As a result, not only can 
the observed spatial clustering of the parasite [16] be rep-
licated by the simulations, but the model also allows for 
the simulation of spatially targeted interventions aimed 
at reducing the parasite burden in selected transmis-
sion hotspots. This is essential for simulating the effect 
of interventions based on the ring strategy adopted in 
the destination dataset. The ring interventions are simu-
lated by the model exactly replicating the experimental 
protocol described in [8]. For Mass Trt and Mass Trt (P) 
interventions, humans and pig agents in the appropri-
ate age segments were selected at random in the village 
and then treated. For Ring Trt, Ring Trt (P), Ring Scr and 
Ring Scr (P) intervention strategies, pigs were selected at 
random for tongue inspection (see the Table 3 for tongue 
inspection sensitivity and specificity used in the model). 
For each tongue-positive pig, a 100-m ring was opened, 
and humans were screened and/or treated accordingly. 
The efficacies of human niclosamide and pig oxfenda-
zole treatments used in the model are shown in Table 3. 
The participation rates for pig tongue inspection, human 
stool screening and human treatment were set to be 
equal to the corresponding participation rates in the field 
trials for each round of each village.

Model software and simulations setup
The model was implemented using the MASON plat-
form [36], a free, Java-based, discrete-event multi-agent 
toolkit, together with our in-house Java code for ABC 
calibration. Each village simulation started with 3500 
burn-in time steps. The results reported in this study 
were obtained from 128 repeated simulations for each 
parametrization of the model. Within each simulation, 
the observables of interest were sampled 100 times at dis-
crete points in time with a separation of 100 weekly time 
step. The simulations were run on the Exacloud Cluster 
at the Oregon Health and Science University Advance 
Computing Center, USA.

Results
Estimation of empirical data error intervals
We fitted the random effect model to empirical PSI data 
and obtained the inter- and intra-village variances for the 
origin dataset, which were 0.018 and 0.01, respectively. 
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Using the intra-village variance, we estimated the stand-
ard deviation of PSI to be 0.1 with a 95% CI of (0.07, 
0.15). The inter-village standard deviation was estimated 
to be 0.13 with a 95% CI of (0.07, 0.24). We calculated the 
empirical error associated with PSI by considering a 2 
SD interval around the observed value, which was there-
fore ± 0.2. Based on the assumption of intra-village vari-
ance homogeneity, we applied the same empirical error 
to all destination villages for both baseline pre-interven-
tion and post-intervention data.

Model calibration using the origin dataset
Table  4 shows the transmission parameter values 
resulting from calibration, which were obtained from 
the tenth sequential Monte Carlo sampling round [18] 
selecting the sampling point corresponding to the mini-
mum distance between observed and empirical HTP 
and PCP data of origin villages [18]. The simulated HTP 
and PCP corresponding to the calibrated parametriza-
tion are shown in Fig.  4 along with the corresponding 
observed data. The average value over the eight origin 
villages of simulated HTP was found to be similar to the 
average empirical observation (average values: 0.017 
simulated, 0.023 observed), with a much lower standard 

deviation for inter-village variations (SD: 0.0034 simu-
lated, 0.017 observed). The values of PCP showed that 
the averages were more similar (average values: 0.18 
simulated, 0.17 observed), as well as the standard devi-
ations (SD: 0.074 simulated, 0.076 observed).

The second step of the calibration process involved 
tuning the parameters related to pig seroconver-
sion. Table 4 presents the calibrated parameter values, 
which were obtained after 10 rounds of ABC-SMC. 
Figure 4 depicts the simulated PSI along with the cor-
responding observed data and associated error bars. 
As the observed PSI values correspond to the average 
of three separate measurements at three different time 
points, the standard errors were obtained by dividing 
the standard deviation from the random effect model fit 
by the square root of 3. When comparing the simulated 
and observed PSI using these errors, we find that the 
simulated PSI are consistent with the observed values 
for seven out of eight villages (88%). The average sim-
ulated PSI value across all origin villages was slightly 
lower than the average empirical observation (aver-
age values: 0.38 simulated, 0.36 observed) but with the 
same standard deviation (SD: 0.14 for both simulated 
and observed data).

Table 3 Model parameters used to simulate the destination dataset interventions. nC is the number of Taenia solium cysts infecting a 
pig

Parameter name value Notes References

TongueSensi1000 1.0 Tongue inspection sensitivity for nC ≥ 1000 [26]

TongueSensi100 0.91 Tongue inspection sensitivity for 100 ≤ nC < 1000 [26]

TongueSensi10 0.55 Tongue inspection sensitivity for 10 ≤ nC < 100 [26]

TongueSensi1 0.23 Tongue inspection sensitivity for 0 < nC < 10 [26]

TongueSpeci 0.025 Tongue inspection specificity [26]

elisaSens 0.97 Sensibility of coproantigen ELISA [33]

NiclosamideTreatEff 0.86 Efficacy of niclosamide treatment [34]

oxfTreatEff 1.0 Efficacy of oxfendazole treatment [35]

Table 4 Tuned values of calibration parameters for transmission and seroconversion module

Parameter Calibrated value Posterior distribution range

Transmission

 pHumanCyst 2.41  10–4 [2.3  10–4, 2.5  10–4]

 pigProglottidInf 8.05 [7.38, 8.54]

 pigEggsInf 0.84 [0.82, 1.05]

Seroconversion

 seroconvert 2.85 [1.11, 3.16]

 seroConvertPtoEFact 0.023 [0.014, 0.78]

 propPigletsMaternalProtection 0.86 [0.45, 0.98]
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Transfer of the model to the destination dataset
Data from all 21 villages in the destination dataset were 
used to validate the transfer of the calibrated parameteri-
zation from the origin villages. As previously described, 
the destination dataset contains both pre-intervention 
and intervention data. Since the origin field trial did 
not involve any interventions, none of the intervention 
parameters presented in Table  3 were adjusted during 
the calibration process. Therefore, the validation process 
for the destination simulations can be conceptually sepa-
rated into two distinct parts: pre-intervention validation 
and intervention validation. The former entails compar-
ing empirical pre-intervention destination data with 
the simulation outputs generated by the model param-
eterization obtained from the origin calibration process. 
Thus, pre-intervention validation can be considered as 
the validation of the spatial transfer of the model from 

the origin to the destination dataset. The latter part adds 
an additional component to the validation of the spatial 
transfer: the validation of simulated effects of all inter-
vention strategies in the destination trial.

Pre‑intervention validation
The pre-intervention PSI observed in the 21 destination 
villages (Fig.  5) had an average value of 0.41, indicating 
moderate endemism for the selected region of the des-
tination trial. However, the PSI values observed in each 
destination village indicated a wide range of values (SD: 
0.19), ranging from 0.05 in village v581, which is typical 
of almost zero transmission [25], to 0.78 in village v587, 
reflecting much more intense infection and exposure 
of pigs. The simulated PSI values were compared to the 
corresponding destination trial data (Fig.  5) to validate 
them and assess the model’s spatial transferability. This 
comparison revealed that the average seroprevalence 
across the 21 villages was very similar (0.44) in the simu-
lation compared to observed values (0.41). Furthermore, 
for 17 of the 21 (81%) destination villages, the simula-
tions produced a PSI value that was within the accepted 
error interval (computed using 2 SDs without divid-
ing by the square root of 3 given that we have only one 
observation in destination villages) of the corresponding 
empirical data. Among the villages with PSI value out-
side the accepted error interval, two, at the higher end for 
observed seroprevalence values, produced simulated val-
ues that overestimated the empirical data (villages v581, 
v589), and two villages (villages v579, v587), among the 
lowest observed seroprevalence values, showed simulated 
values that underestimated the observed data. The vari-
ability of simulated PSI among destination villages was 
23% lower than the observed variability (simulated SD: 

Fig. 4 HTP, PCP and PSI, observed (obs) and resulting 
from simulations (sim), using the calibrated model parametrization 
for the 8 villages composing the origin dataset, and confidence 
intervals around PSI values

Fig. 5 Pre‑intervention PSI for the 21 destination villages observed 
(obs) and resulting from simulations (sim). The observed data 
are represented together with their empirical error calculated 
as described in the methods section
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Fig. 6 Plots of observed (black curves) and simulated (red curves) PSI for each of the 21 villages composing the destination trial. The data for each 
village are presented in a separated plot using a color identification to distinguish the different intervention strategies applied to the village: salmon 
for Mass Trt, brown for Mass Trt (P), light green for Ring Scr, green for Ring Scr (P), light blue for Ring Trt, dark blue for Ring Trt (P)
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0.15), with maximum and minimum simulated PSI values 
of 0.75 (village v563) and 0.13 (village v570), respectively.

Intervention validation
As shown in Fig. 6, although interventions produce clear 
effects on observed data, the curves resulting from the 
seven rounds of field PSI observations show a remark-
able degree of noise due to fluctuations. For more than 
one village, high fluctuations bring the observed PSI back 
above the pre-intervention level. This occurred in village 
v570 round 2, village v585 round 3, village v581 round 
2, village v586 round 3, village v573 round 2 and village 
v580 round 3. All these villages, with the exception of vil-
lages v573 and v580, were included in the Mass Trt and 
Mass Trt (P) intervention arms. As a general remark 
about empirical PSI curves, in the ring intervention arms, 
a pronounced decrease is observed during the first three 
or four rounds, especially for villages showing a high pre-
intervention PSI, such as v563, v577, v579 and v587. The 
same pronounced decrease was not observed for mass 
treatment villages, for which the PSI seems to decrease 
more linearly.

Concerning simulations, in total, 92 out of 126 inter-
vention measurements (73%) were validated, excluding 
pre-intervention values (Fig. 6). Concerning the last PSI 
measurement, the post-intervention PSI value, 16 out of 
21 villages (76%) showed validated values. The destina-
tion villages with the lowest number of validated inter-
vention points including pre-intervention were: v572 
and v578 with 1 validated point and villages v563, v579 
and v575 with 3 validated points. As a general remark, 
it can be observed that for eight villages, the model not 
only reproduces the pre-intervention PSI value but also 
the values of the following six intervention rounds. This 
is the case for villages v570, v582, v573, v576, v590, v580, 
v584 and v591. For other villages (villages: v581, v586), 
the pre-intervention or starting PSI levels are not repro-
duced, but the following values are. For no village did the 
simulations fail to produce a single validated point.

Post-intervention HTPs, measured as a secondary out-
come during the final round of the destination interven-
tion trials, are compared with the simulated data in Fig. 7. 
The final round corresponds to the fifth and the seventh 
intervention rounds of Mass Trt villages and of Ring Scr 
or Ring Trt villages, respectively. For most villages, the 
simulated values appear to represent a good approxima-
tion of the empirical data, but uncertainties associated 
with observed HTP data are unknown, so quantitative 
comparisons are not possible. Villages v579 and v588 
revealed very high post-intervention HTP, which is not 
replicated by simulated data. Several villages (v570, v578, 
v581, and v585) are associated with a zero post-interven-
tion observed HTP, while for no village as for PSI values, 

simulations produced a zero HTP. The resulting average 
observed HTP across the destination villages is 6.5 ×  10–3 
compared with an average simulated HTP of 4.1 ×  10–3. 
As for PSI data, the observed HTP prevalence showed 
a higher variability among destination villages, with a 
7.1 ×  10–3 standard deviation compared to the 1.6 ×  10–3 
of simulated PSI.

Discussion
This article presents the first attempt to validate the 
regional spatial transferability of a fully non-local ABM 
of T. solium transmission used to simulate control inter-
vention. In a first step, the model was calibrated against 
empirical data of HTP, PCP and PSI derived from a com-
munity trial that was conducted in eight villages in the 
Piura region of the northwestern Peru. In a second step, 
the calibrated model was spatially transferred to villages 
located in a second area of the same Piura region to be 
validated against pig seroincidence data collected during 
a cluster-randomized trial of T. solium control interven-
tions that was conducted to study the effectiveness of 
the spatially targeted interventions. The model transfer 
proved successful, since the calibrated ABM model was 
able to generate validated pre-intervention outcomes for 
most of the destination villages. Intervention and post-
intervention data were also validated for most villages, 
demonstrating that the model can correctly reproduce 
the effect of a wide range of T. solium control interven-
tion types.

In this study,  simulating pig seroincidence data was 
crucial to compare the observed and simulated data of 
the origin and destination datasets. We implemented a 
new module in CystiAgent that represents pig serocon-
version based on a mathematical dose-response approach 
where the probability of pig seroconversion is expressed 

Fig. 7 Post‑intervention HTP observed (obs) and resulting 
from simulations (sim) calculated using the exported model 
parametrization for the 21 villages composing the origin dataset. 
The post‑intervention HTP corresponds to the prevalence observed 
in the destination villages during the last round of interventions
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as a function of the doses of T. solium proglottids and 
eggs to which the pig is exposed. Dose-response mode-
ling has been widely used to determine the probability of 
infection upon exposure to different levels of pathogens 
in human and animal diseases [37] and to study the onset 
of immunity upon exposure to different doses of vac-
cines [38]. Although more sophisticated dose-response 
models, such as the exact beta-Poisson, are available 
[39], we have chosen to use a simple stochastic expo-
nential model to limit the number of calibration param-
eters, as all the parameters of any dose–response model 
are unknown. It is important to note that the ABM does 
not use a dose-response model for the pig infection pro-
cess, using instead a representation based on the number 
of T. solium cysts that infect a pig following each expo-
sure event. In addition to seroconversion for infection 
and exposure, the model includes a third component to 
seroconversion: the development of seropositivity for 
maternal antibodies transfer [40]. Although the process 
of maternal antibodies is parameterized based on limited 
knowledge and a scarce amount of data, we consider the 
current version to be a first step toward a more complete 
module that can be developed when new data on the pig-
let seroconversion process become available.

Regarding calibration results, the calibrated model 
parameters can effectively reproduce the observed PCP 
data from the origin trial for the majority of villages. 
The average values across the entire group of origin vil-
lages and the standard deviation of simulated PCP val-
ues are quite similar to empirical values. A qualitative 
comparison indicates that the model is able to repro-
duce the specific characteristics of each village, such as 
the particularly high PCP values in village v515 and the 
low value in village v507. The calibrated model does not 
appear to reproduce observed HTP values with the same 
precision as in the case of PCP. This outcome was some-
what expected because, in a low to moderate prevalence 
setting like the rural areas of Peru, the observed values 
of HTP vary considerably with changes in the number of 
tapeworm carriers in a village. This number can fluctu-
ate significantly because of new infections and recover-
ies. Moreover, a substantial portion of the small group of 
village tapeworm carriers may not participate in the field 
trial screening activities producing a considerable altera-
tion of the resulting observed HTP value. The effect of 
these fluctuations is particularly evident when comparing 
observed HTP and PCP values across origin villages. Fig-
ure 4 illustrates that for some villages, the observed HTP 
values do not seem coherent with the corresponding PCP 
values. For instance, village v517 shows an HTP of zero, 
which contrasts with the observed PCP value of 0.15 
(average PCP across the origin group: 0.17). On the other 
hand, village v568 and v569 exhibit particularly high HTP 

values (0.053 and 0.045, respectively) despite observed 
PCP values that fall very close to the dataset average 
(v568: 0.19 and v569: 0.19). Villages with HTP values that 
do not align with the observed PCP values also exhibit a 
poor agreement between empirical and simulated HTP 
values (v517, v568, and v569). Compared to HTP, the 
observations of PCP are calculated over a higher propor-
tion of pig populations, which gives the observation a 
lower uncertainty.

We note that the tuned values of transmission calibra-
tion parameters obtained by calibrating the model against 
the origin dataset HTP and PCP are not identical to those 
shown in a previous study [18], even though the field trial 
used to calibrate the model in both studies was the same. 
The reason for this change is related to several factors. 
First, the model was changed regarding the version pre-
sented in the previous study as described in Additional 
file  1. Second, in the previous study, only three villages 
of the trial were used to calibrate the model, while in this 
study, we used all eight villages, which should improve 
the quality of the calibration.

PSI measurements for the origin dataset were repeated 
three times, allowing for a more quantitative analysis 
using average observed PSI values to compare observed 
and simulated data. Using the standard deviation esti-
mation divided by the square root of 3 as observed data 
standard error, we found that for seven of eight (88%) 
villages, the calibrated model parametrization produced 
a validated PSI value. The only non-validated village is, 
again, village v517, which showed the anomalous values 
of zero HTP. As a general remark, the simulated values of 
PSI for the origin villages seem to follow the features of 
observed data. The high values of villages v515 and v568 
are well reproduced, as well as the low value of village 
507.

Empirical PSI values of the destination villages are 
limited to one observation in time, which makes the 
effect of uncertainties particularly evident. Our find-
ings revealed that the variability in observed pre-
intervention data across villages was larger than that 
of simulated data. Given the high levels of fluctuations 
in observed values within villages, which we referred 
to as intra-village variance (σW), one would expect that 
the total variance σVP of data observed at one point in 
time to be higher than the village-specific variance, 
which we referred to as inter-village variance (σV), fol-
lowing equation σ VW = σV + σW (3). In the case of 
destination dataset, the total standard deviation  SDVW 
for observations taken at one point in time is 0.19, 
and the intra-village  SDW for fluctuations over time 
is 0.1, we would expect then the inter-village  SDV to 
be: 

√

0.192 − 0.12 = 0.16 . Meanwhile, the standard 
deviation in the simulated values, which is equal to 
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the inter-village variance because the simulated intra-
village variance can be considered negligible since the 
simulated values averaged over many simulations, was 
0.15, only slightly lower than what we found for the 
observed inter-village standard deviation. Further pos-
sible contributors to differences between the observed 
and simulated village seroprevalence variability include 
the impact of some of the specific characteristics of 
simulated villages, such as different rate of travels to 
and from external destinations or different attitudes 
toward T. solium in different villages, which are not 
represented in the model as we did not have village-
specific measurements for these. Overall, there is good 
agreement not simply in average seroprevalence val-
ues but also in the expected inter-village variability of 
observed and simulated village averages.

As noted, several destination villages exhibit observed 
PSI value during interventions that are well above the 
pre-intervention level two or three rounds after the 
start of the intervention when a pure decreasing trend 
would be expected because of the nature of interventions 
applied. This behavior can be attributed to several causes. 
First, as previously mentioned, fluctuations in the num-
ber and location of tapeworm carriers in the village can 
lead to fluctuations in pig exposure to T. solium eggs and 
proglottids, resulting in changes in seroprevalence in the 
pig population. Similarly, fluctuations in pig populations 
due to pig turnover, such as during holidays when pig 
slaughtering rates are high, can produce sharp fluctua-
tions in pig seroprevalence. Other factors that may have 
triggered variations are extreme events related to climate, 
human movements and pig or pork trades.

Since empirical PSI data are subject to high fluctuations 
over time in this study, the comparison between observed 
and simulated PSI data was made considering the empiri-
cal uncertainty given by such PSI fluctuations. The com-
parison of observed and simulated PSI resulted in a 
slightly lower proportion of validated results (73%) for 
intervention compared to pre-intervention observations 
(81%). The lower precision of the model in reproducing 
the intervention effects may be attributed to multiple 
causes. First, while we expected the SD in the destination 
villages, before intervention, to be similar to that in the 
origin villages, it may not be the case post-intervention. 
Indeed, fluctuations are expected to be somewhat higher 
at very low prevalence levels, hence using the same SD 
for pre- and post-intervention results should lead to a 
lower level of validation post-intervention. Additionally, 
the model module designed to simulate interventions 
was not calibrated at all as no intervention was included 
in the original dataset. As a result, some of the param-
eter values used to simulate interventions may be slightly 
inaccurate. However, overall, the decreasing trend along 

the screening rounds produced by the intervention 
appears to be reproduced by the model.

Despite the good coherence found in this study 
between simulated and observed values, the large fluc-
tuations in PSI observations represent a significant limi-
tation for the appropriate calibration of the model and 
the validation of its geographical transferability as con-
fidence intervals around observed values remain wide, 
even though fluctuations in seroprevalence are expected 
to be lower than fluctuations in HTP. This is an intrinsic 
limitation which makes it difficult to separate the contri-
bution from the background noise from the component 
associated to the true dynamics of T. solium transmis-
sion. Another limitation of the validation is that the 
groups of origin and destination villages, although fur-
ther away from one another than in our prior work [18], 
were selected from a moderately restricted area which, 
for this reason, presents a certain degree of homogene-
ity. Adjustments may be necessary when transferring the 
model between two more dissimilar regions.

In the ABM used in this study, there are many local 
parameters that directly or indirectly contribute to 
determining the level of transmission. The values of 
some of these village-specific parameters were avail-
able from the datasets collected during the origin and 
destination field trials, while others were not. Among 
the latter, we can include features such as the exten-
sion of outdoor human defecation and pig roaming 
areas around village households. Local factors such as 
characteristics of land cover around households, house-
hold density and village population habits can certainly 
have an influence in determining the exact extension 
of these areas around each household. To generate the 
extension of household contamination and pig roam-
ing areas, we used probability distributions, which 
were not changed from village to village and that were 
determined from studies conducted in villages in the 
same region as the simulated villages [22, 41]. Other 
parameters that can be considered local but for which 
we used the same values for all simulated villages are 
human movement rates and pig and pork import rates. 
We do not have data about the values of these param-
eters for each simulated village, but forthcoming stud-
ies will determine the human movement and pig trade 
rates in an entire region, which should help update the 
model accordingly. The group of local parameters for 
which values were determined during field trials are 
parameters connected with household location, house-
hold human and pig composition and latrine and cor-
ral distribution and use. The effect of changing these 
parameters on the level of transmission is evident 
in specific villages. For example, in the origin village 
v515, a relatively high level of transmission among pigs 
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(values of PCP in Fig. 4) corresponds to a low propor-
tion of households owning a latrine (22%) compared to 
an average latrine ownership proportion of 62% across 
the origin villages group. On the other hand, village 
v507 presents a low PCP value presumably attributable 
to a high proportion of corral use (78% vs. 30% on aver-
age in origin villages). For the remaining origin villages, 
transmission levels are the product of a more complex 
combination of parameter values.

One of the objectives of this model was to reduce the 
complexity of data collection processes required to 
apply the model to new villages. The model does rely on 
a group of parameters (contextual data) whose values 
have to be collected for each new simulated village, but 
it is important to note that these do not depend on time-
consuming and expensive screening activities requiring 
biological material collection and that a census covering 
all village households is sufficient to collect all the nec-
essary information. We have therefore indeed progressed 
toward our objective of reducing complexity in data col-
lection needs associated with the model.

Finally, the model described here represents a pre-
liminary step towards the design and implementa-
tion of a large-scale ABM transmission to simulate 
the T. solium transmission in an entire region that will 
include small urban areas, multiple villages, and all 
human and pig movements and pork trades within the 
area. For regions not dissimilar to Piura rural areas, the 
calibrated and transferable CystiAgent parametriza-
tion of this study could be exported to all the villages 
within the region without any further adjustment. The 
resulting large-scale model will be useful in studying T. 
solium and other cestode parasites for various reasons. 
First, a large-scale ABM will enable the investigation 
of regional transmission dynamics after intervention. 
The resurgence of transmission to pre-intervention lev-
els, even after successful eradication or control cam-
paigns, has been frequently attributed to pathogen 
flows caused by the movement of people and to pig and 
pork trades, which bring back the parasite to previously 
intervened areas. Once an entire region is represented 
in the model, it will be possible to study sustainable 
intervention strategies in the long term, examining and 
controlling for the impact of pathogen flow on trans-
mission resurgence. Second, if economic and health 
costs and benefits of interventions and diseases are 
included in the model, it should be possible to study 
the entire spectrum of economic and spatial feedbacks 
involved in the establishment of the endemic T. solium 
transmission equilibrium in the region. Therefore, the 
model will be able capture the socioeconomic, tempo-
ral and spatial heterogeneities associated with the com-
plex dynamics of T. solium transmission, allowing for 

the design and study of control end elimination cam-
paigns based on regional, village-specific, geographi-
cally targeted and individual-based interventions.
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