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Abstract 

Schistosomiasis, the second largest parasitic disease in the world after malaria, poses a significant threat to human 
health and causes public health issues. The disease primarily affects populations in economically underdeveloped 
tropical regions, earning it the title of “neglected tropical disease”. Schistosomiasis is difficult to eradicate glob-
ally if medication alone is used. One of the essential elements of thorough schistosomiasis prevention and control 
is the management and disruption of the life cycle of intermediate host snails. The key approach to controlling 
the transmission of schistosomiasis is to control the intermediate hosts of the schistosome to disrupt its life cycle. We 
believe that approaching it from the perspective of the intermediate host’s immunity could be an environmentally 
friendly and potentially effective method. Currently, globally significant intermediate host snails for schistosomes 
include Oncomelania hupensis, Biomphalaria glabrata, and Bulinus truncatus. The immune interaction research 
between B. glabrata and Schistosoma mansoni has a history of several decades, and the complete genome sequenc-
ing of both B. glabrata and B. truncatus has been accomplished. We have summarized the immune-related factors 
and research progress primarily studied in B. glabrata and B. truncatus and compared them with several humoral 
immune factors that O. hupensis research focuses on: macrophage migration inhibitory factor (MIF), Toll-like recep-
tors (TLRs), and thioredoxin (Trx). We believe that continued exploration of the immune interactions between O. 
hupensis and Schistosoma japonicum is valuable. This comparative analysis can provide some direction and clues 
for further in-depth research. Comparative immunological studies between them not only expand our under-
standing of the immune defense responses of snails that act as intermediaries for schistosomes but also facilitate 
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the development of more comprehensive and integrated strategies for schistosomiasis prevention and control. 
Furthermore, it offers an excellent opportunity to study the immune system of gastropods and their co-evolution 
with pathogenic organisms.

Keywords  Oncomelania hupensis, Biomphalaria glabrata, Macrophage migration inhibitory factor (MIF), Toll-like 
receptors (TLRs), Thioredoxin (Trx)

Background
Schistosomiasis is a parasitic disease caused by an infes-
tation of Schistosoma, which is a major public health 
problem in tropical and subtropical regions [1]. Accord-
ing to the World Health Organization’s 2019 statistics, 
over 200 million people in more than 70 countries and 
regions in Asia, Africa, and Latin America are affected. 
The majority of patients are located in economically 
underdeveloped areas of Africa with low-income lev-
els, which is why schistosomiasis is often referred to as 
a “neglected tropical disease” [2]. There are three main 
species of schistosomiasis parasites that affect humans: 
Schistosoma mansoni, S. haematobium, and S. japonicum 
[3]. Schistosoma mansoni is mainly distributed in tropi-
cal and subtropical regions of Africa and South America. 
Schistosoma haematobium is mainly distributed in Africa 
and the Middle East [4]. Schistosoma japonicum is mainly 
distributed in East Asia, including China, Japan, South 
Korea, and Southeast Asian countries [4]. Notably, the 
distribution of these schistosomiasis diseases is not com-
pletely fixed and may change over time and with condi-
tions, influenced by factors such as climate, environment, 
and population migration [5].

The life cycle of these three blood flukes is highly sim-
ilar (Fig.  1). They all require a specific gastropod fresh-
water or amphibious mollusk as an intermediate host to 
complete the larval development stage (asexual repro-
duction) before they can become the infective form (cer-
caria) for the final host mammals (including humans) [6].

In this article, we mainly discuss the relevant content of 
S. japonicum, so we focus on the disease of schistosomia-
sis japonicum, which belongs to the type of hepatointes-
tinal schistosomiasis distributed widely in China, Japan, 
Indonesia, and Philippines. The transmission of schisto-
somiasis in endemic areas largely depends on the availa-
bility and abundance of suitable hosts, their susceptibility 
to parasite species, fecal egg count, time of egg excretion, 
and egg survival rate. According to these criteria, domes-
ticated animals such as cattle, pigs, and dogs appear to be 
the most important animal hosts for the spread of schis-
tosomiasis japonicum [7].

Prevention and control of schistosomiasis japonicum
As the sole intermediate host of S. japonicum, the 
study of the morphological structure, life habits, dis-
tribution characteristics, and immune mechanisms of 
Oncomelania (genus) can control the number of snails 
without disrupting the ecological balance, thus achiev-
ing the goal of controlling the transmission of schisto-
somiasis [8]. Effective chemical molluscicides include 
Niclosamide, Pentachlorophenol, Nicotinamide, bro-
moacetamide, Trichlorfon, and Bromoacetamide. 
Niclosamide is currently the WHO-recommended com-
mercial molluscicide, which is effective and has not 
shown resistance so far. However, its drawback is that 
it has some environmental toxicity [9]. Niclosamidate 
[10], novel salicylanilide ester derivatives [11], PBQ 
[1-(4-chlorophenyl)-3-(pyridin-3-yl)urea] [12], arylpyr-
role [13], and other drugs are all new molluscicides under 
research today, which have shown good snail control 
efficacy under experimental conditions. In addition to 
the most widely used chemical snail control methods, 
physical and biological methods have also been used 
[14]. There are generally three types of biological control 
methods: animal based, plant based, and microorganism 
based [14, 15]. In biological control methods, there is an 
interesting phenomenon that the growth and develop-
ment of S. japonicum are inhibited when the Oncomela-
nia hupensis is infected with the harmless Exorchis sp. 
[16]. After being infected with Exorchis sp., the O. hupen-
sis will produce a large immune response including blood 
lymphocytes and secretions. If the snail is subsequently 
infected with S. japonicum within 21–85  days, the pre-
vious immune response triggered by Exorchis sp. will 
severely interfere with the growth and development of 
S. japonicum larvae, leading to abnormal larval struc-
ture, growth arrest, and eventually death. However, these 
immune responses gradually disappear before the snail 
is reinfected with Schistosoma, which is not observed in 
snails infected solely with S. japonicum [16]. In addition 
to the three traditional molluscicidal methods mentioned 
above, with the advancement of research, many new mol-
luscicidal methods have also been proposed, for example, 
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controlling the reproduction of snails and then control-
ling the number of snails by studying their reproductive 
perspective [14]. From the perspective of repurposing 
existing drugs, aspirin is also a potential medication that 

can have an impact on S. mansoni parasitizing inside 
Biomphalaria glabrata [17].

Currently, praziquantel is the preferred drug for the 
treatment of all forms of schistosomiasis [18]. Laboratory 

Fig. 1  Take Schistosoma japonicum as an example to describe the life cycle. The life cycle of S. japonicum involves three distinct stages. (1) Eggs 
are released by adult S. japonicum flukes living in the veins of the host’s intestine and are passed out of the host’s body through feces. (2) The eggs 
hatch in freshwater and release miracidia, which swim to and infect specific snails, known as Oncomelania spp. These snails are the intermediate 
host of the parasite. (3) Inside the snail, the miracidia develop into sporocysts, which produce thousands of cercariae. These cercariae leave the snail 
and actively penetrate the skin of the host, usually a human or other mammal, swimming through the bloodstream to reach the host’s liver, 
where they mature into adult flukes
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has confirmed that S. japonicum can develop resist-
ance under praziquantel pressure; since the exact anti-
schistosomiasis mechanism of praziquantel is not clear, 
monitoring Schistosome resistance and exploring the 
molecular basis of resistance remain important tasks 
[19]. Currently, there is no commercial vaccine available 
for human schistosomiasis, but considerable progress 
has been made in vaccine development, with four vac-
cine candidates in various stages of human clinical trials 
[20]. As research on S. mansoni is relatively mature, the 
vaccine development of S. mansoni has provided a good 
inspiration for S. japonicum. For example, studies have 
found that S. mansoni lipid raft protein FLOTILLIN2 is a 
surface membrane protein with the potential to be a tar-
get for schistosomiasis vaccines. In this study, recombi-
nant FLOTILLIN2 protein of S. japonicum was expressed 
in  vitro by gene cloning, and sequence comparison and 
evolutionary tree analysis were carried out by bioinfor-
matics methods, laying a foundation for further study 
on its potential as a vaccine [21, 22]. Due to the zoonotic 
nature of S. japonicum, animals (such as cattle, which 
act as intermediate hosts for up to 90% of the parasitic 
eggs in the environment [23]) are key reservoirs of the 
schistosomiasis transmission circle. From the perspec-
tive of vaccine research and development, it is necessary 
to study veterinary vaccines. Currently, many candidate 
vaccines for transmission blocking of S. japonicum have 
been developed [24].

While the strategies for the prevention and control 
of schistosomiasis are continuously evolving, currently, 
the main focus is on controlling the population and 
life cycle of the intermediate host. Globally, it remains 
challenging to eradicate schistosomiasis in the short 
term on a worldwide scale. To prevent and treat schis-
tosomiasis, as well as to gain deeper insights into the 
intermediate host, research on the immune interactions 
between the parasitic blood fluke and the intermedi-
ate host snail is crucial. By comparing the well-studied 
immune responses of B. glabrata and Bulinus truncatus 
with the O. hupensis, we aim to provide direction for 
further in-depth research.

Snail‑associated immunological factors and mechanisms
As the intermediate host of S. mansoni, the immune 
system of B. glabrata has been extensively studied, and 
significant progress has been made in understand-
ing the immune response elicited by S. mansoni infec-
tion [25–31]. The immune response of B. glabrata can 
be roughly divided into cellular and humoral immunity. 
Upon invasion, the pathogen-associated molecular pat-
tern (PAMP) pattern recognition receptors (PRRs) on 
soluble or haemocyte surfaces recognize the Schistosoma, 

and haemocytes are recruited to the site of infection via 
chemoattractants such as MIF or other unknown mecha-
nisms [32], leading to the so-called “encapsulation reac-
tion”. Subsequently, haemocytes rapidly upregulate the 
expression of immune effector molecules and cytotoxic 
molecules (such as reactive nitrogen and oxygen spe-
cies) by some unknown mechanism to kill the pathogen 
[28, 33]. On the other hand, some humoral factors such 
as fibrinogen-related proteins (FREPs) and thioester-con-
taining proteins (TEPs) play a role in the initial pathogen 
recognition and can promote phagocytosis by binding 
to some unidentified receptors on haemocytes [33–35] 
as well as activate antimicrobial peptides or lytic factors 
(such as Biomphalysin) in the plasma to assist in killing 
and clearing the parasite [26, 33]. Cellular immunity is 
mainly carried out by haemocytes in haemolymph, while 
humoral immunity is mainly composed of various solu-
ble immune factors, extracellular cytokines, chemokines, 
effector molecules, and cytotoxic molecules synthesized 
and secreted by haemocytes. The two work together to 
carry out an immune defense function against foreign 
pathogen invasion [33].

As a mollusk, B. glabrata, like many other inverte-
brates, protects itself from pathogen infection through 
its innate immune defense system [36]. Similar to B. 
glabrata, O. hupensis has two types of immune system: 
cellular and humoral [37]. Although research on the 
immune system of O. hupensis is relatively scarce, there 
has been a significant increase in recent years, and some 
research achievements have been made, which we will 
review later [37–42] (Fig. 2).

Immune system of Biomphalaria glabrata
Overall, there are relatively few studies focused on the 
immune system of snails, with much of the current 
research being conducted on S. mansoni and its interme-
diate host, B. glabrata. Biomphalaria glabrata is a model 
mollusk with a sequenced immune cell genome, which 
has important implications for immunological research 
on mollusks and the practical prevention and treatment 
of schistosomiasis [43]. The immune defense system 
of B. glabrata against S. mansoni is an innate immune 
response, which involves the coordinated action of cel-
lular and humoral immunity. Circulating haemocytes 
migrate to the site of S. mansoni miracidia and envelop 
them, and PRRs recognize PAMPs, activating multiple 
signaling pathways and immune effector molecules. Cell-
toxic molecules such as reactive oxygen species (ROS) are 
released. The presence of dead cercariae not enveloped 
by haemocytes in drug-resistant individuals suggests the 
existence of humoral factors in their blood that can kill S. 
mansoni larvae [44].
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Research on the immune mechanism of S. mansoni 
resistance in B. glabrata mainly focuses on three aspects: 
immune cells (haemocytes), humoral immune factors, 
and fibrinogen-related proteins (FREPs) [29]. The defense 
system of B. glabrata against S. mansoni is composed 
solely of innate immune components, which act in syn-
ergy between cellular and humoral immunity. Haemo-
cytes are the main immune cells, and they are classified 
into granulocytes and transparent cells based on their 
size and granularity [45], with their proportion being 
closely related to the type of snail and varying with inva-
sion by different pathogens [29]. Both transparent and 
granulocytes are associated with the phagocytic activ-
ity of B. glabrata, which is limited to the removal of the 
microvilli and small fragments of detached cercariae 
[46]. During phagocytosis, recognition of the monosac-
charides released during the transformation of cercariae 

to schistosomula triggers rapid phagocytosis mediated 
by BgFREP3 [47]. Encapsulation is strongly associated 
with granulocytes [48], which are recruited to the site of 
invasion by miracidia, enveloping them with the aid of 
chemoattractants such as MIF and a potential attract-
ant AIF [49]. The haemocytes involved in encapsulation 
can release cytotoxic substances to kill the schistosomes, 
the most important of which is ROS [50]. Potential cyto-
toxic substances include proteases and protease inhibi-
tors [51]. Haemocytes may also directly react to the 
schistosomes [49]. Given the important role of haemo-
cytes in the immune response against S. mansoni, it is 
crucial to study their proliferation and differentiation 
mechanisms. The known growth factor is granulocyte 
protein [27], and AIF is not only involved in the prolif-
eration of haemocytes but also related to cell migration 
and encapsulation [52]. Of course, before regulating and 

Fig. 2  We summarized the important immune-related molecules of Biomphalaria glabrata and Oncomelania hupensis and expressed 
the interaction of immune-related molecules with bidirectional arrows. At the same time, it was found that there were still many gaps 
in immune-related molecules of O. hupensis 
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controlling the signal pathway of immune response acti-
vation, immune recognition receptors involved in patho-
gen recognition include PRRs, integrin-related proteins, 
and growth factor/cytokine-like receptors. Among them, 
PRRs participate in the immune response against S. 
mansoni, including TLRs, guadrupe resistance complex 
(GRC), mannan and laminarin-binding molecules, pep-
tidoglycan recognition proteins (PGRPs), gram-negative 
bacteria-binding proteins, lipopolysaccharide-binding 
proteins, and molecules with variable immunoglobulin 
and lectin domains [29]. In susceptible snail (M-line), it 
was observed that S. mansoni, after entering the host, 
releases an invadolysin called S. mansoni Leishmanoly-
sin (SmLeish). SmLeish interferes with the chemotaxis 
of haemocytes, thereby affecting the host’s immune 
response and increasing the success rate of S. mansoni 
infection. Simultaneously, experiments revealed that the 
chemotactic response of resistant snails (BS-90) is not 
influenced by SmLeish [53].

The B. glabrata is dependent on soluble immune fac-
tors in the haemolymph, mainly including PRRs (such 
as the thioester-containing protein TEP) and cytotoxins 
(biomphalysin, variable immunoglobulin, and molecules 
containing agglutinin domains) [29]. TEP is expressed 
by a subtype of haemocytes called blast-like cells and 
secreted into the haemolymph [54]. Eleven unique TEP 
transcripts are present in B. glabrata, and these TEP tran-
scripts exhibit a high level of sequence identity at both 
the nucleotide and putative amino acid levels, regard-
less of whether it is a susceptible or resistant snail strain. 
However, there are differences in the baseline expression 
levels of several TEPs between the resistant (BS90) and 
susceptible (NMRI) snail strains, with C3-1, C3-3, and 
CD109 showing higher baseline expression levels in the 
resistant strain, while C3-2 and TEP-1 exhibit higher 
baseline expression levels in the susceptible strain [55]. 
TEP can interact with a special type of agglutinin called 
FREPs, recognize and form immune complexes with the 
variable surface glycoprotein SmPoMucs of the miracidia 
of S. mansoni, accelerate antigen dissolution, and pro-
mote the occurrence of immune reactions [44]. BgFREP2 
is included in the starting complex of BgFREP3, which 
also contains BgTEP1. FREP3 plays a core role in resist-
ance to the major snail pathogen (S. mansoni) [33]. FREPs 
are composed of N-terminal immunoglobulin superfam-
ily (IgSF) domains that can be concatenated through 
intermediate regions (ICRs) and C-terminal fibrinogen 
(FBG) domains. Studies have found that both C-type 
lectin-related proteins (CREPs) and galactose-binding 
lectin-related proteins (GREPs) are also associated with 
immune responses against Schistosoma [56]. Biompha-
lysins belong to a type of β-pore-forming toxin (β-PFT) 

and is an important factor in humoral immunity that can 
directly lyse target cells [26].

David Duval and others subsequently discovered a 
new β-PFT, glabalysin, but its specific immune mecha-
nism, function, and role in immunological memory are 
still unknown, and we look forward to more in-depth 
research in the future [57]. Humoral components, espe-
cially FREPs and biomphalysins, are related to the innate 
immune memory of the B. glabrata, and experimental 
evidence has shown that the primary immune response 
is mainly cellular immunity, while the secondary immune 
response is humoral immunity [58]. These soluble 
immune effectors in the body can participate in directly 
killing the cercariae and can also be involved in preparing 
haemocytes to initiate cell-mediated immunity [29]. In 
contrast to resistant snails, the susceptible B. glabrata’s 
haemocytes cannot recognize the invading schistosomes, 
so they cannot be activated and do not generate subse-
quent immune responses. It is speculated that this situ-
ation is related to the polymorphic patterns of FREPs in 
B. glabrata and SmPoMucs in S. mansoni as well as the 
inhibition of haemocyte function by larval transforma-
tion products (LTPs) [59]. Proteomics has also identified 
binding proteins between the cercariae and proteins that 
are not usually related to immunity and defense, such 
as actin, collagen, haemoglobin, GAPDH, lipoprotein, 
and histone 4, and the binding of these "non-immune" 
proteins to the cercariae is specific. They may also have 
some undocumented immune effects [44]. The immune 
responsiveness of the B. glabrata is also affected by exter-
nal stressors, such as temperature: when maintained at 
32 °C, the BS-90 snails, which are resistant to S. mansoni 
at 25  °C, become susceptible in the F2 generation, indi-
cating epigenetic inheritance. Recent research has found 
that this is related to the silencing of PIWI-encoded 
transcripts, as PIWI inhibits the expression of retro-
transposons such as nimbus. When nimbus expression 
increases, resistant snails become sensitive [60]. Heat 
shock increases the mRNA level of NADPH oxidase 2 
and hydrogen peroxide produced by snail haemocytes, 
and an HSP-90 inhibitor can reverse both phenotypes 
[61]. The change in temperature involved, where higher 
temperatures make snails more susceptible, suggests 
that with global warming, the spread of schistosomiasis 
is likely to become easier, so vigilance in prevention and 
control is essential. Discovering new foci may contain 
new solutions to the problem of schistosomiasis, and in 
recent years, research on the microbiome of B. glabrata 
may be a promising angle [54] (Fig. 3).

Immune system of Bulinus truncatus
In 2018, the genome sequence of B. truncatus, the inter-
mediate host of S. haematobium, was obtained [62]. 
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Fig. 3  The upper panel of this figure illustrates the partial immune responses triggered by pathogen invasion in Biomphalaria glabrata. Several 
immune-related factors and their mechanisms of action have been reported in smooth-bore snails. BgTLR, as a crucial transmembrane PRR, 
mediates immune signaling in haemocytes through intracellular transduction. Soluble immune factors like BgFREP, BgTEP, and Biomphalysin 
interact to initiate cytotoxic effects (perforation of pathogen cell membranes or release of cytotoxic substances) and opsonization, culminating 
in pathogen elimination via cell phagocytosis. Additionally, the chemoattractant factor BgMIF induces haemocyte migration and proliferation, 
potentially contributing to encapsulation response. In contrast, the lower panel describes the immune response following pathogen invasion 
in Oncomelania hupensis. Research in this area remains relatively scarce. To date, only directly related immune factors, OhTLRs and OhMIF, have been 
identified and functionally characterized, with other immune-related factors and their associated mechanisms largely unknown
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Andreas J. Stroehlein et al. assembled this transcriptome 
from short- and long-read RNA sequencing data, pre-
dicting 12,998 proteins, with 58% of them having hom-
ologues in B. glabrata [63]. The genome of B. truncatus 
contains multiple gene families related to parasite infec-
tion and immune response, including but not limited 
TLR, Down syndrome cell adhesion molecules (Dscam), 
lysozyme, C-type lectins, and immune-associated mol-
ecules such as cytokines and chemokines. The exist-
ence of these gene families not only reveals the immune 
response mechanism of B. truncatus but also provides 
new clues for future research on its interaction with S. 
haematobium [62]. Based on the current literature, the 
main focus of research on the immune response of B. 
truncates is haemoglobin-related protein (HPR) and anti-
microbial peptides. Both B. truncatus and B. glabrata can 
resist schistosomes through innate and adaptive immune 
responses. The immune-related genes involved in both 
include TLR, Dscam, lysozymes, C-type lectins, etc., but 
there are differences in their immune response mecha-
nisms. Biomphalaria glabrata has multiple immune 
molecules, mainly involving HPR and antimicrobial pep-
tides, while the immune response of B. truncatus mainly 
involves its unique HPR and BtPMAP antimicrobial 
peptides. In addition, their epigenetic regulatory mecha-
nisms may also be different. Biomphalaria glabrata can 
regulate the expression of related genes through epige-
netic modifications such as DNA methylation and his-
tone modification when infected with schistosomes, 
while the epigenetic regulatory mechanism of B. trunca-
tus is currently unclear. Due to the limited research on 
the immune response of B. truncatus, further in-depth 
research is needed to compare it with B. glabrata [64].

Cellular immunity of Oncomelania hupensis
Haemocytes are the main effector cells of innate immune 
defense, playing a crucial role in the host defense against 
parasitic infections. Without the encapsulation reaction, 
cytotoxicity, and phagocytosis driven by haemocytes, 
parasites can survive and establish infection within the 
snail.

To date, there is no consensus on the classification 
of haemocytes in O. hupensis as different studies pro-
pose different classification systems [37, 39, 65, 66]. For 
instance, Xu et  al. [65] classified the haemocytes in O. 
hupensis into granular round cells, agranular round cells, 
and spindle-shaped cells, while another research team 
categorized them into round cells with filopodia, acido-
philic round cells without filopodia, alkaline round cells 
without filopodia, and spindle-shaped cells [67]. Typi-
cally, the haemocytes of most gastropods are classified 
into granulocytes and agranulocytes based on their mor-
phology, and O. hupensis are no exception, with different 

proportions and subgroups among species [37]. Granu-
locytes are a minority group among all haemocytes in O. 
hupensis, accounting for < 10% of the total population. 
They are mostly round shaped, ranging in size from 4.3 to 
10.9 μm, with a few being spindle-shaped. Further classi-
fication based on granule properties divides granulocytes 
into acidophilic granulocytes and alkaline granulocytes, 
as observed by Giemsa staining and electron microscopy 
[37]. Agranulocytes, or transparent cells, make up > 90% 
of all haemocytes and vary in size from 0.4 to 30.8  μm 
[37]. Based on their size, they can be classified into small, 
medium, and large transparent cells, with decreasing 
proportions in that order [37]. Transparent cells can also 
be classified based on their shape as round, elliptical, and 
pseudopodia-like cells [37].

The number and type of haemocytes are essential cel-
lular immune elements for establishing a successful 
immune response, although it seems that they do not 
determine the effectiveness of encapsulation [28, 29]. 
When a healthy, uninfected snail is attacked by S. japoni-
cum cercariae, the number of haemocytes increases 
immediately and reaches its peak in 6 h, approximately 
twice the number before infection. The number of 
haemocytes then gradually decreases, significantly lower 
than the pre-infection level 12  h after infection, and 
reaches its lowest point 24 h after infection. The number 
of haemocytes then slowly increases, remaining lower 
than the pre-infection level on the 8th day after infec-
tion [37]. Current research suggests that large transpar-
ent cells and granulocytes play a dominant role in the 
early defense response of snails. However, the differentia-
tion, migration, and action mechanisms of granulocytes 
and transparent cells in snail haemocytes require further 
investigation [37].

Humoral immunity of Oncomelania hupensis
From the currently published articles, research on the 
factors and mechanisms involved in the immune inter-
action between O. hupensis and the S. japonicum is very 
limited. In recent years, some research progress has been 
made, and some immune factors and effector factors have 
been identified, including MIF [39, 41], Toll-like receptor 
(TLR) [42], myeloid differentiation factor 88 (MyD88) 
[42, 68], and thioredoxin (Trx) [40, 69]. These immune 
and effector factors have been identified and functionally 
studied, involving stimulating cell proliferation, activat-
ing immune signaling pathways, regulating the release of 
toxic molecules, and increasing resistance to schistosome 
infection.

MIF was first discovered in the human body in 1966. 
Research has found that it plays a role in delayed hyper-
sensitivity reactions and is a soluble cytokine that effec-
tively inhibits macrophage migration in the body, hence 
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its name [70]. Macrophage migration inhibitory factor 
is an evolutionarily conserved immune protein that is 
widely expressed in the biological world. In mammals, 
MIF has about 90% homology [71]. In humans, mice, and 
rats, a mRNA of about 0.8 kb is encoded, which encodes 
a non-glycosylated protein of 114 amino acids with a 
relative molecular weight of 12.5 kDa [72]. In the human 
body, there is only one MIF gene located on chromo-
some 22 (22q11.2), which consists of three short exons of 
107, 172, and 66 base pairs and two introns of 188 and 94 
base pairs, respectively [72]. According to X-ray crystal-
lography studies, MIF is a homotrimer, with each mono-
mer consisting of 115 amino acids. In each monomer, 
two α-helices are filled in a four-stranded β-sheet layer, 
and three β-sheet layers and six α-helices form a circu-
lar protein. The trimer center forms an internal passage 
[73]. In addition to its cytokine functions, MIF plays a 
hormone-like role in regulating blood sugar and gluco-
corticoids [71]. Macrophage migration inhibitory factor 
was originally found to regulate the activity of T cells in 
acquired immunity, and subsequent studies have found 
that it plays a key role as a regulator of innate immunity. 
Macrophage migration inhibitory factor is a pleiotropic 
inflammatory mediator that serves as a biomarker for 
various diseases and is associated with the pathogenesis 
of sepsis, inflammation, and autoimmune diseases [71]. 
Macrophage migration inhibitory factor promotes the 
proliferation of immune cells and inhibits apoptosis via 
the classical receptor-mediated pathway or through non-
classical endocytic pathways [72]. It regulates the upregu-
lation of TLR4 expression on intracellular MIF, which is 
a signaling molecule on macrophages that responds to 
the gram-negative bacterial endotoxin receptor complex. 
Various pathogens and other proinflammatory cytokines 
can induce the release of MIF in macrophages. Mac-
rophage migration inhibitory factor plays a regulatory 
role in innate and adaptive immune responses and is an 
important component of the host’s anti-pathogen alarm 
system and stress response [72].

In 2010, the MIF of the B. glabrata (BgMIF) was identi-
fied for the first time, possibly the first functional endoge-
nous cytokine in gastropods [32, 39]. It participates in the 
immune response of snails, stimulates cell proliferation, 
and inhibits NO-induced cell apoptosis. In vitro experi-
ments have shown that BgMIF can promote encapsula-
tion of S. mansoni larvae. Knockdown of BgMIF in vivo 
prevented the changes in circulating haemocyte popula-
tions that occur in response to S. mansoni infection and 
led to a significant increase in snail burden, partly deter-
mining the compatibility between the parasite and the 
snail [39].

Huang et  al. confirmed through experiments that the 
O. hupensis macrophage migration inhibitory factor 

(OhMIF) is expressed in various tissues of the snail, espe-
cially in immune cell types such as haemocytes and is 
localized in the cytoplasm. When the snail is infected 
by schistosomes, the expression level of OhMIF is sig-
nificantly upregulated. Knocking down the expression 
of OhMIF in the snail significantly reduces the propor-
tion of phagocytic haemolymph in the total circulating 
haemolymph as well as the proportion of larger volume 
and higher particle density haemolymph, indicating that 
OhMIF not only participates in the activation and dif-
ferentiation of haemocytes but also plays an important 
role in promoting the migration and recruitment of 
haemocytes to the site of infection [39]. By determining 
the crystal structure of OhMIF, it was found that OhMIF 
consists of four monomers from an asymmetric unit, with 
three monomers forming a homologous trimer and the 
fourth monomer forming a trimer with two other mono-
mers from adjacent asymmetric units [74]. Oncomelania 
hupensis macrophage migration inhibitory factor has the 
same fold as the human MIF (hMIF) monomer but has 
a structure that other MIFs do not have, namely a long 
C-terminal helix (Hα3), which maintains thermal stabil-
ity and activates tautomerase, but is not necessary for the 
activation of the ERK1/2 pathway [74]. By site-directed 
mutagenesis, glycine was substituted for proline 2 at the 
N-terminus of OhMIF, and a mutant strain rOhMIFP2G 
was successfully expressed and purified. No tautomer-
ase activity was detected in rOhMIFP2G, indicating that 
rOhMIF displays a conserved D-dopachrome tautomer-
ase activity dependent on Pro2, which can be signifi-
cantly inhibited by the MIF antagonist ISO-1. rOhMIF 
and its mutant rOhMIFP2G can also induce phosphoryl-
ation and activation of the ERK1/2 pathway in circulating 
haemocytes, indicating that tautomerase activity is not 
necessary for the activation of the ERK1/2 pathway [41]. 
It is known that OhMIF plays an important role in the 
immune response of O. hupensis to resist schistosomiasis 
infection, but its signaling functions in cell proliferation, 
apoptosis, and survival remain to be studied [41].

As early as 1988, when Hashimoto et  al. studied the 
embryonic development of Drosophila, they found that 
there was a gene (dToll) that determined the dorsoventral 
differentiation of Drosophila, and the transmembrane 
receptor protein it encoded was called Toll receptor 
[75]. In 1997, the first Toll-like protein was found on 
the surface of human cells, and it plays an important 
role in human immunity [76]. To date, the presence of 
TLRs has been found in lower plants and lower animals 
except Drosophila and humans [77]. Toll-like receptors 
are transmembrane proteins (all currently found as type 
I transmembrane proteins) consisting of three parts: 
leucine-rich repeats (LRRs) extracellular regions, trans-
membrane segments, and cytoplasmic regions containing 
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the Toll/IL-1 receptor homologous region (TIR) region 
responsible for signal transduction and activation effec-
tor functions [78]. The TLR is thought to be PRRs, and 
PAMPs bind to PRRs to initiate an immune response [79]. 
In the Toll-like signaling pathway, MyD88 containing the 
TIR domain is a typical linker protein, and MyD88 con-
nects IL-1 receptor (IL-1R) or TLR family members to 
IL-1R-associated kinase (IRAK) family kinases through 
homotypin-protein interactions, a process that is associ-
ated with nuclear factor κB (NFkB). Activation of mito-
gen-activating protein kinases and activator protein-1 
is associated [80]. Obviously, the intracellular linker 
protein, known besides MyD88, includes TIRAP, TRIF, 
TRAM, etc.; according to the difference of linker pro-
tein, the signaling pathway of TLRs can be divided into 
MyD88-dependent signaling pathway and MyD88-inde-
pendent signaling pathway [77]. TLRs are major recogni-
tion receptors in innate immune responses [81] and, in 
acquired immunity, are able to recognize microbial com-
ponents that activate dendritic cells (DCs) [82].

A study in 2016 provided the first functional charac-
terization of BgTLR in B. glabrata [31]. Toll-like recep-
tors play a critical role in innate immune responses 
by directly recognizing pathogens (typically bacteria, 
viruses, and fungi) or by binding to endogenous ligands 
that recognize pathogens and transmitting signals to 
immune cells [31, 83]. BgTLR has complete LRR and 
TIR domains and is involved in the immune response 
of the B. glabrata to S. mansoni. Here, we report the 
first functional report of a snail TLR and demonstrate 
its essential role in the cellular immune response of B. 
glabrata following a challenge with S. mansoni. Two 
subspecies of B. glabrata with different S. mansoni 
compatibility phenotypes were studied. The resistant 
strain (BS-90) showed higher levels of BgTLR than the 
susceptible M-line strain. Following a challenge with 
S. mansoni, the transcriptional expression of BgTLR 
was rapidly upregulated in the resistant BS-90 snails, 
while it did not increase significantly in susceptible 
M-line snails. Knockdown of BgTLR using targeted 
siRNA oligonucleotides resulted in a significant change 
in the resistance phenotype in resistant snails, with 
approximately 40% of normally resistant snails becom-
ing infected. These results demonstrate that BgTLR 
is a critical snail immune receptor that can influence 
the partially determined resistance phenotype of B. 
glabrata to S. mansoni [31].

Zhao et  al. identified 16 TLRs in O. hupensis. 
Oncomelania hupensis Toll-like receptors were highly 
expressed in the haemocytes of snails, and the expres-
sion of nine OhTLRs in the gonads of female snails was 

higher than that of other tissues, and it was speculated 
that there may be maternal immune transfer in O. hupen-
sis, while only the expression of OhTLR12 in gonads was 
observed in male snails compared with other tissues 
[42]. When snails are infected with schistosomiasis, the 
expression levels of all OhTLRs are significantly upregu-
lated at 6  h, and in haemocytes, many OhTLR expres-
sion levels are inhibited at later time points, while in 
other tissues they are inhibited and fluctuate to varying 
degrees. The OhMyD88 gene was also highly expressed 
in haemocytes, and the expression of OhMyD88 in the 
whole snail was rapidly upregulated at 6 h. At 12 h, the 
levels of OhMyD88-1, OhMyD88-2, and OhMyD88-3 
reached their highest values, respectively [42]. At 
24–96  h, OhMyD88-1 dropped to normal, OhMyD88-2 
and OhMyD88-3 increased moderately, and then the 
time point decreased and returned to normal [42]. As a 
downstream linker protein of the TLR signaling pathway, 
MyD88 is closely related to the dynamic changes between 
the two, and researchers have shown that TLRs are 
not only involved in the innate immune response of O. 
hupensis against the early response of S. japonicum but 
also speculate that they may play a role in the activation 
of different haemocytes [42].

Many studies have shown that cytotoxic molecules 
such as ROS and RNS are crucial for killing invading 
parasites in S. mansoni and support haemocyte-mediated 
damage and killing of miracidia of S. mansoni [33, 84]. 
Conversely, S. mansoni cercariae may protect themselves 
from harmful oxidative environments in the host dur-
ing the early stages of infection through some redox sys-
tems, such as glutathione (GSH) and Trx [85]. Therefore, 
pathways and molecules involved in ROS production 
and clearance will affect the immune defense outcome in 
snails. Studies in humans have demonstrated that Trxs 
are a group of small-molecule proteins widely present in 
all living cells, and are critical regulators of cellular redox 
homeostasis.

Thioredoxin was first reported as an electron donor for 
Escherichia coli ribonucleic acid reductase in 1964 [86]. 
Thioredoxin is a small protein (molecular weight of about 
12 kDa) widely present in prokaryotes and eukaryotes: E. 
coli contains two soluble Trx; yeast contains two soluble 
Trx and one mitochondria-specific Trx; Trx is present in 
the cytoplasm, chloroplast, mitochondria, and nucleus of 
plants. Only three widely expressed Trxs are found in the 
human body, Trx 1, Trx 2, and TXL 1 [87]. The unique 
folding pattern of TRX is named TRX folding, which 
consists of a single domain with a central five-stranded 
β-sheet with four flanking α-helixes and a dithiol/
disulphide group in the active site forming a compact 
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spherical structure with a highly conserved active central 
site between β2 and α2-Cys-Gly-Pro-Cys-Cys-(-CGPC-) 
[87]. Thioredoxin has two forms of existence, oxidation 
state and reduced state, and can participate in redox 
reactions because the two cysteine sulfhydryl groups in 
the active site can reversibly form disulphide bonds [88]. 
Thioredoxin is involved in many physiological processes 
and has a variety of biological functions, including redox 
regulation, signaling, regulation of transcription fac-
tors (such as NF-κB, Ref-1-dependent AP1, etc.), DNA-
binding activity, and participation in the regulation of cell 
growth and apoptosis [88]. In humans, defects in folding 
are associated with the onset of a variety of diseases, such 
as cancer, Alzheimer’s disease, and cystic fibrosis [89]. 
A protein containing an active site motif (-CXXC-) with 
two cysteines (X can be any amino acid) called thiore-
doxin-related protein (TRP) belongs to the Trx supergene 
family, which includes thiotransferases, eukaryotic pro-
teins belonging to the protein disulphide isomerase (PDI) 
family, and some bacterial proteins [90]. As a member 
of the Trx superfamily, 14 kDa of human Trx-associated 
protein (TRP14) was originally found from human hella 
cells, containing five cysteines (Cys43, Cys46, Cy s64, Cy 
s69, and Cys110); only two cysteines (Cys43 and Cys46) 
formed the active site of CXXC [-Cys-Pro-Asp-Cys-(-
CPDC-)], a structure related to its redox activity [91].

Cao et al. identified TRP14 in O. hupensis and explored 
whether OhTRP14 participates in the clearance and 
regulation of ROS in circulating haemocytes in O. 
hupensis in response to S. japonicum [40]. OhTRP14 is 
expressed in all tissues and haemocytes of snails; when 
the snails are infected by schistosomiasis, the expres-
sion of OhTRP14 in snails shows obvious upregulation, 
and the level of ROS in circulating haemocytes is also 
significantly increased. If the expression of OhTRP14 in 
the snails is knocked down, the level of ROS in the cir-
culating haemocytes of infected snails is significantly 
increased [40]. The Cys41 (TGC) residue located in the 
motif of the active site of CPDC was replaced with Ser 
(AGC). Mutant (rOhTRP14C41S) and rOhTRP14 were 
expressed in E. coli, the enzymatic activity of both pro-
teins was studied by insulin disulphide reduction assay. 
rOhTRP14 showed significant oxidoreductase activity, 
and the mutant rOhTRP14C41S did not detect enzyme 
activity under the same assay conditions. It shows that 
rOhTRP14 conserved oxidoreductase activity is depend-
ent on the CPDC motif [40]. The specific mechanism of 
OhTRP14 in O. hupensis needs to be further studied.

Although TRP has been identified and function-
ally characterized in O. hupensis, there are no litera-
ture reports on TRP in B. glabrata. This provides a new 

research perspective for studying the redox balance and 
ROS-related mechanisms in B. glabrata.

Conclusions
As a model organism, B. glabrata will be studied in 
depth, and it can be an inspiration regarding other 
organisms. We can validate and study the immune fac-
tors already identified in B. glabrata on the less studied 
O. hupensis, which saves both time and resources. In this 
article, we reviewed the basic knowledge of  O. hupen-
sis and S. japonicum and summarized the three main 
immune factors studied in recent years in immunology 
of the O. hupensis: MIF, Trx, and TLR. At the same time, 
we compared the model organism B. glabrata with the 
hot research organism B. truncatus, trying to find inspi-
ration in the more thoroughly studied B. glabrata, to 
study the immunology of the O. hupensis, B. truncatus, 
invertebrates, and even mammals. We believe that with 
the deepening of research on the intermediate hosts of 
schistosomiasis, control of the spread of schistosomia-
sis is imminent. We have more confidence and ability to 
achieve the anticipated goal of eliminating schistosomia-
sis by 2025.
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