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Abstract 

Background The genus Borrelia comprises pathogenic species of bacteria that pose a significant risk to public health. 
Borrelia spp. are emerging or reemerging infectious agents worldwide with complex transmission cycles, and many 
species use rodents as vertebrate reservoir hosts. Spirochetes morphologically compatible with Borrelia have been 
recurrently observed in opossums; however, there is currently a lack of genetic evidence confirming infection or sup‑
porting that these marsupials are hosts of Borrelia spirochetes.

Methods During 2017, 53 serum samples of Didelphis marsupialis from the municipality of Colosó (department 
of Sucre, Colombia) were collected and allocated in a serum bank. DNA extracted from the serum samples was sub‑
mitted to a Borrelia genus‑specific real‑time PCR targeting the 16S rRNA gene. Positive samples were subsequently 
derived from semi‑nested PCR protocols to obtain large fragments of the 16S rRNA and flaB genes. Obtained 
amplicons were subjected to Sanger sequencing. One positive sample was randomly selected for next‑generation 
sequencing (NGS). Obtained reads were mapped to genomes of Borrelia spp. and sequences of two genes used 
in a multilocus sequence typing scheme retrieved for taxonomic assignment and phylogenetic analyses.

Results Overall, 18.8% (10/53) of the samples were positive by qPCR. Of them, 80% (8/10) and 60% (6/10) were 
positive for the 16S rRNA and flaB genes after semi‑nested PCRs, respectively. Bioinformatic analysis of one sample 
sequenced with NGS yielded 22 reads of genus Borrelia with different sizes. Two housekeeping genes, rplB and pyrG, 
were recovered. Nucleotide pairwise comparisons and phylogenetic analyses of 16S rRNA, flaB, rplB and pyrG genes 
showed that the Borrelia sp. found in opossums from Colosó corresponded to Borrelia puertoricensis.

Conclusions We describe the first molecular evidence to our knowledge of B. puertoricensis in Colombia, specifically 
in opossums, and the first detection of this spirochete in a vertebrate host since its isolation from Ornithodoros puer-
toricensis in Panama. This detection is also relevant because of the epidemiological importance of opossums as reser‑
voirs of zoonotic diseases to humans.
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Background
Bacteria of the genus Borrelia are agents of emerging 
and re-emerging infectious diseases of domestic animals 
and humans and pose a threat to public health [1]. The 
main vectors of Borrelia bacteria are hard ticks of genus 
Amblyomma, Ixodes and Rhipicephalus; soft ticks of 
genus Argas and Ornithodoros; and the human clothing 
louse Pediculus humanus humanus [2].

From a genetic point of view, the genus Borrelia can be 
classified into three monophyletic groups: the Borrelia 
burgdorferi sensu lato (Bb) complex, relapsing fever (RF) 
group and a third group of spirochetes associated with 
reptiles and echidna (Tachyglossus aculeatus) [3].

During the twentieth century in South America, Borre-
lia venezuelensis transmitted by Ornithodoros rudis and 
Borrelia recurrentis transmitted by the human louse were 
important pathogens in humans [4]. Wild mammals such 
as armadillos, monkeys and opossums were implicated as 
possible hosts [5–7] but never confirmed through molec-
ular techniques.

Historically, the first report of spirochetes in opossums 
comes from Panama in 1931, with the animals show-
ing an infection rate of 9.8% [7]. Subsequently, in 1946, 
Pifano detected spirochetes in thick blood films of opos-
sums Didelphis aurita from Venezuela [8]. Although the 
vector of those spirochetes has yet to be confirmed, O. 
puertoricensis, a widely distributed tick in Central and 
northern South America, has been collected on Didel-
phis virginiana in Mexico [9]. Although O. puertoricen-
sis remains to be confirmed as a vector of spirochetes, in 
Panama, Bermúdez et al. isolated a new RF group Borre-
lia (B. puertoricensis) from O. puertoricensis collected in 
burrows frequented by Dasyprocta punctata [10].

Despite opossums carry microorganisms of public 
health importance such as Trypanosoma, Toxoplasma, 
Leishmania, Rickettsia and Leptospira [11, 12], reports of 
Borrelia spp. in these animals are obscure and lack genetic 
confirmation. To elucidate whether opossums could carry 
Borrelia spirochetes, in this study we performed genetic 
screenings to detect Borrelia DNA in serum from opos-
sums derived from a bank of samples in Colombia.

Materials and methods
Study area and capture of opossums
Four field trips were carried out on 5 days each in Febru-
ary, May and September 2017 and January 2018 in a rural 
area of the municipality of Colosó, department of Sucre 
(75°20′ 58.27″W–9°29′ 58.60″N) (Fig.  1). Ten Tom-
ahawk-like traps baited with shells and chicken bones 
were set. Fifty-three captured opossums were identi-
fied as Didelphis marsupialis. Blood samples were col-
lected in vacutainer tubes with EDTA after puncturing 
the caudal vein, and the animals were released into the 

wild. Serum was obtained through centrifugation. The 
capture of opossums was carried out with the permission 
of the National Authority for Environmental Licenses 
(ANLA, resolution no. 00914). Until use, serum samples 
were stored at the Instituto de Investigaciones Biológicas 
del Trópico of the University of Cordoba in Monteria, 
Northern Colombia.

Molecular analyses
DNA extraction was performed on opossum sera using 
the GenJET Genomic DNA Purification kit (Thermo Sci-
entific) following the manufacturer’s instructions. A con-
ventional PCR (cPCR) targeting the mammalian ß-actin 
gene was implemented as internal control for each 
extraction [13]. To detect Borrelia DNA, samples were 
subjected to real-time PCR (qPCR) targeting the Borre-
lia 16S rRNA gene as reported elsewhere [14]. Samples 
with cycle threshold values (Ct) ≤ 36 were considered 
positive [14]. Positive samples were then subjected to 
semi-nested PCR protocols to amplify longer fragments 
of the 16S rRNA and also the flaB gene [15, 16]. Borre-
lia anserina PL (DQ849625) genomic DNA was used as a 
positive control [17] and molecular grade water as a neg-
ative control. Amplicons of the expected size were Sanger 
sequenced at Macrogen (Seoul, Korea) (Table 1).

Short read sequencing
One sample positive for Borrelia detection was ran-
domly selected to perform sequencing with the DNB-
SEQ-G50RS High-throughput (Rapid) technology (MGI, 
China). To this effect the MGIEasy FS DNA Prep kit 
(BGI, China) was employed according to the manufactur-
er’s instructions. To obtain the opossum serum metage-
nome, shotgun sequencing was performed with a read 
length of 150 bp, paired end, with 2.97-Gb reads [18].

Bioinformatic analyses
Paired-end sequence reads were retrieved in fastq format 
and subjected to quality control. Low-quality sequences 
(Phred score < Q15), short reads (shorter than 15  bp) 
and adapter sequences were removed using fastp [19]. 
The quality of the reads was checked with FastQC [20]. 
Sequences corresponding to the host DNA (D. marsu-
pialis) were removed by mapping the libraries against 
Monodelphis domestica (GCF_027887165.1) reference 
genome using Bowtie2. Notably, M. domestica is the 
sole species of the Didelphidae family with an available 
genome [21]. Unaligned reads were extracted with sam-
tools [22] to perform a de novo metagenomic assem-
bly with MEGAHIT using default parameters and a 
minimum contig length of 200 base pair (bp) [23]. The 
obtained contigs were then compared with BLASTn 
(using an E-value cutoff  10e−3) [24], and those aligned to 
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Fig. 1 A Map of South America showing the location of the department of Sucre within Colombia. B Map of the Department of Sucre showing 
the municipality investigated. C Sampled municipality in the department of Sucre showing the opossum collection site

Table 1 Primers used to amplify Borrelia genes in this study

Gene Round Primer name Secuencia 5′–3′ Tm [°C] bp

16S rRNA qPCR Screening Bor16S3F AGC CTT TAA AGC TTC GCT TGTAG 60 148

Bor16S3R GCC TCC CGT AGG AGT CTG G

probe Bor16S3P [6FAM] CCG GCC TGA GAG GGT GAA CGG 

16S rRNA First round FD3 [f ] AGA GTT TGA TCC TGG CTT AG 54 1489

T50 [r] GTT ACG ACT TCA CCC TCC T

Second round FD3 [f ] AGA GTT TGA TCC TGG CTT AG 56 730

16 s‑1 [r] TAG AAG TTC GCC TTC GCC TCTG 

Second round 16 s‑2 [f ] TAC AGG TGC TGC ATG GTT GTCG 56 462

T50 [r] GTT ACG ACT TCA CCC TCC T

Second round Rec4 [f ] ATG CTA GAA ACT GCA TGA 54 520

Rec9 [r] TCG TCT GAG TCC CCA TCT 

flaB (flagellin) First round FlaRL [f ] GCA ATC ATA GCC ATT GCA GAT TGT 55 665

FlaLL [r] ACA TAT TCA GAT GCA GAC AGA GGT 

Second round FLaRS [f ] CTT TGA TCA CTT ATC ATT CTA ATA GC 55 491

FlaLL [r] ACA TAT TCA GAT GCA GAC AGA GGT 

Second round FlaRL [f ] GCA ATC ATA GCC ATT GCA GAT TGT 55 528

FLaLS [r] AAC AGC TGA AGA GCT TGG AATG 
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the Borrelia genus were mapped against a multireference 
database consisting of representative Borrelia sequences 
(NC015921, NZCP028884, NZCP025785, NZCP036914, 
NZCP073148, NZA-YOT01000146, NZAYOU01000121, 
NZAZIT01000001, NC011244, NZLN609267, 
NZCP075379, NZCP073159, NC008710, NZCP073220) 
with Bowtie2. Gene annotation was done using Prokka 
[25] with a reference fasta (Genbank ID CP075379), 
minimum contig length of 200 bp and a Borrelia genus-
specific database. Prodigal-metagenome option was used 
alongside Prokka to improve gene prediction. All the bio-
informatic workflow was carried out in the Galaxy Pro-
ject’s platform [26]. Sequences belonging to a multilocus 
sequence typing scheme commonly applied to Borrelia 
spp. (https:// pubml st. org) were selected for taxonomic 
assignment and building phylogenetic trees.

Phylogenetic analysis
Sequences generated by both Sanger and NGS were 
assembled in Ugene, and consensuses were compared 
against sequences reported in GenBank using BLASTn 
[24]. Alignments were built with Clustal Omega [27] 
with sequences downloaded from GenBank for each of 
the analyzed genes [28]. Aligned sequences were manu-
ally trimmed to match the query sequence lengths. Phy-
logenetic reconstructions were performed in IQtree with 
the maximum likelihood method; the best-fit nucleotide 
substitution model was obtained using ModelFinder [29]. 
The trees were reconstructed using 1000 bootstraps [30] 
and edited with iTOL v5 [31].

Results
Amplicons of the expected size for the ß-actin gene were 
obtained in all the samples. Overall, 18.8% (10/53) were 
positive for Borrelia spp. 16S rRNA gene by qPCR with 
Ct ranging between 23 and 33. Of those positive sam-
ples, 80% (8/10) and 60% (6/10) were positive for the 16S 
rRNA and flaB genes by semi-nested PCR, respectively. 
The sizes of the obtained amplicons were 1112–1474 bp 
for the 16S rRNA gene and 627–636 bp for the flaB gene 
(Table  1). Twenty-two gene segments with sizes rang-
ing between 218–1460  bp of 81.82–100% of identity 
with B. puertoricensis were retrieved from the sole sam-
ple submitted to NGS sequencing (see Additional file 1: 
Table S1, S2). The sequences were deposited in GenBank 
with the accession numbers OQ944473–OQ944479, 
OQ725656–OQ725662 and OQ871584.

Of the genes retrieved by the bioinformatic analyses, 
the 50S ribosomal protein L2 gene (rplB) and the CTP 
synthase (pyrG) were used in the taxonomic assignment 
and phylogenetic analysis since they belong to a mul-
tilocus sequence typing scheme of the genus Borrelia 

[32]. BLASTn comparisons performed to the 16S rRNA, 
flaB, rplB and pyrG gene sequences showed 99.2–100% 
identity with B. puertoricensis isolated from O. puertori-
censis of Panama [10]. For the phylogenetic reconstruc-
tions, 78, 39, 14 and 14 sequences were downloaded for 
the alignments of the 16S rRNA, flaB, rplB and pyrG 
genes, respectively. All four phylogenies depicted a logi-
cal topology grouping the species into the B. burgdorferi 
sensu lato group, transitional group and FR group. The 
sequences of Borrelia retrieved in this study clustered 
into a monophyletic clade with B. puertoricensis with 
branch support ranging between 82 and 100% (Fig. 2).

Discussion
Phylogenetic analyses performed in this study using the 
16S rRNA, flaB, rplB and pyrG gene demonstrated that 
the detected species correspond to B. puertoricensis, 
which was recently isolated from the tick O. puertori-
censis collected from burrows frequented by D. punc-
tata in Panama [10]. In the study of Bermudez et al., the 
taxonomic position of B. puertoricensis was evaluated 
by BLASTn comparisons and by concatenating four loci 
(IGS, rrs, flaB and gyrB) to perform phylogenetic analy-
ses, which collectively showed that the isolated spiro-
chete was closely related with Borrelia turicatae and B. 
parkeri [10]. Although in our study the gene sequences 
of the phylogenies were not exactly the same, our results 
agree with those obtained by Bermúdez et al. in that they 
conserve the same topology despite evaluating different 
genes independently (Fig. 2).

This study provides the first molecular characterization 
of a Borrelia sp. in opossums. However, the first evidence 
of opossums as potential hosts of Borrelia came with the 
observation of spirochetes in blood of D. marsupialis 
in Panama in 1931 [7]. At that time, 61 opossums were 
screened and 6 (9.8%) were positive [7]. Later, in 1946, 
Pifano detected spirochetes in thick blood smears of D. 
aurita in Venezuela, and he attributed the species to “Spi-
rocheta venezuelensis” [8], which is currently recognized 
as a synonym of B. venezuelensis. These previous reports 
were based only on morphology and corresponded to the 
sole evidence of Borrelia in opossums along the Ameri-
can continent.

Although spirochetes of genus Borrelia have been 
observed and now genetically identified as B. puertori-
censis, at least in one opossum of this study, the vector 
remains unknown. However, laboratory experiments 
show that O. puertoricensis transmits B. puertoricensis 
to mice [10]. Interestingly, Ballados-González et  al. col-
lected O. puertoricensis in opossums (D. virginiana) from 
Mexico [9], a fact that suggests that this soft tick species 

https://pubmlst.org
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could be the vector of B. puertoricensis to opossums. 
However, in Colombia, soft ticks parasitizing opossums 
have not been collected.

Given that in our study B. puertoricensis was detected 
in serum of the opossums, these mammals could be 
involved as reservoir hosts for these microorgan-
isms; however, more studies are needed to confirm this 
hypothesis. Opossums have synanthropic habits and 
spread pathogens in nature [11, 12]. Indeed, these ani-
mals are important in the transmission cycles of zoonotic 
diseases such as trypanosomiasis, toxoplasmosis, leish-
maniasis, rickettsiosis and leptospirosis [11, 12]. There-
fore, it would be important to know the epidemiological 
role that opossums may play in the transmission cycles 
of RF Borrelia and to further elucidate the vector of the 
spirochetes (e.g., Ornithodoros ticks).

This study demonstrates the presence RF group B. 
puertoricensis in opossums from Colombia through the 
sequencing of four genes of the spirochete from serum 
of infected animals. In Colombia, the study of RF group 

spirochetes dates from the first half of the twentieth cen-
tury [4]. Our results highlight that RF group spirochetes 
of genus Borrelia do circulate in wild animals, and atten-
tion should be paid to opossums as potential reservoirs.
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