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Abstract 

Background Aedes albopictus (Skuse, 1894) is a vector for pathogens like dengue, chikungunya, and Zika viruses. 
Its adaptive capacity enables reproduction in temperate climates and development mainly in artificial containers 
with fresh water in urbanized areas. Nevertheless, breeding in coastal areas may also occur along with its aggressive 
invasiveness. Global warming and the consequent rise in sea levels will increase saline (> 30 ppt) or brackish (0.5–30 
ppt salt) water in coastal regions. To address whether Ae. albopictus can breed in brackish water, we initiated the cur‑
rent study that analyses the survival of immature stages at different salinity concentrations and explores whether car‑
ryover effects occur in the resulting adults. This possible adaptation is important when considering the potential 
for development in new habitats and expansion of one of the world’s most invasive species.

Methods We investigated the influence of salinity on the survival of Ae. albopictus larvae and adults under labora‑
tory‑controlled conditions. First instar larvae were exposed to different salinity concentrations (0 to 30 ppt) and their 
development time, pupation, adult emergence, and overall survival were monitored daily. We used Kaplan‑Meier 
and Cox regression models to analyze the survival rates at different salinity levels. Furthermore, life tables were con‑
structed under each salinity concentration.

Results Increasing salt concentrations significantly increased the mortality risk during immature development, 
while no significant effect was observed on adult mortality risk. A comparison between distilled and bottled water 
revealed a notable increase in overall mortality risk for individuals developing in distilled water. However, no signifi‑
cant effects were found when analyzing survival from the first larval stage to adult emergence and adult lifespan. The 
life expectancy of immature stages decreased with increasing salt concentrations, although salinity concentration did 
not significantly impact adult life expectancy.

Conclusions Our findings suggest that Ae. albopictus, previously considered freshwater species, can successfully 
develop and survive in brackish waters, even in the absence of characteristic structures found in euryhaline species. 
These adaptations may enable Ae. albopictus to establish new breeding sites and colonize unexplored territories. 
Knowledge of these physiological adaptations of Ae. albopictus to salinity should be pursued to increase the range 
of control of the species, and to make more accurate predictions of its dispersal and vectoring ability.
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Background
Aedes albopictus [1], commonly known as the Asian 
tiger mosquito, is a species of great importance for 
public health since it is a vector for various pathogens, 
including chikungunya, Zika, and dengue viruses [2, 
3], as well as filarial worms such as Dirofilaria immitis 
and Dirofilaria repens [4]. Originating from Southeast 
Asia, during the latter half of the twentieth century, Ae. 
albopictus expanded its geographical range to numer-
ous countries worldwide [5]. The Asian tiger mosquito 
lays desiccation-resistant eggs, and its immature stages 
develop in both natural and artificial freshwater collec-
tions, such as human-made containers [6]. Both of the 
above traits enable survival during transportation (e.g. 
trading of used tires and lucky bamboos) over long dis-
tances, including regional and intercontinental travel [7, 
8]. The rate of its global spread has strongly correlated 
with increased globalization in trading in recent dec-
ades [9]. Aedes albopictus was first reported in Albania 
in 1979 [10] and has since dispersed and establish itself 
in over 30 European countries [11]. It is associated with 
major disease outbreaks in Europe (e.g. dengue and chi-
kungunya in Croatia, France, Spain, and Italy [12, 13]). 
Coastal areas with Mediterranean climates are current 
hot-spots for its European establishment. However, its 
adaptability to cooler environments, winter survival as 
diapausing eggs, and projected temperature rise from 
global warming may further promote its expansion [14, 
15]. Numerous studies have examined the impact of cli-
mate change on the epidemiology of mosquito-borne 
diseases, focusing mainly on the influence of tempera-
ture, rainfall, humidity, wind, and particle pollution on 
mosquito vectors [16, 17, 18, 19]. Among secondary 
parameters are the global distribution and characteris-
tics of plants and animals, the frequency and severity 
of extreme weather events, and global rise in sea levels 
[19]. Extreme events like floods and droughts are likely 
to become more frequent, and heavy rainfalls may pro-
vide standing water surface required for egg-laying and 
larval development in some mosquito species, such as 
Ae. albopictus. In addition, projected rise in sea lev-
els will likely lead to higher occurrences of saline and 
brackish water environments in coastal regions, includ-
ing estuaries, marshes, and other areas[20]. Estuarine 
regions are expected to experience increased salinity 
levels, accompanied by greater tidal flows into rivers 
[21, 22]. These changes have the potential to reshape 
coastal ecosystems and influence the distribution of 
mosquito populations and associated diseases. In fact, 

previous studies have shown that a rise in sea levels 
could increase the prevalence of many vectors of patho-
gens in coastal zones [23].

Mosquito larvae can inhabit various types of water, 
including fresh, brackish, and saline waters [24], cat-
egorized by their salt content (<  0.5 parts per thou-
sand [ppt], 0.5–30 ppt, and >  30 ppt, respectively) 
[25]. Osmoregulatory mechanisms differ between lar-
vae developed in fresh water and those found in saline 
water [26]. Freshwater species are obligate hyperregu-
lators, while euryhaline species (able to develop in 
saline waters) are hyperregulators in diluted environ-
ments and hyporegulators in saline environments [27]. 
Euryhaline mosquitoes possess a rectum comprising 
two segments: an anterior segment functioning as the 
rectum in freshwater forms, and a posterior segment 
involved in salt secretion. This adaptation enables these 
species to survive in saline waters [28, 29].

 Studies have explored the saline tolerance of lar-
vae belonging to the genera Culex and Culiseta dem-
onstrating high levels of organic compounds in 
larvae haemolymph resulting from an osmoregula-
tory response stemming from a distinct evolutionary 
trajectory [27]. Among the Aedes genus, certain spe-
cies such as Aedes detritus and Aedes dorsalis exhibit 
resistance to saline water [26] and have likely adapted 
to lay eggs and undergo development in such breed-
ing sites. Another prominent example is the so-called 
Aedes mariae complex, which inhabits rock pools 
along the coasts of the Mediterranean basin [30]. These 
rock pools along the sea coast are considered extreme 
habitats because their salt concentration can range 
from almost fresh water to 250% seawater [31]. It has 
also been observed that immature development of the 
freshwater mosquitoes Ae. aegypti and Ae. albopictus 
can occur in brackish water collections in unused wells 
and discarded artificial containers [23, 32]. The ability 
of the latter freshwater species to tolerate salinity in its 
immature development has been further studied [33, 
34]. In the genus Anopheles, species such as Anopheles 
stephensi evidence the ability to breed in brackish water 
[35].

The aim of the current study was to explore the 
response of immatures of Ae. albopictus to water salin-
ity and the potential effects on adult life history traits. 
Specifically, we tested the survival and developmental 
time of the different larvae instars breeding in water 
of different salinity levels, as well as the lifespan of 
the emerging adults. Hence, we addressed both direct 



Page 3 of 10Blanco‑Sierra et al. Parasites & Vectors           (2024) 17:24  

and indirect effects of water salinity on critical aspects 
of the life cycle of Ae. albopictus. Our work provides 
data to support future predictive studies of its possible 
prevalence in brackish water bodies in coastal areas as a 
salinity-tolerant mosquito.

Methods
Laboratory conditions and colony rearing
The experiments were conducted in the laboratory of 
Entomology and Agricultural Zoology at the University 
of Thessaly, Greece, from April to October 2022. We uti-
lized walk-in chambers set at a temperature of 25 ± 2 ◦ C, 
relative humidity of 65 ± 5%, and a light cycle of L14:D10. 
The light intensity was gradually adjusted to simulate 
sunrise and sunset, using fluorescent cold-light lamps 
with a range of 800 to 1000 Lux. For the experiments, we 
used a laboratory-adapted colony of Ae. albopictus estab-
lished in 2017 from eggs collected in the vicinity of Volos 
and Larisa city (Thessaly, Greece). The mosquito popula-
tion has been reared for several generations to establish a 
uniform genetic background. For more details regarding 
colony origin and adaptation to laboratory conditions, 
see Ioannou et al. [36]. To establish different salinity con-
centrations, we based the solutions on distilled water and 
added varying amounts of NaCl: 0.2, 0.5, 1, 2, 5, 10, 12, 15, 
20, and 30 ppt. Additionally, we established two controls 
with no addition of salt, using distilled water and bot-
tled water (see Additional file  1: Table  S1), respectively. 
To investigate the survival of Ae. albopictus larvae under 
different salt concentrations, we individually placed first-
instar larvae  (L1) into glass tubes (10  cm height, 1  cm 
diameter) that we had previously cleaned with soap, 
rinsed with distilled water, and dried in an oven at 150◦ C 
for 2 h. Each tube contained 3 ml of the respective water 
solution and 0.1 g of milled cat food (Purina, Friskies). 

For each water solution treatment, we used 50 larvae, and 
the experiment was repeated twice. As in other demo-
graphic studies, each individual was considered a single 
replicate, as we focused on the survival of each individual 
at each salt concentration [37, 38, 39]. We monitored the 
tubes daily at the same hour (±1 h) and recorded mortal-
ity, developmental duration, and larval instar. After pupa-
tion, we transferred the pupae individually to small petri 
dishes (r = 5 cm) filled with water of corresponding salin-
ity. Each petri dish was placed inside a small individual 
cage created by fitting a plastic cup (400 ml) into a plastic 
petri dish lid with a small hole, ensuring that emerging 
adults were already in their individual cages. We covered 
the cage openings with nylon mesh to allow for ventila-
tion (Fig. 1). We provided water with a small wick cloth 
into the hole of each petri dish in the cage, and we sup-
plied organic molasses as the adult mosquitoes’ food 
source through the mesh. We recorded the mortality of 
emerging adults daily and renewed the water and food 
resources as needed.

Statistical analysis
We conducted binomial logistic regression to evaluate 
the effect of increasing salinity on the proportion of L 1 
reaching (i) pupal stage and (ii) adult stage. To examine 
the proportion of L 1 reaching pupal and adult stages in 
the conditions without the addition of salt (i.e., distilled 
and bottled groups), we employed a Chi-square test and 
performed a residual analysis for pairwise comparisons. 
Since developmental durations did not conform to a nor-
mal distribution, we employed the Kruskal–Wallis tests 
to identify any significant differences in the durations for 
the stages from L 1 to pupal development, pupal to adult 
development, and adult lifespan in the different salinity 

Fig. 1 a Tubes containing single individuals from L1 to L4 stages. b Individual cages for pupal stages. Once the adults emerged, they stayed 
in the same cages, identified by their number and salt concentration
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conditions, followed by the Dunn test for pairwise com-
parisons ( α = 0.05).

The Kaplan-Meier method was used to estimate sur-
vival functions for each salinity concentration, consid-
ering the immature (L1 to adult emergence) and adult 
lifespan alone [40]. Censored observations (n  =  105) 
included both adult mosquitoes that escaped and indi-
viduals who died in an artificial environment within the 
tubes (e.g. human-mediated causes). We performed pair-
wise comparisons on survival among the different salinity 
treatments using the Mantel–Cox log-rank test. For the 
analysis of survival of immatures, lifespan of adults, and 

total lifespan (L1 to adult death), Cox regression hazard 
models were used to infer effects of salinity and sex on 
the length of the whole life course and lifespan of adults. 
Life tables were estimated for each salinity treatment fol-
lowing the methodology of Carey and Roach [41] (Addi-
tional file 1: Table S2). The analyses were performed using 
the survival analysis package [42] and survminer package 
[43] in RStudio 4.2.0 software [44]. Life tables were calcu-
lated using Microsoft Excel (version 2019).

Results
Binomial logistic regression analysis revealed that 
increasing salinity conditions had a significant and nega-
tive effect on the proportion of individuals surviving 
to pupal stage and the proportion of emerging adults 
(Table 1). The survival rates of immatures declined rap-
idly in response to salinity concentration from approxi-
mately 75% in distilled water to less that 25% at 8 ppt salt, 
while survival ceased in salinity levels higher than 12 ppt 
(Fig.  2). The similarity in survival probability between 
L 1 to pupae and L 1 to adult demonstrates low effects of 
salinity on pupa. The proportion of L 1 individuals suc-
cessfully pupating and yielding adults was higher in the 
bottled water condition than in the distilled water condi-
tion ( χ2 = 27.31, 36.13; df= 1, P < 0.0001 for individuals 
surviving until pupa and adult emergence, respectively). 

Table 1 Results of the binary logistic regression on the effect 
of increasing salinity to survival rates from L1 to emergence of 
adults and overall survival

Distilled condition used as 0 and bottled water excluded from the analysis

Effect b Exp(b) SE z‑value Pr(>|z|)

L1 to Adult emergence

Intercept 0.981 2.668 0.101 9.658 < 0.0001

Salinity −0.280 0.755 0.020 −13.495 < 0.0001

Overall survival

Intercept 0.683 1.981 0.097 7.018 < 0.0001

Salinity −0.258 0.772 0.020 −12.538 < 0.0001
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Fig. 2 Regression curves for the analysis of the effects of salinity on the survival from L1 to pupa (purple) and L1 to adult (yellow). For more 
information, see Table 1
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Additional file 2: Fig. S1 provides event history diagrams 
depicting the progression of mortality and development 
of individuals under different salinity conditions.

Table 2 illustrates the duration of each developmental 
stage under various salinity conditions. Salinity concen-
trations exceeding 12 ppt resulted in a 1-day duration for 
the L 1 stage due to high mortality within the first 24 h. 
However, salinity concentrations below 12 ppt exhibited 
similar average durations for each developmental stage, 
although some significant differences were observed 
among certain salinity conditions. For instance, individ-
uals developed at 10 ppt demonstrated a shorter adult 
lifespan than those grown at lower salt concentrations 
(Table 2).

The age-specific cumulative survival curves for the dif-
ferent salinity condition groups and the groups with no 
addition of water, both for L 1 until adult emergence (a) 
and for adult lifespan (b), are given in Fig. 3. In the imma-
ture cumulative survival curves, we observed higher sur-
vival rates in the bottled water than in the other salinity 
conditions and distilled water (log-rank test, P < 0.0001) 
(Fig.  3a). Additionally, in individuals developing at 0.2 
ppt, 0.5 ppt, 1 ppt, 2 ppt, 5 ppt, and 10 ppt, we obtained 
a slight decrease in L 1 to adult emergence survival rates 
with increasing salt concentration. Generally, higher 
salinity concentrations corresponded to lower survival 
rates at the end of immature development, and pairwise 
comparisons (Additional file 1: Table S3) revealed signifi-
cant differences among groups (P < 0.0001). However, we 
found lower survival rates at the 0.5 ppt than the 1 ppt 
condition for immature stages (Fig. 3a). Salinity concen-
trations above 12 ppt resulted in no survival of immature 
stages, and all individuals died within the first 24  h at 

concentrations up to 15 ppt. The survival of adult mos-
quitoes was independent of the salt condition in which 
they were reared as larvae (log-rank test, P  =  0.19), 
exceeding all conditions at a lifespan of 80 days (Fig. 3b). 
Similarly, no significant differences were found across salt 
conditions when comparing the survival of adults segre-
gated by sex (log-rank test, P =  0.29) (Additional file  2: 
Fig. S2).

We performed Cox regression models to analyse differ-
ent datasets, taking the overall survival, L 1 to adult emer-
gence, and adult lifespan (Additional file 1: Tables S4 and 
S5). All models were performed considering salinity as a 
continuous variable and distilled condition set as 0 ppt. 
Bottled condition was excluded from the analysis, as it 
contained some ions and salts in its composition (Addi-
tional file 1: Table S1). Results revealed increasing salin-
ity as a significant predictor of the risk of death at overall 
survival (HR =  1.15; 95% CI 1.13−1.16; P  <  0.0001), as 
well as from L 1 to adult emergence (HR = 1.130; 95% CI 
1.12−1.14; P < 0.0001). Similar analysis revealed that the 
lifespan of males was slightly shorter than that of females 
(i.e. the risk of death was higher in males than in females) 
(HR =  1.31; 95% CI 1.04−1.66; P  <  0.05). However, the 
salinity of water during immature development was not 
a significant predictor of adult longevity (HR  =  0.99; 
95% CI 0.94−1.04; P = 0.661). Considering only the con-
ditions with no salt addition on the overall survival, we 
found that distilled water was associated with a higher 
risk of death compared with bottled water (HR =  1.91; 
95% CI 1.42−2.58; P < 0.0001). However, the comparison 
between distilled and bottled water revealed no signifi-
cant risk of death when analysing separately the survival 
from L 1 to adult emergence (HR =  1.06; 95% CI 0.80−

Table 2 Effects of water salinity on immature developmental duration in days and the lifespan of the resulting adults

Within each column values followed by different superscript letter are significantly different (Dunn test following a significant Kruskal–Wallis non‑parametric analysis 
of variance [ANOVA], P < 0.05). Min–max values defining range are given in parentheses

Salinity L1 to pupation Pupa to adult Adult lifespan

0.2 10.42 ± 1.31a,b (8–18) 3.05 ± 0.77a (1–6) 45.09 ± 25.16a,b (2–102)

0.5 10.76 ± 1.00a,b,c (8–14) 2.90 ± 0.60a,b (0–5) 29.19 ± 26.07c  (1–98)

1 10.71 ± 0.91a,b,c (8–14) 2.82 ± 0.51a,b,c (0–4) 48.19 ± 27.56a,b (1–94)

2 10.81 ± 1.23a,b,c (8–15) 2.97 ± 0.72a (1–5) 45.38 ± 31.45a,b,c (1–103)

5 11.08 ± 1.93ac (8–22) 2.89 ± 0.64a,b,c (1–4) 49.20 ± 27.53a,b (1–98)

10 12.07 ± 2.29c  (8–18) 2.88 ± 0.65a,b,c (0–4) 29.5 ± 27.36b,c (1–94)

12 – – –

15 – – –

20 – – –

30 – – –

Bottled 9.75 ± 1.56d (6–21) 2.58 ± 0.59c  (0–4) 52.51 ± 24.58a (4–100)

Distilled 10.17 ± 1.28b,d (8–13) 2.5 ± 0.85b,c (0–4) 42.13 ± 29.38a,b,c (1–97)
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1.41; P =  0.672) and adult lifespan (HR =  1.29; 95% CI 
0.88−1.89; P = 0.193). There were also no significant dif-
ferences in the risk of adult death by sex in these condi-
tions (HR = 0.829; 95% CI 0.56−1.21; P = 0.338).

Life expectancy of individuals was calculated by con-
structing life tables for each salinity condition, from L 1 
to adult death and the adult period, segregated by sex. 
The lowest life expectancy was observed at salt concen-
trations of up to 12 ppt (< 1 day) regarding the complete 
life cycle, while in adults, the lowest life expectancy 
was found at 10 ppt in females (43.21 days) and 2 ppt in 
males (38.88 days) (Table  3). Comparatively, individuals 
from the distilled condition had approximately half the 
life expectancy at age 0 as those from the bottled water 
condition when considering the complete cycle (31.01 
days vs 59.98 days, respectively). The effect of exposure 
to different salinity concentrations during their immature 
period was not that clear when individuals reached adult 
stage. In the adult lifespan, we still observed higher life 
expectancies at age 0 from the bottled condition relative 
to distilled water, for both males (61.45 vs 46.20 days) and 
females (54.36 vs 45.22 days), respectively (Table 3).

Discussion
Despite being typically associated with fresh water, this 
study provides clear evidence of Ae. albopictus’ ability 
to survive and develop in brackish water. This research 
holds significance in expanding our knowledge about 
the species’ potential to thrive in novel breeding envi-
ronments. Aedes albopictus has already demonstrated 
its ability to establish populations in almost all conti-
nents, from tropical to temperate zones, and has devel-
oped mechanisms to adapt to adverse conditions, given 
its physiological plasticity [45]. Our findings are consist-
ent with previous work reporting success in survival and 
development of immature forms of Ae. albopictus and Ae. 
aegypti using dilutions of sea water [23]. However, our 
approach differs in several aspects. We employed distilled 
water as the initial medium, devoid of additional miner-
als, and subsequently introduced varying concentrations 
of salt. In addition, we not only monitored the survival 
of immature stages under diverse salinity conditions 
encompassing a broader spectrum of salt concentrations, 
but also continued to track them throughout their adult 
phase. Consequently, we evaluated the potential impact 
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of exposure to varying salinity levels during the immature 
stages on the adult lifespan.

Our results showed significant differences in the 
overall survival of the individuals (from L 1 to adults), 
following a decreasing trend in survival as the saline 
concentrations increased. In larval stages, feeding 
includes intake of ions under saline concentrations 
[24]. A plausible explanation for the 24  h-mortality 
observed for the  L1 larvae at concentrations above 12 
ppt could be the ingestion of high concentrations of 
NaCl that caused a low assimilation of nutrients due 
to the increased metabolic demands of osmoregula-
tion [24]. This result is in line with the results reported 
by Ramasamy et  al. [23] that L 3 larvae of both Ae. 
aegypti and Ae. albopictus were better able to toler-
ate water salinity than the  L1. At low concentrations 
(<  10 ppt), the increase in osmoregulatory-related 
metabolic costs might not be significant, and thus, sur-
vival rates across stages are steady. The Kaplan–Meier 
curves reinforced the results discussed above, showing 
that survival in immature stages decreased abruptly as 
salinity was increased. At low salinity concentrations, 
however, this pattern showed some exceptions. For 
instance, at 0.2 and 1 ppt concentrations, survival was 
significantly higher than with distilled water or at 0.5 
ppt. The latter results suggest the activation of adap-
tion mechanisms, or hormetic effects, as a response 
to insufficient ion concentrations. Hormesis is defined 
as an adaptive response to stressors which can lead 
to improved organismal performance at low doses, 
while high doses may result in detrimental effects that 
lead to negative consequences [46, 47, 48]. This could 

explain why individuals with 1 ppt salt concentrations 
showed higher survival, as in this mild stress condition 
they could have generated a positive response in their 
survival, while at 0.2 ppt and 0.5 ppt of salt diluted in 
distilled water, their survival could have followed the 
normal pattern or they may have even had a shortage 
of minerals for their development, as happened with 
the distilled water condition. We also hypothesize that 
these mechanisms may produce collateral costs such 
as emergence of adults of small size, or in a larger pro-
portion of males (that are usually smaller in size than 
females). However, we have not measured these fea-
tures, and this is a shortcoming of the current study. 
Adult survival was apparently not affected by the past 
environment (i.e., the amount of salinity experienced in 
different immature stages). Whether other life history 
traits of adults, such as reproduction, were affected 
needs to be addressed in a future study. Another nota-
ble result was the difference in survival of the larvae 
growing in distilled water relative to those developing 
in bottled water. This may be due to the lack of ions 
and minerals in the distilled water, which could have 
produced a shortage of the molecules necessary for 
the correct development and osmosis of the larvae. In 
Clark et  al. [24], individuals of Ae. aegypti (freshwater 
mosquito) and Ochlerotatus taeniorhynchus (euryha-
line mosquito) showed approximately 80% survival in 
deionized water, obtaining ions from the food. Both 
species showed an optimal range of salinity with sur-
vival success near 100%, with the optimal concentration 
for O. taeniorhynchus being around 14  g  l−1, whereas 

Table 3 Key statistics extracted from the life tables for the different salinity conditions, including the life expectancy (in days) both at 
age 0 for the complete life course of individuals and for the adult period, segregated by sex

Salinity condition Number of 
mosquitoes in each 
condition

Number of mosquitoes 
reaching adult stage

Ex at age 0 (L1 
to adult death)

Maximum age (in days) 
reached (L1 to adult)

Ex at age 0 in 
females (adult 
lifespan)

Ex at age 0 in 
males (adult 
lifespan)

Bottled 100 85 59.98 106 54.36 61.45

Distilled 100 46 31.01 106 45.22 46.20

0.2 ppt 100 76 48.04 113 45.57 50.21

0.5 ppt 100 54 35.41 109 51.54 39.95

1 ppt 100 76 51.70 105 55.66 48.50

2 ppt 100 41 29.35 114 71.33 38.88

5 ppt 100 40 31.73 109 51.92 54.19

10 ppt 100 24 16.87 105 43.21 47.50

12 ppt 100 0 < 1 3 – –

15 ppt 50 0 < 1 < 1 – –

20 ppt 50 0 < 1 < 1 – –

30 ppt 50 0 < 1 < 1 – –
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Ae. aegypti showed an optimal range of survival from 0 
to 3.5 g  l−1. Other studies have shown that Ae. aegypti 
larvae can survive several days in distilled water, but 
levels of Na+ and Cl− in hemolymph drop significantly 
[49, 50]. Our findings comparing bottled and distilled 
water conditions are in line with this result, showing an 
increased risk of death for immature stages developing 
in distilled water, while posterior survival of adults was 
not significantly affected.

The study of the life tables reinforced all the previous 
results. First, life tables for the complete life course of 
the individuals (L1 to adult death) revealed longer life 
expectancy (Ex ) at lower salinity concentrations. The 
life expectancy of the individuals that grew in distilled 
water, without the presence of salts or other ions, was 
reduced than that in bottled water. Indeed, the life 
expectancy of individuals grown in bottled water was 
also longer than individuals exposed to higher salt 
levels throughout their lives. However, the life expec-
tancy of adults was not so different regardless of the 
different salinity conditions in which they had previ-
ously developed. These results are in line with those of 
Cox proportional hazards models (see Results). While 
the presence of salt influenced the survival during the 
immature stages, the life expectancy of the resulting 
adults was not significantly affected. Hence, the aquatic 
salinity conditions in which these mosquitoes became 
adults did not affect their life expectancy as adults.

Our study demonstrates the successful development 
of Ae. albopictus mosquitoes in brackish water under 
laboratory conditions. Previous research [23] reported 
the growth of Ae. albopictus and Ae. aegypti larvae in 
artificial containers containing salinity concentrations 
obtained by diluting seawater in tap water, with toler-
ances observed up to 15 ppt. However, in our study, 
we observed that mosquitoes did not reach the adult 
stage when exposed to concentrations higher than 10 
ppt. This outcome could be attributed to the absence of 
other essential ions in our experiment relative to natu-
ral seawater, as we combined only distilled water with 
NaCl to achieve the desired salinity conditions. Fur-
thermore, it is worth noting that the mosquitoes used 
in our study were laboratory-reared colonies, which 
may have limited adaptability to changes in the ionic 
composition of the medium in which immature stages 
develop. Indeed, as we used the same laboratory popu-
lations of Ae. albopictus, we could not compare possi-
ble different adaptations to salinity concentrations with 
other populations or other environments. This would 
allow a more detailed understanding of the possible 
ecophysiological plasticity of Ae. albopictus and should 
be further studied. Moreover, even though we added a 

small amount of food to each individual tube with lar-
vae (see Methods), which might have affected the salin-
ity, we were not able to measure the content of salt in 
the food. Nevertheless, since we maintained a consist-
ent and minimal quantity of food across all salinity con-
centrations, any potential effect this may have had on 
the results would have been small and equitable.

Ramasamy et  al. [20] documented the potential adap-
tation of freshwater mosquitoes to brackish water habi-
tats, such as estuaries, coastal marshes, or lagoons, in 
response to changing water composition caused by global 
warming and rising sea levels. Although Ae. albopic-
tus breeds mainly in artificial and natural containers 
with retained water and not in open coastal waters, it is 
important to consider the potential for establishment in 
new habitats of one of the most invasive species in the 
world. The authors hypothesized that brackish water 
development may be an adaptative response to the exclu-
sive application of Aedes larvae control measures with 
insecticides to freshwater habitats and the elimination of 
such habitats in urban and suburban areas [23]. The sur-
veillance and treatment of freshwater breeding sites may 
facilitate the potential for development of mosquito lar-
vae in more brackish water, used as a breeding refuge, in 
the future. Further research is needed to enhance control 
techniques and expand treatment strategies in tandem 
with the potential expansion of mosquito habitats from 
freshwater to brackish and saltwater environments.

Conclusions
Aedes albopictus is one of the most successful invasive 
mosquitoes, with established populations in both rural 
and urban environments, covering a range of climates 
from tropical to temperate. Our findings suggest that 
although Ae. albopictus has been considered as a spe-
cies that develops strictly in fresh waters, it can develop 
and survive in brackish waters even without presenting 
the structures typical of euryhaline species. These new 
adaptations (yet to be discovered) could facilitate the 
emergence of new breeding sites and the colonization of 
new territory in coastal areas by Ae. albopictus. Increased 
knowledge of Ae. albopictus physiological adaptations 
to salinity would allow us to expand the range of con-
trol of the species and make more accurate predictions 
of its dispersal and vector capacity. Comprehensive life 
tables in salt-related conditions would provide important 
data for updating habitat suitability modelling and fur-
ther support the development and application of more 
efficient control methods integrating a broad range of 
aquatic ecosystems.
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