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Abstract 

Background Ticks are an important driver of veterinary health care, causing irritation and sometimes infection 
to their hosts. We explored epidemiological and geo‑referenced data from > 7 million electronic health records (EHRs) 
from cats and dogs collected by the Small Animal Veterinary Surveillance Network (SAVSNET) in Great Britain (GB) 
between 2014 and 2021 to assess the factors affecting tick attachment in an individual and at a spatiotemporal level.

Methods EHRs in which ticks were mentioned were identified by text mining; domain experts confirmed those 
with ticks on the animal. Tick presence/absence records were overlaid with a spatiotemporal series of climate, 
environment, anthropogenic and host distribution factors to produce a spatiotemporal regression matrix. An ensem‑
ble machine learning spatiotemporal model was used to fine‑tune hyperparameters for Random Forest, Gradient‑
boosted Trees and Generalized Linear Model regression algorithms, which were then used to produce a final ensem‑
ble meta‑learner to predict the probability of tick attachment across GB at a monthly interval and averaged long‑term 
through 2014–2021 at a spatial resolution of 1 km. Individual host factors associated with tick attachment were 
also assessed by conditional logistic regression on a matched case–control dataset.

Results In total, 11,741 consultations were identified in which a tick was recorded. The frequency of tick records 
was low (0.16% EHRs), suggesting an underestimation of risk. That said, increased odds for tick attachment in cats 
and dogs were associated with younger adult ages, longer coat length, crossbreeds and unclassified breeds. In 
cats, males and entire animals had significantly increased odds of recorded tick attachment. The key variables con‑
trolling the spatiotemporal risk for tick attachment were climatic (precipitation and temperature) and vegetation 
type (Enhanced Vegetation Index). Suitable areas for tick attachment were predicted across GB, especially in forests 
and grassland areas, mainly during summer, particularly in June.

Conclusions Our results can inform targeted health messages to owners and veterinary practitioners, identify‑
ing those animals, seasons and areas of higher risk for tick attachment and allowing for more tailored prophylaxis 
to reduce tick burden, inappropriate parasiticide treatment and potentially TBDs in companion animals and humans. 
Sentinel networks like SAVSNET represent a novel complementary data source to improve our understanding of tick 
attachment risk for companion animals and as a proxy of risk to humans.
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Background
According to recent estimates, approximately 11.6  mil-
lion dogs and 10.1  million cats are kept as companion 
animals in Great Britain (GB) [1]. These companion 
animals are frequently infested with ticks [2, 3], some 
of which (Ixodes spp.) can be important vectors of tick-
borne diseases (TBD) such as Borrelia burgdorferi sensu 
lato (s.l.) causing Lyme borreliosis in cats, dogs and 
humans and tick-borne encephalitis (TBE) virus caus-
ing TBE in dogs and humans [4]. Consequently, there is 
a “One health” imperative to understand the risk factors 
contributing to tick attachment in companion animals, 
not just for animal welfare, but also as a proxy of risk to 
humans [5, 6].

The likelihood of tick attachment for any host species 
is largely driven by local tick presence and abundance, 
which in turn is dependent on several factors such as 
habitat type, climate and host availability [7–9]. However, 
host behaviour is also important. As such, there may be 
established populations of ticks lacking exposure to par-
ticular hosts or, conversely, low numbers of ticks with 
high exposure to companion animals, the latter being 
more important for the risk assessment of tick attach-
ment [10, 11].

Two large-scale GB surveys have assessed tick risk in 
companion animals. The first, mainly cross-sectional in 
nature, assessed tick distribution and host risk factors 
associated with tick attachment based on subsets of ani-
mals identified by practitioners as having ticks following 
a specific enhanced clinical examination regime; molecu-
lar methods were also used to detect TBD pathogens in 
ticks removed from sampled cats [2, 3, 12]. The second 
survey, the Tick Surveillance Scheme (TSS) maintained 
by the United Kingdom (UK) Health Security Agency, 
records the distribution, seasonality and host associa-
tions of ticks submitted for identification by members of 
the public, veterinarians and other professionals across 
the UK [10, 13]; between 2010 and 2016, samples from 
dogs and cats made up 39.1% and 14.1% of all submitted 
ticks, respectively [13].

In addition to these approaches, we have explored 
electronic health records (EHRs) as a novel and per-
haps complementary method to assess companion ani-
mal health [14]. EHR analysis has the advantage of being 
able to assess the health status of animals in near real-
time and over time while minimising the costs of epide-
miological and entomological fieldwork. Using such an 
approach, Tulloch et  al., [15] provided a first mapping 

of the spatiotemporal (postcode areas and season) tick 
“activity” in companion animals using over 2000 EHRs 
in which veterinary health professionals participating 
in the Small Animal Veterinary Surveillance Network 
(SAVSNET) recorded tick attachment to, or removal 
from, their patients. Since 2014, SAVSNET has used this 
large network of veterinary clinics across GB to continue 
to describe spatiotemporal trends in tick activity in com-
panion animals (https:// www. liver pool. ac. uk/ savsn et/ 
real- time- data/).

Despite these studies, there remains a need to under-
stand better how exposure, combined with environmen-
tal, climate, anthropogenic and host distribution factors, 
can inform models capable of predicting areas at higher 
risk for tick attachment in companion animals and as a 
proxy for a risk to humans [6]. The need for such predic-
tive models stems from an inherent inability of any sur-
veillance system to sample all areas evenly. Therefore, in 
this study, we build on our earlier work [15] and explore 
whether an expanded dataset of EHRs from SAVSNET 
collected between 2014 and 2021, representing one of 
the largest datasets of ticks known from EHRs, combined 
with epidemiological data on the host and environmen-
tal, climate, anthropogenic and host distribution factors, 
can be used to identify the main individual and spati-
otemporal drivers for tick attachment and predict risk 
for tick attachment in GB. We used an ensemble machine 
learning framework to provide temporal and spatial esti-
mates of the probability of tick attachment that can serve 
as proxies for areas and months for tick attachment in 
companion animals and as a proxy of risk to humans 
across GB.

Methods
Electronic health records
SAVSNET EHRs were collected between the 1 April 
2014 and 31 December 2021 from 452 veterinary clin-
ics, representing approximately 18% (452/ 2483) of the 
registered small animal veterinary clinics across GB. 
Each EHR contains a broad range of information relat-
ing to the animal (sex, species, breed, date of birth, neu-
ter status), consultation date, pet owner postcode and a 
free text clinical narrative and generally relates to a sin-
gle veterinary visit by a single animal. This information is 
supplemented by a practitioner-derived main presenting 
complaint for each consultation, chosen from ten broad 
categories (gastroenteric, renal, pruritus, respiratory, 

https://www.liverpool.ac.uk/savsnet/real-time-data/
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trauma, tumour, health check-up, vaccination and other 
non-specific consultations).

For assessing the individual risk factors for tick attach-
ment, age at consultation was divided into six classes: age 
< 1 year old (kitten/puppy), 1 to 2 (junior), 2 to 6 (adult), 
6 to 10 (mature), 10 to 14 (senior) and > 14 years at con-
sultation (geriatric). Breeds were categorised into either 
registered breed groups: in cats, Asian, Mediterranean 
or Western European breed group [16, 17]; in dogs, gun-
dog, hound, pastoral, terrier, toy, utility or working breed 
group [18, 19]; and crossbreeds and breeds not recorded/
recognisable (unclassified) for both cats and dogs. Breeds 
were also classified based on coat length as short, long, 
semi-long (medium) or not recorded/unknown (unclassi-
fied) for cats [20, 21] and dogs [18, 19].

Each EHR was geo-referenced (latitude/longitude) 
using the pet owner’s postcode linked to the GB National 
Statistics Postcode Directory. This spatial location of the 
pet owner’s address may not necessarily match the loca-
tion where the dog or cat acquired the tick. Therefore, for 
spatiotemporal modelling, we worked at a 1-km spatial 
resolution and considered that the actual location of tick 
attachment, i.e. the outdoor location of exposure to ticks, 
matched the 1-km grid cell of the pet owners’ home [22], 
as most dog owners walk their pets most frequently near 
their homes [23]. Similarly, most domestic cats’ roaming 
ranges are close to, and inevitably centred on, their home 
[24]. We further used the 1-km grid cell of the pet own-
ers’ home as a proxy for an urban, suburban or rural cat 
or dog [25]. More precisely, urban included dense urban 
areas with little vegetation, such as town and city centres. 
Suburban included suburban areas with a mix of urban 
and vegetation signatures. The remaining were consid-
ered rural areas [25].

The 1-km grid was obtained from the Ordnance Survey 
National Grid (Digimap Service, University of Edinburgh 
at http:// digim ap. edina. ac. uk, 1 January 2015). All spatial 
data described in the manuscript were (re-)projected to 
fit the British National Grid datum, EPSG 27700. Where 
relevant, the regionalization of GB was defined accord-
ing to the Nomenclature of Territorial Units for Statistics 
(NUTS) regions.

Data collection and use by SAVSNET were ethically 
approved by the University of Liverpool Research Ethics 
Committee (RETH000964).

Tick records
A tick presence record (further referred to as ’tick record’) 
was defined as an EHR in which a veterinary surgeon or 
nurse recorded tick attachment and/or removal during a 
consultation. Narratives recording prior removal of ticks 
by owners were not included in the analyses, as owners 
often incorrectly identified pathologies (warts, cysts) and 

anatomy (nipples) as ticks (authors unpublished observa-
tions). In brief, a simple free text filter was used to iden-
tify clinical narratives containing the words ‘tick’ or ‘ticks’, 
whilst excluding the word ’stick’; domain experts read the 
resulting narratives to confirm the observation of a tick 
by the health professional was described in the narrative 
[15]. The remaining EHRs not found by the free text filter 
were considered tick absence records; we emphasise that 
such records did not necessarily mean a tick was truly 
absent from a given animal since this could not be con-
firmed from the free text narrative of the EHR.

Spatial covariates
For spatiotemporal modelling we used 75 environmen-
tal (habitat and vegetation), climate, anthropogenic and 
host distribution covariates (Additional file 5: Table S1), 
chosen according to the biology and ecology of Ixodes 
ricinus and I. hexagonus [7–9], the two major tick species 
recorded in cats and dogs in GB [2, 3], which we briefly 
outline below.

The Castor bean (deer/sheep) tick, I. ricinus, is an 
exophilic tick. It actively quests for hosts; consequently, 
its presence is strongly associated with specific environ-
mental and climatic conditions. Common habitats tend 
to be lowland, humid areas such as unmanaged grass-
lands, forest edges and woodlands with sufficiently dense 
undergrowth, though they can also be found in (peri-)
urban and recreational parks [26, 27]. Immature I. rici-
nus feed on small and larger mammals, birds and lizards, 
whereas adults feed on large ruminants (sheep, cattle and 
deer) but also cats, dogs and wild carnivores [13, 28]. It 
has been recorded throughout GB. It usually displays a 
bimodal pattern of activity, with a peak between April 
and July [10, 13].

The Hedgehog tick, I. hexagonus, is an endophilic tick. 
It spends all life cycle stages inside burrows or nests of 
their hosts; free-ranging ticks are rarely encountered. It 
is a specialist parasite, with hedgehogs the dominant host 
(Erinaceus spp.), followed by small carnivorous mammals 
(dogs, cats, foxes) and other animals with a permanent 
dwelling [8, 13, 28]. Hedgehogs live in a broad range of 
habitats, particularly woodland edges, hedgerows and 
suburban habitats, where they can encounter compan-
ion animals [9, 13]. Ixodes hexagonus has been recorded 
throughout GB [10, 13], though most observations are 
from England. Being a nidicolous tick, I. hexagonus shows 
fewer seasonal changes than I. ricinus; whilst records are 
highest in spring and summer, they are recorded all year 
[9, 13].

Habitat and vegetation
Ticks are commonly associated with broadleaf or mixed 
woodland, although high densities can be found in (peri-)

http://digimap.edina.ac.uk
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urban parks and recreational sites [29, 30]. Inhabited by 
different mammalian species (e.g. deer, rodents, hedge-
hogs), these habitats create optimal conditions sustain-
ing the tick life cycle [7–9]. Therefore, we used the annual 
land cover fractions for the classes of broadleaf wood-
land, coniferous woodland, natural grassland and inland 
marshes [31], the annual percentage of cropland [32] and 
long-term flood occurrence risk [33] to see how differ-
ent land covers determine the likelihood of ticks coming 
into contact with companion animals/humans and thus 
attachment. Ticks are also sensitive to local environmen-
tal conditions, such as the thickness of the tree canopy 
or soil moisture at the ground level [7]. We used four 
descriptions of the Enhanced Vegetation Index (EVI: 
monthly mean, annual minimum, mean and maximum 
EVI) to explore the global range of vegetation greenness 
and density. EVI values range from -1 to +1, with higher 
numbers indicating a higher density of green vegetation 
[34]. We also used the Topographic Wetness Index to 
characterize rainfall runoff patterns, areas of potential 
increased soil moisture and ponding areas [35]. Gilbert 
et  al., 2010 [36], found a negative association between 
tick densities and higher altitudes; thus, we used eleva-
tion and associated topographic indicators, such as slope, 
northness and eastness [35], to assess finer-scale condi-
tions related to topography [37].

Climate
Temperature influences the beginning of the tick quest-
ing season, development rate of the tick population and 
chances of survival through winter [7]. Milder winters/
warm springs can result in early questing ticks. Hot sum-
mers can result in increased development from one life 
stage to the next [9]. Ticks also require a relative humidity 
of at least 80% with moderate to high rainfall with good 
vegetation (i.e. litter layer and soil that remain humid 
during the day). Rain is necessary during the summer, but 
drought and heavy rain may prevent the development of 
new tick populations [7]. We therefore used the monthly 
minimum and maximum temperature based on the Terr-
aClim dataset [38] and the long-term minimum, mean 
and maximal monthly quantiles of nighttime land surface 
temperature based on the MODIS dataset [39]. We also 
used monthly precipitation data and long-term Biocli-
matic variables (bioclim 1-7, bioclim 10-12) based on the 
CHELSA climate time series dataset [40, 41].

Ixodes ricinus overwinters on the ground and snow 
cover can enhance survival, which may prevent ground 
temperatures from falling below zero [42]. We, therefore, 
also included the monthly maximal and standard devia-
tion of snow probability for GB [43].

To account for the seasonality of weather throughout 
the year (i.e. the interchange of cold and warm months), 

we also calculated the cosine of the month of the year 
and used it further as a spatial covariate.

Human‑induced factors
Urbanisation creates specific environmental conditions 
(less green space, warmer temperature, dust and air pol-
lution, night lights) that alter tick abundance and activ-
ity [44]. We, therefore, used the annual Human Footprint 
Index (HFP) [45], the monthly Sentinel-5P Tropospheric 
(minimum, mean, maximum values) Nitrogen Dioxide 
Density—a traffic-related air pollutant [46]—and the 
annual nighttime lights (minimum, mean, maximum val-
ues) [47] as measures of the direct and indirect human 
pressure on the environment, related to urbanisation, 
that can potentially drive specific patterns for tick attach-
ment in a given area.

Host distribution
We also included predictor variables for cat and dog dis-
tributions in GB [1]. Since deer are important hosts and 
reservoirs, driving tick abundance and facilitating their 
dispersal [7], we also included a covariate summarising 
the mean probability of the presence of red, roe and fal-
low deer in each 1-km grid cell [48, 49].

Individual risk factors for tick attachment
To assess the effects of sex, neuter status, age, breed and 
coat length on the odds of tick attachment, a separate 
matched case-control study for both cats and dogs was 
undertaken. For each tick record (case), we selected three 
records where tick attachment was not recorded (con-
trol) during a health visit in the same week and veterinary 
clinic using the MatchIt package (version 4.5.4) [50] 
in the R programming language (version 4.3.1; further 
referred to as R) [51].

Conditional logistic regression was performed on the 
matched dataset, using the R package survival (ver-
sion 3.5.5) [52], accounting for the matching criteria 
(week of visit and veterinary clinic) as the model’s strata. 
Tick attachment status (presence/absence) at consulta-
tion was considered a binary outcome variable. An ini-
tial multivariable conditional logistic regression model 
included variables associated ( p < 0.2 ) with tick attach-
ment status on univariable conditional logistic regression 
analysis. Variables significantly ( p < 0.05 ) associated with 
tick attachment status were retained in a final multivari-
able conditional logistic regression model. A backward 
selection process was utilized to produce a model fit with 
the lowest Akaike information criterion (AIC). Adjusted 
odds ratios (OR) and their 95% confidence intervals (CI) 
were calculated from the final conditional logistic regres-
sion model parameter estimates by accounting for the 
model’s strata.
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Spatiotemporal risk factors for tick attachment
Exploratory spatial analysis
We first created kernel ratio maps of the two species 
records (i.e. cats and dogs) compared to all records (as 
point data) to estimate whether the two species displayed 
the same spatial distribution. Next, we compared the 
distributions with the spatial locations of the SAVSNET 
veterinary clinics to check for spatial biases in the point 
data.

Second, to identify areas that contain a higher density 
of tick records than would be expected with complete 
spatial randomness whilst accounting for the underlying 
distribution of the point data, we estimated the spatial 
relative risk (RR) given the relative densities of the tick 
presence and absence records (as point data). An adap-
tive bandwidth was used to compensate for potential 
over-smoothing in dense areas, calculated symmetrically 
for tick presence and absence records. Asymptotic tol-
erance contours of p-values ( p < 0.05 ) were mapped to 
show statistically significant areas of elevated risk for a 
higher density of tick records [53]. The kernel ratio maps 
and RR were estimated using the R package sparr (ver-
sion 2.3.10) [54]. Visually, the preliminary exploratory 
analysis of the point observations of the tick records in 
cats and dogs showed no difference; thus, we did the spa-
tiotemporal modelling on cats and dogs together.

Spatiotemporal modelling
We have built an ensemble machine learning (ML) model 
inspired by the work of Bonannella et al., [55]. The mod-
elling workflow consisted of five main steps (Fig.  1): (i) 
overlay 1-km grid cells with the time series of covariate 
layers using their spatial (longitude and latitude of the 
centroid) and temporal (date of consultation) reference 
of the record (tick presence/absence), (ii) create a spati-
otemporal classification/regression matrix with all obser-
vations (tick presence/absence) and covariate values; (iii) 
fit an ensemble ML model to predict the probability of 
tick attachment; (iv) generate the predictions and (v) vis-
ualise and run validation of accuracy. Output predictions 
were time series of images showing monthly changes in 
the probability of tick attachment between 2014 and 2021 
at a 1-km grid. Monthly predictions have been further 
averaged to show the long-term risk of tick attachment 
through 2014–2021.

The ensemble ML model was based on stacking three 
independently fitted ML algorithms (learners) [56], com-
monly used for spatial modelling:

• class.ranger: fully scalable implementation of 
Random Forest (RF) [57] and often preferred algo-
rithm of choice because it gives good results with lit-

tle fine-tuning and adaptation, particularly for non-
normal and multicollinear data [58, 59]. RF algorithm 
was previously used for spatial mapping of the risk 
of ticks in livestock farms in GB [58] and mapping of 
tick dynamics using volunteer data of collected ticks 
in The Netherlands [59].

• class.xgboost: regularized implementation of 
Gradient-boosted Trees (GBT) [60, 61] with similar 
characteristics to RF. Boosted regression tree models 
were used for mapping the risk of TBE in mainland 
China [62] and prediction of the human risk of expo-
sure to I. ricinus in several Scandinavian countries 
[63].

• class.glmnet: logistic regression with General-
ized Linear Model (GLM-net) with Lasso regulariza-
tion [64], widely used for ecological niche modelling 
and spatial disease mapping such as ticks in Norway 
and TBE in Europe [37, 65].

We used ensemble ML since it can be considered a rem-
edy for potential model over-fitting. In the case of spa-
tially clustered samples (in this study, records can be 
considered biased to urban/suburban areas), spatial 
blocking, i.e. spatial cross-validation during model train-
ing, helps reduce potential over-fitting that can be sig-
nificant [66]. Note that the records in our study followed 
a zero-inflated distribution, with the vast majority of 
observations being 0 values ( > 99.84% ), indicating “tick 
absence” at the point location (consequently at a 1-km 
grid level), and autumn and winter months are often 
without tick records. Such a skewed distribution did not 
prevent us from fitting models, especially RF and GBT 
algorithms that can handle extreme disbalances between 
0 and 1 values [59]. For predicting the risk for tick attach-
ment, we have set the density of dogs and cats to the 5th 
percentile so that the final produced maps do not contain 
the potential spatial bias mentioned above.

We run the ensemble ML model fitting and predic-
tion in four steps, as implemented in the R package mlr 
(version 2.19.1) [67]: (i) hyper-parameter fine-tuning: we 
first determined the number of covariates (predictors) to 
split on each node (i.e. mtry) for class.ranger and 
class.xgboost parameters by iterative fine-tuning; 
(ii) Training: we trained the three learners independently 
using five-fold cross-validation with spatial blocking at 
5× 5 km ; (iii) stacking: the out-of-fold predictions of 
the three learners were then used as a training set to fit 
a second-level model (i.e. meta-learner); (iv) after model 
fitting, we produced predictions by using the second-
level model (binomial regression) based on three base 
learners.

To assess the contribution of each predictor variable 
in maximizing model performances, we calculated and 
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plotted the variable importance of the best learner of 
the ensemble model. The method used to calculate the 
variable importance for the RF was Gini importance; 
for GBT, we used the gain metric and, for GLM, the 
coefficients for the minimum fitted value of � . For most 
tree-based methods, such as RF and GBT, multicollin-
earity is not an issue, i.e. it does not impact the final 
model performance or lead to bias [59]; thus, we used it 
for modelling all initial covariates.

We derived a partial dependence plot (PDP) for the 
most important covariates obtained with the variable 
assessment to interpret the prediction from the ensem-
ble ML model outputs. More precisely, the PDP shows 
the marginal effect of each covariate on the predicted 
outcome of the ML model. PDP shows whether the 
relationship between the target and a covariate is lin-
ear, monotonic or more complex. A flat PDP indicates 
that the covariate is unimportant, and the more the PDP 

Fig. 1 General computational scheme used to produce spatiotemporal predictions (monthly probabilities for tick attachment) at 1‑km spatial 
resolution. The map shows locations of tick presence records (point observations in white) versus tick absence records (point observations in blue) 
in companion animals from the SAVSNET network in Great Britain between 2014 and 2021
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varies, the more important the covariate is. The sum of 
the variable importance for all covariates equals 1. The 
partial dependence plots were derived using the R pack-
age pdp (version 0.8.1) [68].

Final predictions were delivered as probability maps 
of tick attachment risk and model uncertainty maps. We 
considered as model uncertainty the standard deviation 
of the predicted values of the base learners.

The predictive performance of the spatiotemporal 
ensemble ML model was assessed through five-fold spa-
tial cross-validation repeated five times for a total of 25 
repetitions, using the area under the receiver-operating 
characteristic (ROC) curve (AUC) as a performance met-
ric. Historically, methods favouring threshold selection 
have been more widely used for assessing binary classifi-
cation problems, particularly spatial distribution model-
ling [69]. In this case, a threshold was arbitrarily selected, 
with 0.5 being the threshold selected by default. The 
predicted values were assigned to one of the two classes 
based on the predicted probability value. However, the 
AUC is a threshold-independent performance metric; 
constructing the ROC curves to calculate the AUC uses 
all possible thresholds to classify the predicted values 
into confusion matrices. The sensitivity of each matrix is 
then compared against the proportion of false positives, 
thus avoiding using just one of the thresholds to evaluate 
model performance. AUC values close to 1 indicate high 
model performance, while AUC values close to or below 
0.5 indicate poor or worse performance than a random 
classifier.

Results
Descriptive analysis of the tick records
In total, 2,109,012 cat and 5,409,697 dog EHRs were col-
lected from 2,173,364 unique animals during the study 
period (1 April 2014–31 December 2021). There were 
3295 tick records in cats and 8446 in dogs, representing 
0.16% of SAVSNET EHRs. Overall, tick records (1 to 9 
records) were observed in 6364 of the 238,747 1-km grid 
cells that make up GB (2.67%). Most tick records were in 
suburban (52.66% in cats and 53.24% in dogs) and rural 
areas (44.01% in cats and 41.64% in dogs). Only 3.34% of 
tick records in cats and 5.11% in dogs were in urban areas 
(Table 1).

Tick records were observed across GB during all 
months and seasons (Table 1). Overall, the highest num-
bers were in areas in South East England (37.57% in cats, 
31.3% in dogs), South West England (20.61% in cats, 
18.26% in dogs) and the coast of East of England (10.20% 
in cats, 9.63% in dogs), followed by the southern part of 
Yorkshire and Humber (6.31% in cats, 8.23% in dogs) and 
coastal areas in North East England (5.28% in cats, 9.65% 
in dogs) (Fig. 2A, Table 1).

There was no visual difference in the distribution ratio 
of cat and dog records (Additional file 2: Figure S2). The 
RR and tolerance contours ( p < 0.05 ) showed that veteri-
nary clinics in areas in South East and South West Eng-
land, East of England, North West, and South and North 
Eastern Scotland recorded significantly more ticks in 
both cats and dogs (Additional file 3: Figure S3).

In cats, ticks were mainly observed in spring (38.82%), 
peaking in May (17.03%, 4 tick records per 1000 consul-
tations), with a second lower peak in September (8.41%, 
1.4 per 1000 consultations) (Table  1, Fig.  2B). In dogs, 
the peak was in summer (54.58%), particularly in June 
(26.86%, 5.3 per 1000 consultations). The fewest ticks 
were recorded in January (cats 72; 0.4% per 1000 con-
sultations and dogs 52; 0.1% per 1000 consultations, 
respectively).

Ticks were mainly observed during routine health 
checks (42.67% in cats and 46.02% in dogs). Most affected 
animals were adults, between 2 and 6 years old (31.75% 
EHRs in cats and 34.00% dogs). In both species, males 
were more frequently affected (62.67% in cats and 54.42% 
in dogs). Most animals affected were neutered (84.04% 
of cats and 68.80% of dogs) (Table 1). Regarding breeds, 
84.13% of tick records in cats were crossbreeds, while 
68.36% of tick records in dogs were in recognised breeds. 
Ticks were mainly recorded in short-hair cats (70.83%) 
and medium (semi-long) haired dogs (38.02%).

Individual host risk factors for tick attachment
Compared to kittens and puppies, tick attachment in 
both cats (Fig.  3) and dogs (Fig.  4) was highest among 
animals of 1 to 2 years of age, i.e. juniors ( OR = 3.17 ; 
95% CI: 2.61−3.86; p < 0.001 in cats, OR = 1.60 ; 95% CI: 
1.45−1.76; p < 0.001 in dogs) and adult cats and dogs 
between 2 and 6 years of age ( OR = 2.29 ; 95% CI: 1.94−
2.71; p < 0.001 in cats, OR = 1.23 ; 95% CI: 1.14−1.32; 
p < 0.001 in dogs). The risk of recorded tick attachment 
decreased with age in both species. Between species, the 
odds for recorded tick attachment in young cats were 
twice as high compared to dogs.

In cats, males and not neutered animals ( OR = 1.47 ; 
95% CI: 1.30−1.67; p < 0.001 and OR = 1.63 ; 95% CI: 
1.38−1.92; p < 0.001 , respectively) had higher odds for 
tick attachment. In contrast, in dogs, neither sex nor neu-
ter status was a significant predictor for tick attachment.

In cats and dogs, unclassified/unknown breed groups 
and crossbreeds had the highest odds for tick attach-
ment ( OR = 1.91 ; 95% CI: 1.31−2.80; p < 0.001 in cats 
and OR = 1.71 ; 95% CI: 1.43−2.04; p < 0.001 in dogs). 
In dogs, compared to the gundog breed group, the pas-
toral breed group had an increased risk of tick attach-
ment ( OR = 1.16 ; 95% CI: 1.04−1.29; p < 0.01 ), while 
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Table 1 Epidemiological overview of the tick records of the SAVSNET cat and dog population in Great Britain from 2014 to 2021

Variable Category Number (%) of cats Number (%) of dogs

Reason for consultation Gastroenteric 17 (0.52) 94 (1.11)

Kidney disease 8 (0.24) 8 (0.09)

Health‑check‑up 1406 (42.67) 3887 (46.02)

Non‑specific unwell 604 (18.33) 1761 (20.85)

Post‑operative check‑up 98 (2.97) 306 (3.62)

Pruritus 65 (1.97) 265 (3.39)

Respiratory 12 (0.36) 12 (0.14)

Trauma 214 (6.49) 292 (3.46)

Tumour 18 (0.55) 124 (1.47)

Unknown reason for consult 3 (0.09) 14 (0.17)

Vaccination 850 (25.8) 1662 (19.68)

Age < 1 year (kitten/puppy) 224 (6.80) 1402 (16.60)

1–2 years (junior) 386 (11.71) 1096 (12.98)

2–6 years (adult) 1046 (31.75) 2872 (34.0)

6–10 years (mature) 811 (24.61) 2056 (24.34)

10–14 years (senior) 572 (17.36) 911 (10.79)

> 14 years (geriatric) 256 (7.77) 109 (1.29)

Sex Female 1230 (37.33) 3850 (45.58)

Male 2065 (62.67) 4596 (54.42)

Neuter status Entire 526 (15.96) 2635 (31.20)

Neutered 2769 (84.04) 5811 (68.80)

Recognised breed group Recognised breed 285 (8.65) 5773 (68.36)

Crossbreed 2772 (84.13) 2535 (30.01)

Unclassified 238 (7.22) 138 (1.63)

Coat length Short 2334 (70.83) 2093 (24.78)

Semi‑long 114 (3.46) 3211 (38.02)

Long 517 (15.69) 900 (10.66)

Unclassified 330 (10.02) 2242 (26.54)

Season of occurrence Spring 1279 (38.82) 2374 (28.11)

Summer 1001 (30.38) 4610 (54.58)

Autumn 736 (22.34) 1256 (14.87)

Winter 279 (8.47) 206 (2.44)

Owner residence location Urban 110 (3.34) 432 (5.11)

Suburban 1735 (52.66) 4497 (53.24)

Rural 1450 (44.01) 3517 (41.64)

NUTS level 1 North East (England) 174 (5.28) 815 (9.65)

North West (England) 171 (5.19) 481 (5.70)

Yorkshire and The Humber 208 (6.31) 695 (8.23)

East Midlands (England) 112 (3.40) 325 (3.85)

West Midlands (England) 129 (3.92) 322 (3.81)

East of England 336 (10.20) 813 (9.63)

Greater London 31 (0.94) 90 (1.07)

South East (England) 1238 (37.57) 2638 (31.23)

South West (England) 679 (20.61) 1542 (18.26)

Wales 72 (2.19) 193 (2.29)

Scotland 145 (4.40) 532 (6.30)

Total 3295 8446
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Fig. 2 A Distribution of tick presence records among SAVSNET cats (red) and dogs (cyan) in Great Britain between April 2014 and December 
2021 and their contributing veterinary clinics (black). B Seasonality of tick presence records by month and year, plotted as the number of tick 
records per 1000 SAVSNET cat and dog consultations, respectively, in a given month and year. The grey point line shows the mean across all years, 
including the standard deviation around this mean
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toy and utility breed groups had decreased odds for tick 
attachment.

In cats and dogs, the highest odds for tick attachment 
were in animals with long and medium/semi-long coat 
length ( OR = 1.55 ; 95% CI: 1.37−1.75; p < 0.001 in cats, 
OR = 1.56 ; 95% CI: 1.48−1.69; p < 0.001 in dogs).

Spatiotemporal risk factors for tick attachment
The ensemble ML model had moderate to high perfor-
mance; according to the repeated five-fold spatial cross-
validation results, the AUC was 0.80 (Additional file  4: 
Figure S4). The RF was the best model for mapping the 
probability of tick attachment, followed by GLM-net and 
GBT.

The most relevant variables controlling the spatiotem-
poral risk for tick attachment for companion animals 
were the monthly mean EVI, followed by monthly pre-
cipitation, minimal and maximal monthly temperature, 
including nighttime temperature (Figs.  5 and  6). More 
precisely, PDP showed that green, dense vegetation, 

particularly woodland (coniferous and broadleaf ), best 
explained the areas at risk for tick attachment. The prob-
ability of tick attachment grew sharply with an increasing 
EVI > 0.1 but decreased with a high EVI > 0.6. Notably, 
the high EVI shown in Fig.  6 is a rare feature, possibly 
due to missing training points, as veterinary clinics and 
pet owner residences are not typically inside nature parks 
or forests/woodland areas. In addition, risk areas for tick 
attachment were explained by monthly precipitation 
between 600 mm and 1200 mm, minimum monthly tem-
perature between −2C◦ and 5C◦ , and maximum monthly 
temperature between 5C◦ and 10C◦ , respectively. Similar 
results were obtained for the minimum and maximum 
monthly nighttime temperature, ranging between −5C◦ 
and 2C◦ and between 2C◦ and 10C◦ , respectively (Fig. 6).

The long-term monthly predictions for 2014–2021 
showed marked seasonality of the spatial risk for tick 
attachment, with a peak period between May and July 
(Fig 7 and Rshiny interface) and no tick activity predicted 
from September to March. Exploring spatial trends 

Fig. 3 Cats. Final multivariable conditional logistic regression model for risk factors associated with tick attachment in cats based on 13,180 EHRs. 
Nb = number, Ref = reference, OR = odds ratio adjusted to week of visit and veterinary practice, CI = confidence interval
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showed that tick attachment risk corresponded mostly 
to grassland areas and forests (see Rshiny interface). 
More precisely, in June, the peak month of tick attach-
ment, from a total of 21,391 predicted grid cells with a 
risk of tick attachment, 57% corresponded to broadleaf 
and coniferous woodland, followed by 25% of improved 
grassland. In northern parts of the country, suitable areas 
for tick attachment were predicted in mainly grid cells 
dominated by woodland: 89% (out of 659 predicted) in 
North East and North West England, 85% (out of 694 pre-
dicted) in Wales, 80% (out of 285 predicted) in Yorkshire 
and the Humber, 77% (out of 9528 predicted) in Scotland 
and 73% (out of 548 predicted) in the West and East Mid-
lands. In the South East and West England and Greater 
London, out of 8810 predicted grid cells at risk for tick 
attachment, 52% were in improved grassland, followed 
by woodland (29%) dominated land. In East England, out 
of 867 predicted grid cells at risk of tick attachment, 54% 
were in woodland and 28% in horticulture/arable-domi-
nated land.

Areas for tick attachment in June were predicted 
in the green and woodland areas in the Greater Lon-
don region (e.g. Epping Forest, Richmond Park) and 
areas in South East England, in particular in areas of 
South, Central and North Hampshire (e.g. New For-
est National park), East and West Surrey, East and 
West Sussex, Berkshire and central parts of Kent (e.g. 
Kent Downs); green and forest areas around Lydney in 
Gloucestershire (e.g. Mallards Pike) and around Salis-
bury in Wiltshire in South West England (e.g. Hazel 
Hill Wood Nature Reserve); forest patches around 
Thetford in the East Anglia in the East of England (e.g. 
Thetford Forest), forest areas around Scarborough in 
North Yorkshire (e.g. North Riding Forest Park), North 
East and West England such as larger forest areas on 
the borders between Northumberland, north Cumbria 
and South of Scotland (e.g. Kielder Forest Park) as as 
well as many scattered forest areas across Scotland, 
from the South up to the very North (Fig. 7 and Rshiny 
interface).

Fig. 4 Dogs. Final multivariable conditional logistic regression model for risk factors associated with tick attachment in dogs based on 33,784 EHRs. 
Nb = number, Ref  = reference, OR = odds ratio adjusted to week of visit and veterinary practice, CI = confidence interval
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Discussion
Understanding individual and spatiotemporal risk factors 
for tick attachment are a prerequisite if more targeted 
risk reduction of tick exposure and infestation is to be 
achieved. This is especially relevant in light of growing 
concerns about environmental contamination with para-
siticides frequently used on pets. This study used a novel 
data source available through text mining of > 7 million 
EHRs from a large sentinel network of veterinary clinics 
across GB to identify individual host and environmental, 
climate, human-induced and host distribution factors for 
tick attachment in companion animals that can also be 
used as a proxy of risk to humans.

Individual host risk factors for tick attachment
We found that tick attachment was more likely to be 
observed in animals 2 to 6 years of age, with those < 1 
and > 10 the least likely to be observed with ticks [2, 
3]. Variations in animal behaviour at different ages may 
confer variable risks of exposure to ticks and, thus, tick 
attachment. For example, younger dogs are more likely 
to be active explorers; likewise, younger cats are more 

likely to be hunters, while older animals possibly venture 
outside less frequently [70]. Younger animals are also 
recorded as visiting veterinary surgeons more regularly 
than their older counterparts [71], thus increasing the 
odds of noticing ticks during a veterinary consultation.

We also found that tick attachment was more likely 
reported in male and not neutered (entire) cats [3]. In 
the UK, most owned cats, such as those that make up the 
bulk of the SAVSNET database, likely manage their exter-
nal access through the frequent use of cat flaps. As such, 
behavioural differences between the sexes may impact a 
cat’s exposure to the outside world. However, telemetry 
studies have shown little difference in the ranging behav-
iour of male and female cats, although they are relatively 
small studies in scale [24]. Our results are consistent with 
others that have suggested male cats are both more likely 
to be infested by ticks and at greater risk of carrying a 
TBD [3]. In contrast to cats, the sex and neuter statuses 
of a dog were not relevant predictors of tick attachment 
in our population, similar to findings of other studies in 
the UK [12, 72]. Unlike cats, most external access of dogs 
likely to attend the SAVSNET network is managed by 

Fig. 5 Variable importance plot of the top 20 covariates (out of 75) for the spatiotemporal risk for tick attachment in companion animals, based 
on the fitted Random Forest model. The sum of the variable importance for all covariates equals 1, but to ease the interpretation of results, we 
multiplied it by a hundred to be in percentages
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Fig. 6 Partial dependence plots for the top six covariates (out of 75) for the spatiotemporal risk for tick attachment in companion animals, based 
on the fitted Random Forest model. EVI is the Enhanced Vegetation Index

Fig. 7 Long‑term predicted spatial risk, probability (%) for tick attachment in companion animals, focusing on the peak period from May to July 
between 2014 and 2021 in Great Britain using SAVSNET data
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their owners through organised walks, so tick exposure 
risk is perhaps more likely driven by the owner rather 
than inherent to the dog itself.

Regarding breeds, in dogs, a higher risk for tick attach-
ment was associated with the pastoral breed group, pos-
sibly related to their hunting behaviour, that requires 
higher active outdoor exercise and thus higher odds for 
encountering ticks [2, 12]. In both cats and dogs, the risk 
was higher in crossbreed and unclassified breeds, pos-
sibly explained by differences in management and pre-
ventive care compared to owners of purebreds. We also 
observed that short-haired cats and dogs were less likely 
to present with recorded ticks than their long-haired 
counterparts, while some authors found that hair length 
had no significant association with tick attachment [3]. 
Pet owners may be more likely to notice and remove 
ticks on shorter-hair pets without visiting their vet and, 
therefore, less likely to contribute to the studied popula-
tion. Short-haired animals may also be more effective at 
self-grooming and may remove ticks themselves, thus 
decreasing the odds for tick infestation [12].

Spatiotemporal risk factors for tick attachment
In our study, tick records were noted throughout the 
year, with a peak in May in cats and June in dogs, corre-
sponding to previous findings, both from SAVSNET [15], 
as well as from tick samples from cats and dogs identified 
with the TSS scheme [10, 13] and cross-sectional studies 
among small animal veterinary clinics [2, 3, 12]. This sea-
sonal pattern was also predicted with the ensemble ML 
model.

The earlier peak of tick records in cats may reflect the 
activity of I. hexagonus, the most common tick species on 
cats, and the density and behaviour of its primary host, 
hedgehogs [8], which emerge from hibernation earlier in 
the year. In contrast, I. ricinus, the dominant tick species 
in dogs but also found on cats, spends most of its life off 
the host; thus, it is highly dependent on environmental 
conditions; it shows a more marked seasonality, with 
records increasing in April, peaking in May and June, and 
a marked reduction in August [7, 9].

Tick records from SAVSNET were noted through-
out the country from the South of England, the Lizard 
Peninsula in Cornwall to North Eastern Scotland, and 
West Wales to East Anglia. Overall, tick records were 
observed across the country in spring and summer, while 
in autumn and winter, ticks were rarely reported in Scot-
land and Wales. Based on previous findings, we can only 
presume that our tick records reflect the spatial distri-
bution of the two dominant tick species in companion 
animals [2, 10, 12, 13]. Both I. ricinus and I. hexagonus 
have a wide distribution throughout GB, with I. hexago-
nus more frequently observed in southern parts of the 

country [2, 3]. According to the latest TSS report, I. hex-
agonus records occur widely across England and parts 
of Wales, with notable areas around London and the 
south-east, Gloucestershire, the West Midlands and West 
Yorkshire. These often coincide with large urban con-
urbations where companion animals are likely exposed 
to urban I. hexagonus populations, and usually in areas 
where I. ricinus records are less common [10]. Ixodes 
ricinus are most abundant in woodlands, which provide 
adequate environmental conditions compared to other 
less suitable habitats [7, 9]. This may explain the differ-
ence between the predicted areas suitable for tick attach-
ment in the southern and northern parts of GB obtained 
with our model; the woodland-dominated landscape—in 
the north—possibly reflecting I. ricinus attachment risk 
and the grassland-dominated vegetation type, followed 
by woodland in the south—possibly reflecting a mixture 
between I. hexagonus and I. ricinus attachment.

The EHR’s analysis further showed that the main driv-
ers controlling the risk for tick attachment in companion 
animals are environmental and climatic. Highly suitable 
areas for tick attachment were predicted in grassland 
and woodland areas across the country, with moderate 
to high rainfall and monthly temperatures between −5◦C 
and 10◦C , environmental and climate conditions cited 
previously in the literature as important for tick survival, 
development and dynamics [59, 63] and also driving the 
human TBD risk in GB and Europe [65, 73, 74]. Ticks 
adapted to cold temperatures, such as I. ricinus, have 
been shown to commence questing at temperatures as 
low as 3◦C and the lowest temperatures that permit its 
metabolic function between −5◦C and −10◦C [75]. This 
may explain the predicted areas at risk across Scotland, 
which have colder weather than the rest of the country 
[58].

Overall, the ensemble ML model predicted suitable 
areas for tick attachment across several grassland and 
forest areas in GB, in particular areas in South East Eng-
land and specific areas in South West England, East of 
England and Yorkshire as well as many scattered forest 
patches across Scotland (see Rshiny interface). Many of 
these areas have popular outdoor activity destinations, 
and some are known regional foci of Lyme disease, where 
the vector I. ricinus is also prevalent, such as New For-
est, Salisbury Plain, Exmoor, South Downs, Thetford For-
est and parts of Wiltshire and Berkshire in England and 
Wales, and the West Coast, Highlands and Islands of 
Scotland [76]. A visual comparison between our predic-
tions and predicted areas of Lyme disease endemic foci 
in mainland Scotland suggests a possible overlap in sev-
eral areas, such as Oban, Dumfries, Hamilton and Ayr 
[73]. Visually, similar overlaps were observed for Thet-
ford Forest, New Forest National Park and woodland 
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patches between Hampshire and Dorset in southern 
England, where the TBE virus was detected in ticks, fol-
lowed by several human cases [77, 78]. Knowing that pet 
owners, whether of cats or dogs, are at increased risk of 
encountering ticks compared to households without a 
companion animal [6] and that TBE virus and B. burgdor-
feri can be transmitted rapidly following a tick bite [77, 
79], SAVSNET, through its network of participating vet-
erinary clinics, can further have a preventive role among 
pet owners to be tick-aware and take protective measures 
against tick bites when spending time outdoors, particu-
larly in areas predicted at a higher risk for tick attach-
ment and overlapping with foci of TBD [6].

 In the current work, cat and dog densities and deer 
probability of presence were not relevant drivers of the 
spatial risk for tick attachment. There are a few possible 
explanations for these results. The spatiotemporal model 
was trained based on records at a 1-km spatial resolution, 
taking as a possible place of exposure the vicinity of the 
pet owner’s residence [22]; the latter were mainly in sub-
urban areas with a lower density of cats and dogs and a 
lower probability of deer presence in these grid cells and 
consequently affecting the results of our model.

Second, our results may also suggest the role of other 
hosts in the spatiotemporal risk of tick attachment. As 
mentioned before, I. ricinus has no pronounced host 
specificity and can feed on a range of host species, while 
I. hexagonus predominantly feeds on hedgehogs and 
other small mammals found throughout GB [8, 9].

Our results may also suggest that the spatial distribu-
tion of the risk for tick attachment in cats and dogs is 
controlled by a complex set of factors that include local 
conditions related to the habitat and interconnections 
between vegetation and climate that may affect tick sur-
vival and how the host population redistributes ticks with 
their movement rather than their number and presence/
absence in a given grid area [80–82]. Though works sug-
gest that companion animals may play a role in estab-
lishing and maintaining ticks in the peridomestic zone 
(garden) [82, 83], it can also be reasoned that companion 
animals could reduce tick survival in an enclosed habi-
tat where pets are the prime food source for ticks if they 
are preventively treated against ticks [82]. Regarding the 
wild deer, we chose to work with one indicator to get a 
global overview of their role in the risk for tick attach-
ment; however, future works should focus on better 
understanding the role of each deer species on the spatial 
risk of tick attachment, given their different distribution 
across GB and known role in maintaining and dispersion 
of tick populations in nature [84].

The SAVSNET network comprises 452 veterinary clin-
ics, participating voluntarily, mainly from suburban areas 

and representing approximately 18% of the small animal 
veterinary clinics across GB. Most SAVSNET veterinary 
clinics are from South East and North West England. 
Therefore, our work has a selection bias because prac-
tices are not randomly recruited, making our findings 
difficult to extrapolate to all veterinary visiting cats and 
dogs in GB. Spatial bias can be countered to some extent 
by broadening the base of SAVSNET veterinary clinics in 
under-represented areas and considering the distribution 
of small animal veterinary clinics and companion animals 
in GB.

Furthermore, the SAVSNET clinical notes did not pro-
vide information on the location of the exact exposure 
to ticks of the animal. We thus used, for the modelling, 
the 1-km grid of the pet owner’s residence as an approxi-
mation of the most probable place of exposure, assum-
ing that most tick attachments happen in the vicinity of 
the pet owner’s homes [22]. Clearly, however, some ticks 
will be picked up further from this location. Future work 
could consider varying buffer and grid sizes (2 km, 5 km) 
around the pet owner’s residence to assess whether the 
model performance increases.

Currently, SAVSNET EHRs hold very little informa-
tion on the tick species associated with each tick record, 
only five out of 2000 tick records in a previous analysis 
by Tulloch et al. [15]. As a result, we cannot provide fur-
ther accurate information, for example, on distribution 
changes for specific tick species in cats and dogs as pro-
vided with other schemes and studies [2, 3, 10]. A pos-
sible way to overcome this constraint is to encourage 
veterinarians to document information on tick species in 
the EHRs as much as possible.

Purposeful (active) sampling in veterinary practices 
in GB found that during the peak season of tick activ-
ity, over one in five examined animals was carrying a tick 
(30.7% of dogs and 32.4% of cats) [2, 3]. In contrast, our 
work relies on the passive recording of ticks by partici-
pating practitioners. In day-to-day veterinary practice, 
ticks on animals may go unnoticed or unrecorded, par-
ticularly if there is a more urgent clinical need during 
the visit. In addition, many companion animals will not 
visit a veterinarian because the owner is unconcerned, 
removed the tick themselves or was unaware of the ticks 
[15]. Therefore, the number of SAVSNET tick records 
used in our work in cats and dogs likely represents an 
underestimate of the true burden of infestation. Conse-
quently, the resulting spatiotemporal predictions of the 
ensemble ML model should be interpreted carefully. The 
current predictions most likely underestimate the true 
tick attachment risk, and areas predicted as no or lower 
risk do not necessarily mean that the risk does not exist.
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Future works on the SAVSNET data should explore 
other modelling options, for example, using only the tick 
(presence) records as a possible compromise between 
data quality and sensitivity of predictions. In this context, 
it should be envisaged to assemble complementary tick 
records obtained from various surveys and studies in GB, 
such as the TSS scheme and the Big Tick Project [2, 3, 
10], to allow for a deeper understanding of the environ-
mental, climate, human-induced and host distribution 
factors of tick attachment in cats and dogs and as a proxy 
of risk to humans.

Conclusions
Our study provides valuable insight into the individual 
and spatiotemporal factors influencing tick attachment of 
cats and dogs and as a proxy for human risk in GB using 
Big data analytics of > 7 million EHRs. The spatiotempo-
ral risk of tick attachment is shaped by the interplay of 
climate and vegetation type that exert a crucial role in the 
life cycle of ticks. These results are relevant from a veteri-
nary and public health perspective, as pets and humans 
frequenting grassland and forest areas predicted with a 
higher probability for tick attachment should be made 
aware of the risk, especially in high-risk times of year. 
Recommendations can be further aligned with the known 
presence of TBD in the veterinary practice area, as well 
as each animal’s demographics and lifestyle, includ-
ing regular ectoparasiticide treatment and tick checks. 
Tick records originating from passive surveillance sys-
tems such as SAVSNET should be incorporated into a 
workflow with other tick surveillance schemes in GB 
for a more complete understanding of the drivers of tick 
attachment that may elude monitoring and surveillance 
networks when data are analysed separately. Through its 
large network of participating veterinary clinics, SAVS-
NET can further have a preventive role among pet own-
ers, reminding them to be tick-aware when spending 
time outdoors, particularly in areas predicted at a higher 
risk for tick attachment (see Rshiny interface). Finally, we 
provide all the covariates and the code for the spatiotem-
poral modelling to make this study fully reproducible.
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