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Abstract 

Background Long‑lasting insecticidal nets (LLINs) may have different impacts on distinct mosquito vector species. 
We assessed the efficacy of pyrethroid‑pyriproxyfen and pyrethroid‑chlorfenapyr LLINs on the density of Anopheles 
gambiae s.s. and An. coluzzii compared to pyrethroid‑only nets in a three‑arm cluster randomised control trial in Benin.

Methods Indoor and outdoor collections of adult mosquitoes took place in 60 clusters using human landing catches 
at baseline and every 3 months for 2 years. After morphological identification, around 15% of randomly selected sam‑
ples of An. gambiae s.l. were dissected to determine parity, species (using PCR).

Results Overall, a total of 46,613 mosquito specimens were collected at baseline and 259,250 in the eight quar‑
terly collections post‑net distribution. Post‑net distribution, approximately 70% of the specimens of An. gambiae 
s.l. speciated were An. coluzzii, while the rest were mostly composed of An. gambiae s.s. with a small propor‑
tion (< 1%) of hybrids (An. gambiae/coluzzii). There was no evidence of a significant reduction in vector den‑
sity indoors in either primary vector species [An. coluzzii: DR (density ratio) = 0.62 (95% CI 0.21–1.77), p = 0.3683 
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Background
After 2 decades of success in reducing the malaria burden 
in sub-Saharan Africa, cases are now increasing in many 
countries [1]. Some of the factors explaining this resur-
gence are widespread pyrethroid resistance in Anoph-
eles vectors of malaria and more recently the disruptions 
caused by the COVID-19 pandemic [1]. Given that pyre-
throid-only long-lasting insecticidal nets (LLINs) were 
the sole class of nets recommended for community use 
by the World Health Organization (WHO) until recently, 
and the increasingly worrying epidemiological situation 
of malaria globally, urgent actions aiming to develop a 
new generation of LLINs are needed.

LLINs incorporating a mixture of a pyrethroid insec-
ticide plus piperonyl butoxide demonstrated better effi-
cacy on malaria than standard pyrethroid-only LLINs 
[2, 3] and were the first new second-generation LLINs to 
receive a WHO policy recommendation in 2017 [4]. Two 
other types of LLIN incorporating a pyrethroid and a 
second insecticide with a different mode of action, either 
pyriproxyfen (an insect growth regulator that inhibits 
fertility) or chlorfenapyr (a pyrrole insecticide which dis-
rupts mitochondrial oxidative phosphorylation), were 
assessed in randomized controlled trials (RCTs) in Tan-
zania [5] and Benin [6]. In both trials, Interceptor  G2® 
LLINs (mixture of alpha-cypermethrin-chlorfenapyr) 
provided clear additional protection against malaria 
compared to standard LLINs with 44 and 46% reduc-
tions in malaria case incidence after 2 years of follow-up 
in Tanzania and Benin, respectively. The effect of Royal 
 Guard® LLINs (mixture of alphacypermethrin-pyriprox-
yfen) was not as evident and reductions in malaria inci-
dence was marginal in both countries [5, 6]. In March 
2023,  Interceptor® G2, the first pyrethroid-chlorfenapyr 
LLIN in class product, received a full recommendation 
from the WHO, while the pyrethroid-pyriproxyfen LLIN, 
Royal  Guard®, was given a conditional recommendation 
pending additional evidence on efficacy [7].

Entomological indicators play a crucial role in under-
standing epidemiological results, as the impact of vec-
tor control interventions may vary depending on vector 
species composition, behaviours (outside/inside biting or 
resting) and insecticide resistance [8]. Some insecticides 

may be more effective on secondary vectors rather than 
primary ones in an area; a better understanding of these 
phenomena will help refine future prevention strate-
gies. In the Tanzania RCT, the pyrethroid-chlorfenapyr 
LLINs were the most effective against Anopheles funes-
tus s.l. for 3  years, with PBO LLINs remaining effective 
for 2 years. The same authors also showed that neither of 
the dual active-ingredient (ai) LLINs succeeded in con-
trolling Anopheles arabiensis [9]. The main entomologi-
cal outcomes of the trial in Benin were reported for three 
malaria vector complexes (Anopheles gambiae s.l., An. 
funestus and An. nili) pooled together [6]. In Benin, the 
two primary vectors are Anopheles gambiae s.s. and An. 
coluzzii (both part of the An. gambiae s.l complex) with 
composition and insecticide resistance frequencies vary-
ing across the country [10, 11].

The present study reports a secondary analysis of the 
RCT entomological data investigating the efficacy of 
Royal  Guard® LLINs and  Interceptor® G2 LLINs com-
pared to pyrethroid-only LLINs on the two primary vec-
tors found in the study area, An. coluzzii and An. gambiae 
s.s.

Methods
Study area and design
The present three-arm cluster RCT was conducted in 
Cove, Ouinhi and Zagnanado districts, located in the 
Zou region, Central Benin. Malaria endemicity was 
high, with transmission occurring year-round. Deploy-
ment of LLINs every 3  years remained the principal 
vector control strategy in this region where An. coluzzii 
and An. gambiae s.s., the main malaria vector species, 
displayed high pyrethroid resistance intensity [12]. The 
study area and trial design have been described previ-
ously [13] and the primary analyses of the trial were also 
published previously [6]. Briefly, the region consisted of 
123 villages divided into 60 clusters, each formed from a 
village or a group of villages. Restricted randomization 
was used to randomly assign 20 clusters to each of the 
three study LLINs (Fig. 1). These were: (i) Royal  Guard® 
LLIN, a 120-denier polyethylene net incorporating a mix-
ture of 220  mg/m2 alpha-cypermethrin and 220  mg/m2 
pyriproxyfen (Disease Control Technologies, Greer, SC, 

for the pyrethroid‑pyriproxyfen LLIN and DR = 0.56 (95% CI 0.19–1.62), p = 0.2866 for the pyrethroid‑chlorfenapyr LLIN, 
An. gambiae s.s.: DR = 0.52 (95% CI 0.18–1.46), p = 0.2192 for the pyrethroid‑pyriproxyfen LLIN and DR = 0.53 (95% CI 
0.19–1.46), p = 0.2222 for the pyrethroid‑chlorfenapyr]. The same trend was observed outdoors. Parity rates of An. 
gambiae s.l. were also similar across study arms.

Conclusions Compared with pyrethroid‑only LLINs, pyrethroid‑chlorfenapyr LLINs and pyrethroid‑pyriproxyfen LLINs 
performed similarly against the two primary mosquito species An. gambiae s.s. and An. coluzzii in Benin.

Keywords Dual active‑ingredients LLINs, Density, Anopheles coluzzii, Anopheles gambiae s.s., Benin
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USA), (ii)  Interceptor®  G2® LLIN, a 100-denier polyester 
net coated with 200 mg/m2 chlorfenapyr and 100 mg/m2 
alpha-cypermethrin (BASF SE, Ludwigshafen, Germany), 
and (iii)  Interceptor® LLIN, a 100-denier polyester net-
ting that incorporates 200 mg/m2 of alpha-cypermethrin 
(BASF SE, Ludwigshafen, Germany).

Procedures
Written consent to participate in the trial was sought 
from the household heads, and the adult volunteers that 
collected mosquitoes through human landing catches 
(HLCs), after being vaccinated against yellow fever. Prior 
to the study net distribution, one round of mosquito col-
lection occurred between September and October 2019. 
The net distribution was conducted in March 2020 with 
support from the National Malaria Control Programme, 
with a ratio of one net for every two people. Due to the 
COVID-19 pandemic, there was no data collection 
between April and May 2020; then entomological collec-
tions using HLCs in each cluster were conducted every 
3 months leading to eight collection rounds between June 
2020 and April 2022 [6–13]. A total of four houses were 
surveyed in the core area of each of the 60 clusters per 
round (total 240 collection nights indoors and 240 out-
doors per round), with the first randomly selected and 
the three others chosen in a 20-m radius around the 

first. In each house, collections were done indoors and 
outdoors from 19:00 to 7:00. Each night a first group of 
trained collectors worked between 7:00  p.m. and 01:00 
a.m. and were substituted by a second group between 
01:00 and 07:00 a.m. They used haemolysis tubes and 
flashlights to collect all mosquitoes on their lower limbs 
before they received any bites. Collected mosquitoes 
were morphologically identified to species level using a 
binocular microscope and the taxonomic identification 
key of Gillies et  al. [14]. About 15% of An. gambiae s.l. 
randomly sampled across collection hours and locations 
(indoor and outdoor) were dissected to assess the parity 
rate [15]. Molecular species identification was also per-
formed using PCR [16]. The trial profile is provided in 
Fig. 2.

Outcomes
The primary entomological outcome was measured 
indoors and outdoors for both An. gambiae s.s. and An. 
coluzzii. The density of vectors was defined as the esti-
mated mean number of each mosquito species collected 
per person per night. This indicator, measured at the 
cluster-visit level, was calculated at baseline and averaged 
across collections for year 1 and year 2 post-net distribu-
tion. Density was compared between each intervention 
arm and the pyrethroid LLIN arm (control arm). Sec-
ondary entomological outcomes included were mosquito 
species composition, relative proportion of each molecu-
lar species infected and parity rate (the proportion of An. 
gambiae s.l. found parous).

Statistical analysis
A double entry of the entomological monitoring data was 
performed in CS Pro 7.2 software-designed databases. 
The datasets were cleaned with Stata 15.0 (Stata Corp., 
College Station, TX). As only a proportion (around 
15%) of the total Anopheles collected were speciated, 
molecular species density was calculated at cluster level 
by multiplying the mean number of An. gambiae s.l. per 
cluster visited by the proportion of molecular species 
(An. coluzzii and An. gambiae s.s.). Some household visit 
data were excluded from the analysis using the following 
criteria:

• No mosquito speciated while number collected ≥ 1,
• 1 ≤ Number of collected mosquitoes ≤ 10, and 0% < % 

of speciated mosquitoes < 30%,
• Number of collected mosquitoes > 10, and 0 < num-

ber of mosquito speciated < 5.

The parity rate per species was calculated by dividing 
the number of parous mosquitoes by the total mosqui-
toes dissected.

Fig. 1 Map of the study area showing the three study arms
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Vector density, and parity rate were calculated at the 
cluster level. To analyse the vector density, a mixed-effect 
generalised linear model with a negative binomial distri-
bution was used, while a mixed-effect logistic regression 
was used for parity rate. Cluster was included as a ran-
dom effect.

Results
Baseline characteristics of the study area: mosquito species 
composition, vector density and parity rate
At baseline, a total of 46,613 mosquito specimens were 
collected, with 51.6% collected outdoors and the rest 
indoors. Overall, Anopheles mosquitoes accounted for 
32.2% (n = 7264) of the mosquitoes collected indoors 
and varied between 24.9 and 37% of the total caught 
according to trial arm (Fig. 3). The majority of Anoph-
eles were An. gambiae s.l. (87.7%). Anopheles mosquito 
species found in lower proportions included: Anoph-
eles ziemanni (1.5%), followed by An. pharoensis (1.2%), 
An. funestus (0.9%) and An. nili (0.2%). Other mosquito 
species found by order of abundance were: Mansonia 
spp. (arm level range: 33.4–36.8%) Culex spp. (arm 

level range: 26.2–41.4%), Aedes spp. (arm level range: 
0.3–2.0) and Coquillettidia spp. and Eretmapodites 
spp. (< 0.1%). Trends were similar indoors and outdoors 
(Fig. 3).

During this period, a total of 1797 An. gambiae s.l. 
(sporozoite positive samples plus a subset of randomly 
selected negative ones) were tested by PCR to identify 
sibling species. Overall, we found 53.9% An. coluzzii, and 
the rest were An. gambiae s.s. The relative proportion 
of An. coluzzii was usually the highest in all the arms, 
indoors and outdoors, except for the pyrethroid-CFP 
LLIN indoors where An. gambiae s.s. was found in the 
majority (Table 1).

The estimated density of An. coluzzii ranged between 
10.6 and 17.6 bites/person/night (b/p/n) indoors and 
between 10.4 and 14.6 b/p/n outdoors according to arms. 
Anopheles gambiae s.s. estimated density varied between 
9.3 and 11.4 b/p/n indoors and between 6.8 and 10.2 
b/p/n outdoors (Table 1).

Overall, 82.1% of the total An. gambiae s.l. collected 
indoors and dissected (1461/1780) were found parous 
and 81.5% (866/1063) of those collected outdoors. Those 

Fig. 2 Trial profile for the vector density. HHs household visits. LLIN long‑lasting insecticidal net. PY pyrethroid. PPF pyriproxyfen. # For each 
cluster, four households were randomly selected for each collection rounds. *HH excluded from the analysis are those belonging to clusters with: 
→ no mosquito speciated while number collected ≥ 1; → 1 ≤ number collected ≤ 10 and 0% < % speciated < 30%; → number collected > 10 
and 0 < number speciated < 5. Four consecutive collection rounds were performed in each of the 2 post‑intervention study years
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proportions were similar among the three study arms 
(Table 1).

Post‑intervention
Mosquito species composition
In the first year of the trial (between June 2020 and March 
2021), a total of 161,569 mosquitoes were collected with a 

higher density outdoors (58.2%). Overall, the proportion 
of Anopheles collected was 23.6% (15,926/67,497) indoors 
and 13.8% (15,926/94,072) outdoors, with the lowest pro-
portion found in the pyrethroid-CFP LLIN arm (28.5%) 
compared to pyrethroid-PPF LLIN arm (37.1%) and 
pyrethroid-only LLIN arm (34.4%). The proportion of 
Culex spp. caught was lower compared to baseline, whilst 

Fig. 3 Relative proportions of mosquito species collected indoors and outdoors at baseline in the three study arms. Pyr LLIN pyrethroid LLIN arm, 
Pyr-PPF LLIN pyrethroid‑pyriproxyfen LLIN arm, Pyr-CFP LLIN pyrethroid chlorfenapyr LLIN arm

Table 1 Baseline characteristics of the study area

An. Anopheles, N total number of tested mosquitoes, Pyr LLIN pyrethroid LLIN arm, Pyr-PPF LLIN pyrethroid-pyriproxyfen LLIN arm, Pyr-CFP LLIN pyrethroid chlorfenapyr 
LLIN arm. The density was estimated at the cluster visit level

Indicators Study arms Indoor Outdoor

Proportion of molecular species 
in the processed samples

Pyr LLIN: % (95% CI), N 54.0 (37.3–70.8), 385 58.1 (38.8–77.5), 215

[(Anopheles coluzzi/(An. coluzzii + An. 
gambiae s.s)]

Pyr‑PPF LLIN: % (95% CI), N 55.6 (37.3–74.0), 392 61.2 (43.2–79.2), 201

Pyr‑CFP LLIN: % (95% CI), N 43.2 (26.5–59.9), 389 58.6 (42.9–74.3), 215

Estimated density Pyr LLIN: Mean (95% CI) 14.2 (7.6–20.8) 14.6 (6.4–22.8)

(An. coluzzii) Pyr‑PPF LLIN: Mean (95% CI) 17.6 (8.6–26.6) 12.2 (5.6–18.9)

Pyr‑CFP LLIN: Mean (95% CI) 10.6 (4.4–16.8) 10.4 (5.1–15.7)

Estimated density Pyr LLIN: Mean (95% CI) 10.0 (4.2–15.9) 10.2 (3.7–16.6)

(An. gambiae s.s.) Pyr‑PPF LLIN: Mean (95% CI) 11.4 (5.4–17.5) 8.0 (3.6–12.5)

Pyr‑CFP LLIN: Mean (95% CI) 9.3 (4.3–14.4) 6.8 (2.1–11.4)

Parity rate Pyr LLIN: % (95% CI), N 79.9 (74.1–85.7), 563 80.7 (74.7–86.6), 367

(An. gambiae s.l.) Pyr‑PPF LLIN: % (95% CI), N 81.5 (75.2–87.7), 635 77.6 (69.3–85.8), 325

Pyr‑CFP LLIN: % (95% CI), N 85.1 (80.3–89.9), 582 79.8 (72.9–86.8), 371
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Mansonia spp. was higher across the study arms. As 
observed in baseline, Aedes spp. (< 3%) and other mos-
quitoes including both Coquillettidia spp. and Eretmapo-
dites spp. (≤ 0.02%) were collected at lower proportions 
(Fig. 4).

In the second year of the trial, a total of 97,681 mos-
quito specimens were collected between April 2021 and 
April 2022. Overall, 28.8% (n = 28,084) of the total mos-
quitoes collected were Anopheles, with 14,876 sampled 
indoors and the rest outdoors. Relative proportions of 
Anopheles spp. and Aedes spp., both indoors and out-
doors, were higher than those observed in year 1. The 
opposite trend was observed in Mansonia spp., and to a 
lesser extent in Culex spp. (Fig. 4).

A total of 8185 of the 53,723 An. gambiae s.l. collected 
both indoors and outdoors were tested for molecular 
species identification during the 2  years post-interven-
tion. On average, An. coluzzii accounted for 71.9% of the 
An. gambiae s.l. indoors and outdoors over the 2  years. 
Across both years, indoor proportions were similar 
between arms and ranged between 70.5 and 73.0%, while 
the outdoor proportions ranged between 69.3 and 73.3% 
(Table 2). The majority of the remaining mosquitoes were 
An. gambiae s.s. with a small proportion (< 1%) of hybrids 
(An. gambiae/coluzzii) (Table  2). Species composition 
changed according to season and the relative proportion 
of An. coluzzii increased and peaked during the dry sea-
son between December and April each year and was the 
lowest in September–October during the rainy season 
(Additional file 1: Figure. S1).

Density in An. gambiae s.s. and An. coluzzii
Overall (year 1 + year 2), indoor estimated density of An. 
coluzzii in the pyrethroid-only LLIN arm was 18.6 b/p/n 
compared to 8.1 b/p/n in the pyrethroid-chlorfenapyr 
LLIN arm (DR = 0.56 95% CI (0.19–1.62); p = 0.2866) 
and 10.4 b/p/n in the pyrethroid-pyriproxyfen LLIN arm 
(DR = 0.62 95% CI (0.21–1.77); p = 0.3683). A non-signif-
icant reduction in density was observed in years 1 and 2 
post-net distribution (indoors and outdoors) (Table 3).

Anopheles gambiae s.s. estimated indoor density was 
overall lower in the pyrethroid-pyriproxyfen LLIN arm 
[3.3 b/p/n, DR = 0.52 95% CI (0.18–1.46); p = 0.2192] 
and the pyrethroid-chlorfenapyr LLIN arm [1.9 b/p/n, 
DR = 0.53 95% CI (0.19–1.46); p = 0.2222] compared to 
the pyrethroid LLIN arm (4.1 b/p/n); however, this differ-
ence was not significant. This was also observed in each 
of the 2 years post-net distribution. Similar trends were 
found outdoors (Table 3).

Parity rate (PR) in An. gambiae s.l.
Overall, there was no evidence of a reduction in the par-
ity rate in the two intervention arms compared to the 
control arm both indoors [PR = 81.6%, OR = 1.3 (95% 
CI 0.9–1.8), p = 0.2014 in the pyrethroid-pyriproxy-
fen LLIN arm, and PR = 79.8%, OR = 1.1 (95% CI 0.7–
1.5), p = 0.7532 in the pyrethroid-chlorfenapyr LLIN 
arm, versus PR = 78.6% in the pyrethroid LLIN arm] 
and outdoors [PR = 80.2%, OR = 1.2 (95% CI 0.9–1.6), 
p = 0.2717 in the pyrethroid-pyriproxyfen LLIN arm, and 
PR = 80.2%, OR = 1.1 (95% CI 0.8–1.5), p = 0.5642 in the 

Fig. 4 Relative proportions of mosquito species collected indoors and outdoors post‑intervention in the three study arms. Pyr LLIN pyrethroid LLIN 
arm, Pyr-PPF LLIN pyrethroid‑pyriproxyfen LLIN arm, Pyr-CFP LLIN pyrethroid chlorfenapyr LLIN arm
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pyrethroid-chlorfenapyr LLIN arm, versus PR = 78.6% in 
the pyrethroid LLIN arm] in the first year of the trial. The 
same trend was observed during the first and the second 
year of the trial (Table 4).

Discussion
This secondary analysis provides further insights on 
the impact of pyrethroid-chlorfenapyr and pyrethroid-
pyriproxyfen LLINs on the two main malaria vectors 
found in the Zou region, Southern Benin. Anopheles 
coluzzii and An. gambiae s.s. are commonly found cir-
culating sympatrically across West Africa, but differ in 
their larval ecology, behaviour, migration, aestivation, 
and insecticide resistance mechanisms [17–22]. There 
is some indication that the impact of pyrethroid-chlor-
fenapyr LLIN was similar on both species (An. gambiae 
s.s. and An. coluzzii) with a slight reduction in year 2 on 
An. gambiae s.s. especially outdoors. Similar observa-
tion was found with pyrethroid-pyriproxyfen LLINs with 
some indication that the effect might be less than for the 
pyrethroid-chlorfenapyr LLIN.

One of the key factors for the acceptance of a vector 
control tool by a community is its ability to reduce the 
mosquito biting frequency. In the present trial, though 
there was not strong evidence, both pyrethroid-chlor-
fenapyr LLINs and pyrethroid-pyriproxyfen LLINs were 
found to reduce the density of An. coluzzii and An. gam-
biae s.s. at a broadly similar magnitude, both indoors and 
outdoors. By comparison, a clear differential effect was 
observed between the two LLINs after aggregating data 
of the three main malaria vector complexes (An. gambiae 
s.l. + An. funestus + An. nili) encountered in the study 
area, as the pyrethroid-pyriproxyfen LLINs reduced 
the indoor vector density by 42% (p = 0.11), while the 
pyrethroid-chlorfenapyr LLINs did significantly by 56% 
(p = 0.014) over the 2 first years of the trial [6]. The same 
trend was also observed with An. funestus, with the chlo-
rfenapyr-pyrethroid LLIN controlling this vector species 
over 3 years, while the two dual a.i. LLINs had no impact 
on density of An. arabiensis in Tanzania [9]. The weak 
evidence (p > 0.05) for the reductions induced by the two 
dual a.i. LLINs on the density of the two primary vectors 
in the present trial could be partly due to data scarcity. 

Table 2 Relative proportions of Anopheles coluzzii and An. gambiae s.s. indoors and outdoors, and across study arms

An. Anopheles, N number, Pyr LLIN: pyrethroid LLIN arm, Pyr-PPF LLIN pyrethroid-pyriproxyfen LLIN arm, Pyr-CFP LLIN pyrethroid chlorfenapyr LLIN arm

Periods Arms Total tested Indoor Outdoor

An. gambiae 
s.s

An. coluzzii An. gambiae/
coluzzii

An. gambiae 
s.s

An. coluzzii An. gambiae/
coluzzii

% (95% CI), N % (95% CI), N % (95% CI), N Total tested % (95% CI), N % (95% CI), N % (95% CI), N

Year 1:Post 
intervention

Pyr LLIN 895 32.0 (17.9–
46.0), 271

67.7 (53.69–
81.8), 621

0.3 (0–0.6), 3 532 34.5 (15.7–
53.3), 170

65.0 
(46.1–83.9), 
359

0.50 (0–1.04), 3

Pyr‑PPF LLIN 690 29.3 (12.5–
46.2), 198

70.6 (53.69–
87.4), 490

0.1 (0–0.3), 1 545 33.0 (13.2–
52.9), 178

66.7 
(46.8–86.5), 
364

0.30 (0–0.71), 2

Pyr‑CFP LLIN 780 27.6 (15.3–
39.9), 214

72.4 (60.03–
84.7), 566

0 538 25.5 (13.7–
37.2), 137

74.4 
(62.6–86.1), 
400

0.16 (0–0.46), 1

Year 2:Post 
intervention

Pyr LLIN 869 22.0 (9.06–
34.9), 188

77.4 (64.14–
90.7), 675

0.6 (0–1.32), 6 759 24.8 (9.3–
40.3), 185

74.6 
(59.1–90.1), 
569

0.60 (0–1.34), 5

Pyr‑PPF LLIN 738 31.4 (12.14–
50.7), 230

68.1 (48.60–
87.5), 503

0.5 (0.06–
0.95), 4

582 26.2 (7.4–
45.0), 150

73.4 
(54.7–92.1), 
429

0.42 (0–0.87), 3

Pyr‑CFP LLIN 696 24.7 (10.12–
39.2), 168

74.5 (59.6–
89.4), 521

0.8 (0.16–
1.51), 7

561 30.9 
(16–45.8), 173

68.8 
(53.7–83.9), 
386

0.34 (0–0.78), 2

Overall: Post‑
intervention

Pyr LLIN 1764 26.5 (13.2–
39.7), 459

73.0 
(59.7–86.4), 
1296

0.5 (0.06–0.9), 
9

1291 26.2 
(11.3–40.98), 
355

73.3 
(58.3–88.2), 
928

0.58 (0.10–
1.06), 8

Pyr‑PPF LLIN 1428 29.2 (11.7–
46.7), 428

70.5 (52.9–
87.9), 993

0.34 (0.16–
0.52), 5

1127 30.3 (12.2–
48.4), 328

69.3 
(51.2–87.4), 
793

0.42 (0.18–
0.65), 5

Pyr‑CFP LLIN 1476 27.5 (14.1–
41.0), 382

72.1 
(58.5–85.7), 
1087

0.37 (0.08–
0.66), 7

1099 26.8 (13.6–
40.1), 310

72.7 
(59.3–86.2), 
786

0.47 (0.14–
0.80), 3
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The density was estimated at the cluster-visit level rather 
than at a household level to reduce bias from estimat-
ing proportions in small samples. This will have resulted 
in less power. In addition, from our observations in the 
field, the pyrethroid-pyriproxyfen LLINs were frequently 
used outside households for other purposes (fishing, 
plant protection) given its high shrinkage observed in the 
field as well as its ability to tear quickly. These factors may 
have limited the exposure time of vectors to the inter-
vention tool, resulting in reduced sterilization effects of 
pyriproxyfen on vectors and a lack of effectiveness of this 
LLIN. Similarly, a trial previously conducted in Burkina 
Faso also revealed that a pyrethroid-pyriproxyfen LLIN 
successfully halved the entomological inoculation rate 
(EIR) but induced a weak reduction in clinical malaria 
incidence of 12% [23]. When comparing the indoor and 
outdoor impact of the two dual ai-LLINs, it appeared to 
have a greater effect indoors than outdoors, thus empha-
sizing the need for outdoor complementary vector con-
trol tools. Furthermore, the broadly similar impact that 
each of the two dual a.i. LLINs tended to have on the 
density of An. gambiae s.s. and An. coluzzii suggests that 
combining these insecticides (chlorfenapyr and pyriprox-
yfen) with the pyrethroid insecticide (alpha-cyperme-
thrin) in the LLINs had a similar effect on the density of 
the two primary vectors.

Over the 2 years after the net distribution, about three 
quarters of the collected specimens of An. gambiae s.l. 
was An. coluzzii, while the rest was composed of An. 
gambiae s.s. with a small proportion (< 1%) of hybrids 
(An. gambiae/coluzzii). By comparison, the two pre-
dominant molecular species were previously found in 
similar proportions at baseline (50.9% for An. coluzzii vs. 
49.1% for An. gambiae s.s.) [12]. The changes observed 
in proportions of these two primary species between 
the post-net distribution period and baseline could be 
due to the seasonality and/or the differential selection 
induced by the interventions. Indeed, the baseline col-
lection occurred during only one round performed over 
the short rainy season (September–October 2019) so 
could not provide a representative image of the molecu-
lar species composition compared to the four rounds of 
collection (covering all seasons) of each of the two post-
net distribution years. Furthermore, during the whole 
study period, An. coluzzii was found to peak over the dry 
seasons, which corroborates previous works by Salako 
et al. [24] in the northern regions of Atacora and Donga 
in Benin. This could be because, during that period of 
the year, there were many permanent/semi-permanent 
breeding sites created by rice paddies as well as tributar-
ies of the Oueme and Zou rivers that irrigate the study 
area, the temporary breeding sites being only found dur-
ing the rainy season. Indeed, according to Diabate et al. 

[25], permanent/semi-permanent and temporary breed-
ing sites were conducive to the emergence of An. coluzzii 
and An. gambiae s.s., respectively.

Limitations of the present study include the lack of 
data on both entomological inoculation rate and rainfall, 
which influence vector density.

After dissecting a subsample of An. gambiae s.l., the 
parity rate, which shows the physiological age of mos-
quito populations, was similar across the three study 
arms, suggesting that this malaria vector complex has 
passed through approximately the same number of gono-
trophic cycles in the three study arms. This finding cor-
roborates previous results from Accrombessi et  al. [6], 
who showed similar sporozoite rates across the three 
study arms. This conflicting trend might be due to the 
fact that, apart from the interventions deployed, parity 
rates could have been strongly influenced by other factors 
such as climate conditions (temperature, relative humid-
ity), which can vary from place to place and over time, 
as previously mentioned by Adugna et al. [26], whoch we 
did not account for in our analysis. Thus, in a trial evalu-
ating the efficacy of vector control tools, data on parity 
rates should be interpreted cautiously, given the existence 
of confounding factors.

Conclusions
The lack of a significant reduction in the density of pri-
mary vectors by either of the two dual active-ingredients 
LLINs could be because of the low sample size of mos-
quito speciated. Thus, both pyrethroid-chlorfenapyr 
LLINs and pyrethroid-pyriproxyfen LLINs appeared to 
have a similar impact on An. coluzzii and An. gambiae s.s. 
in this study.
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